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Abstract

This paper deals with the problem of linking a planification level to a sensory-motor level.
We discuss the interest of conditioning when the environment is not predictable enough for
motivated planification to work properly. We show how our probabilistic conditioning rule can
be used to solve such a problem. We then present a neural implementation of the planification
which consists in linking situation recognition and diffusion the activity on this “cognitive map”.
We emphasize the difficulty to ground this map to the real world and we propose an architecture
which tries to connect planification level with sensory-motor level. We discuss the necessity to
take into account the dynamic in the internal representation used by the planification.
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Abstract

This paper deals with the problem of linking a plani-
fication level to a sensory-motor level. We discuss the
interest of conditioning when the environment is not
predictable enough for motivated planification to work
properly. We then present a neural implementation of
the planification and we propose an architecture in-
tegrating both sensory-motor and planification level.
We particularly discuss the interaction between the
two levels.

1. Introduction

The motivation of our research group is to create a
generic autonomous control system which could allow an
autonomous robot, using a CCD camera as main source
of information, to learn how to realize several complex
tasks during the same “life” (“animat approach”, see
(McFarland, 1994; Meyer and Wilson, 1991)). In order to
guide our research, we take inspiration from psychology
and neurobiology expecting it could give us good hints to
develop “well-fitted” architectures. Yet, according to an
engineering point of view, inspiration from psychology
can only be interesting if it allows to design architec-
tures that cannot be solved simply (or not solved at all)
by classical approaches and that are not too expensive
in term of computing resources. Our claim is that the a
priori knowledge coming from psychology and neurobi-
ology we inject into our architectures allows to use “for
free” structure and regularities of the environment with-
out restricting the system adaptability. The main key for
keeping adaptability is allowing the system to learn by
itself how to react facing natural scenes in the environ-
ment. Thus, we focus our attention on the way animals
can learn things from environment in order to transpose
it to our animats.

In psychology, two major learning theories are con-
fronted to each other. The behaviorism has been intro-
duced by Pavlov in the 30’s (Pavlov, 1927) and sug-
gests that the main part of learning capabilities can be
explained by conditioning processes. Cognitivism, intro-
duced by Tolman a bit latter after Pavlov (Tolman, 1932;
Tolman, 1948), does not deny conditioning capabilities.
Yet, cognitivists suggest that, to explain given complex
skills such as maze path-finding, i1t is necessary to con-
sider that animal can construct “cognitive maps” of their

environment (a definition will be given in section 3.and
use them for planification.

Artificial intelligence has obviously tried to echo these
psychological results. The first approach has been to re-
duce the “intelligence” and especially, the human one,
to 1ts “cognitive” aspect. Many systems have thus been
developed to allow the manipulation of internal symbols
and the planification of “actions”. Yet, difficulties have
appeared to confront those systems with reality. In fact,
Harnad has emphasized the difficulty for such system
to be grounded into the real world (symbol grounding
problem - (Harnad, 1990)). This problem comes from
the fact that symbols are manipulated without regard to
the sense they refer to (cf. the Chinese room problem —

(Searle, 1987)).

Due to these difficulties, a “new” approach of artifi-
cial intelligence has emerged several years ago. The main
claim of this approach is that intelligence “emerges” from
the interaction of different levels of perception-action
loops directly constructed from sensors and effectors.
The first step has been to realize simple “reflex” behav-
iors directly connecting the sensors to the effectors with
no more computation (phototaxis and obstacle avoid-
ance behaviors - (Braittenberg, 1984)). In order to al-
low more flexible behaviors it has been necessary intro-
ducing learning capabilities. At this point, conditioning
paradigm has been used as inspiration to build learning
rules (Verschure et al., 1995; Pfeifer and Verschure, 1994;
Pfeifer and Scheier, 1996). Those two levels are similar to
the two first steps of the generic sumsumption architec-
ture proposed by Brooks (Brooks, 1981). The next step
would be to learn how to plan. Yet, this approach seems
confronted with the inverse problem of the one encoun-
tered by “cognitive” approach: it is very hard to build
internal representations in order to plan actions unless
giving the system many a priori on the environment.

In this paper, we try to see how the behaviorists and
the cognitivists approaches may be reconciled. For that
purpose, we try answering some questions on the interac-
tions between conditioning and planification: Does plan-
ification always work 7 How complex behaviors can be
reached only using conditioning ? Are conditioning and
planification separated processes or are they linked to-
gether ?



In fact, in the first section of this paper, we will show
it 1s possible to exhibit a maze experiment for which the
use of planification do not work and that it is yet possible
to solve the problem using a simple reinforcement rule.

We then propose in the second section, a simple archi-
tecture allowing to learn a cognitive map of the topolog-
ical relationships between given “situations” (whatever
they may be) so as to use them for planification. We
propose using this algorithm to solve problem of action
selection 1n a maze and in an open environment where
several motivations can appear.

In the third section, we claim it is necessary for the
planification system to lay on sensory-motor system in
order to be grounded to the “real world”. Yet, we show
it 1s necessary to take into account a dynamical repre-
sentation of the situations for the cognitive map and the
sensory-motor system to work together.

In conclusion, we present unification perspectives of
our approach, and we propose to validate our model with
biological data.

2. Conditioning to acquire complex
behaviors

Is it possible to exhibit an example in which actions plan-
ification is impossible 7 In fact, as soon as encountered
situations are regular enough, planification is a good
strategy. The best example is obviously the maze prob-
lem which consists in finding the exit of a maze. Indeed,
a cognitive map is the easiest way to remember where
the exit is and to infer shortest ways to reach it. Yet,
as soon as the magze is no more predictable for instance,
the animat is always moved from maze to maze or the
maze presents swinging doors), planification cannot be
useful anymore ( Conversely, conditioning can be used
supposing that T-junctions are always marked with vi-
sual cues indicating where the exit is (e.g. turn arrows).
Indeed, in behaviorism, each behavior is supposed to be
the result of a single conditioning or a series of condi-
tioning. The theory of behaviorism lay on the fact that a
given sensorial stimulus (or set of stimuli) can be associ-
ated to an action when is it presented at the same time
as an unconditional stimulus (classical conditioning —
(Pavlov, 1927)) or because the association is reinforced
(instrumental conditioning — (Skinner, 1953)). In the
animat context instrumental conditioning is a good mean
to make an animat learn a behavior giving it only simple
information on its success such as “true” or “false”.

For the maze problem, the difficulty consists in solv-
ing the sensory-motor association problem while the rein-
forcement signal not only rewards a single action but the
series of action that has lead the animat to the goal. For
instance, we can imagine using the maze represented fig-
ure 1. If pattern/movement associations are made prop-
erly, they allow to reach the exit of the maze and to get
a reward.
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Figure 1 The maze used and corresponding patterns
perceived by the robot (obtained with the robot CCD
camera).

In order to tackle this association problem we had
to develop our own conditioning algorithm. In fact, we
have identified a problem which is usually totally forgot-
ten. In classical sensory-motor association learning rules,
such as Sutton and Barto’s (Barto et al., 1983), noise is
added to the output of the neuron. When the robot tests
a set of sensory-motor associations and receives a punish-
ment, this negative reinforcement applies to all the stim-
ulus/action pairs the robot has made, whatever their ap-
pearance frequency is. Thus, the learning rule calls into
question the entire set of associations and there is as
chances of changing an association linked to a frequent
situation (a corridor situation for instance) as changing
an association corresponding to a rare (one T-junction).
Yet, as frequent situations appear more often (that is
a pleonasm !), there are more chances this modification
affects the animat behavior. One of the interest of the
mechanism we propose it that it allows to take into ac-
count in the same way situations having different occur-
rence frequencies.

Another difficulty happens if the robot has to realize
several different tasks. In an autonomous robotic con-
text, this issue is very interesting to allow the robot learn
different behaviors endowed with the same architecture,
learning rules and “memory”. If a task has been learned
at a given moment, learning a new task should not inter-
act with this previous acquisition unless the realization
of the new task would lead to contradict associations al-
ready made. This memory effect is very important if the
robot must keep in mind learned behaviors while going
on exploring its environment. Besides, if only parts of
the stimuli are new but the rest stays unchanged, it can
help learning new behavior more rapidly. Furthermore,



simple associations previously learned could help learn-
ing more difficult associations (this concept is referred as
“shaping” or “teaching” (Kaelbling et al., pear)).

In order to integrate those constraints, we have pro-
posed a neural learning rule modeling hypotheses testing
capabilities. The idea is to allow the use of an hypoth-
esis during a time long enough to test the consequences
it could have and if it needs changing. In order to indi-
cate the existence of an association between a particular
recognition and an action, a simple binary value of the
synaptic weights is enough. Yet, as the addition of noise
at the neuron output can lead to uncertainties, we have
decided to control diversity generation at the synaptic
level. Our solution is to introduce a confidence measure-
ment associated to the binary weight. It corresponds to
the confidence in the input/output association the weight
codes (see Fig. 2). When a reinforcement signal occurs,
only the probability term is changed. Besides, a random
draw is done in order to change weights whose confi-
dence term is low. If there is no reinforcement variation
neither the probabilities nor the weights are modified.
However, information about the correlation between the
input and the output of the weight go on being stored.
Such a mechanism gets the robot to behave as if it was
testing different sets of hypotheses without calling into
question hypotheses already tested.
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Figure 2 The PCR model

PCR is an algorithm which can be used in many appli-
cations depending on the “quality” of the reinforcement
signal which is provided. If the reinforcement is sparse
and crude, PCR is equivalent to a random search (yet,
it 1s better because it only considers situations 1t really
needs using). If the reinforcement signal varies according
to a gradient, the algorithm uses this “slope” information
and finds the solution quicker.

The maze problem has been actually realized on our
Koala robot using the PerAc architecture (see (Gaussier
et al., 1996b) — (Gaussier et al., 1996a) for applica-
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Figure 3 The PerAc architecture

tion on object recognition and place learning). The main
idea of this architecture is that both categorization and
sensory-motor association must be controlled by the ef-
fect of the movements on the environment. Particularly,
if the movement that has been performed at a given mo-
ment is reinforced, it probably means this situation is
important and should be both categorized and linked or
unlinked with this movement.

The PerAc architecture (Gaussier and Zrehen,
1994a)is made of 4 blocks (See figure 3): the Visual In-
put, the association map (or Visual Output - VO), the
Motor Input and the Motor Output. The visual input is a
representation of visual information the robot perceives
through its camera. The association map is dedicated to
the recognition of input patterns. In our experiment we
use the Probabilistic Topological Map (PTM) described
in (Gaussier and Zrehen, 1994b). The first interest of
this self-organized map is to preserve topology (two sim-
ilar situations are coded on close neurons) and to al-
low immediate learning. As learning is unsupervised, it
is necessary to be able to select the salient information
that must be coded. This is made possible thanks to a
vigilance term equivalent to the one described in ART
(Adaptive Resonance Theory - (Grossberg, 1976)). This
map 1s a precious tool for the robot to be able to build
rapidly an internal representation of the environment.

The Motor Input (MI) are reflex links already ac-
quired or genetically acquired. In the context of classi-
cal conditioning, this block which would drive Uncondi-
tioned Responses (in our application, the MT group is
a reflex keeping the robot in the middle of corridors).
The Motor Output group (MO) selects which movement
must be performed by the robot. The finally performed
action corresponds to the most activated neuron. A mo-
tor movement is then proposed by the WTA.

The general behavior of this architecture highly de-
pends on the way links between the recognition map
(VO) and the motor output group are learned (assum-
ing that input stimuli are categorized by the PTM map
and that WTA neurons use this learning process to cre-
ate sensory-motor associations). Yet, it should be noted
that this prior “categorization” of the stimuli deny be-
haviorists belief that conditioning need no internal repre-



sentation. The PCR algorithm is used to learn the links
between VO and MO.

The main problem comes from the difficulty to cat-
egorize perceived situation in order to associate them
with movements. To solve this problem, we have chosen
to control the categorization according to the result of
the action (see (Gaussier et al., 1996a) for further infor-
mation). Thus, the system may adapt the categorization
to 1ts use in the environment. In fact, using as often as
possible the regularities of the environment is a major
concern in our approach. This is made possible due to:

— the topology preservation, which exploits the envi-
ronment continuity (as well at the perceptual level
as at the action level).

— the generalization capabilities of the recognition
map, which allows to learn only when it is necessary

It must also be noted that the sensory-motor associ-
ation system lay on a reflex system which represents a
priori on the environment but not on the task to realize.
It can be thought as a adaption of the animat to the
environment it lives in.

Along this section we have shown it was possible to
build architectures with learning rules inspired from be-
haviorism, which allowed animat to realize a complex
behavior. Yet, it can be noticed that at any level the
robot can “choose” its behavior. In fact, mechanism we
have developed allow the robot to learn fixed actions or
sequences of actions.

We thus wonder about the capacity a robot must have
to be able to select one action among several according to
an internal “drive” it must reduce. We have developed an
experiment in which a robot was able to go to two differ-
ent places according to the level of two internal variables
(comparable with “food level” and “water level”). When
the robot is “hungry” (its “food level” variable is under
a given threshold), it must go to the place it learned it
corresponded to the place it can find “food”. This can be
done very easily learning how to go to those place (using
the “place learning” algorithm) and modulating the ac-
tivity of neurons coding the places according to the level
of internal variables (inhibiting the place coding “food”
when the corresponding variable is low and vice versa).
But this mechanism is too simple to allow a real planifi-
cation. For that purpose, we have been interested by the
concept of internal representation as a “cognitive map”
introduced by the psychologist Tolman (Tolman, 1948).

3. Motivated planification

In this section, what we are interested in is to design
a neural architecture allowing the robot to plan its ac-
tions to reach a goal. In the 30’s, Tolman realized a maze
experiment with rats, that could not be explained by be-
haviorists. The experiment consisted in comparing the
results of two groups of rats: the first group was always

rewarded while the second group was only rewarded after
11 days. According to behaviorism rats of the first group
should have much better results than rats of the second
group because they have been rewarded longer. In fact,
results of the rats of the second group were equivalent.
Tolman concluded that, although they was not rewarded,
rats have learned a representation of the maze (what he
called “latent learning”). This representation is called a
“cognitive map”.

According to Gallistel (Gallistel, 1993):

“A cognitive map is a record in the central ner-
vous system of macroscopic geometric relations
among surfaces in the environment used to plan
movements through the environment...”

This definition supposes that such maps exists in the
brain (what it still contested today) and that they take
only into account of macroscopic relationship between
places in the environment. This definition makes no hy-
pothesis of the nature of the information:

“...A map in ordinary acception encodes relative
metric positions. The relative metric position of
a point is given by its coordinates (its vector
position). Each coordinate of a point (each di-
mension of the position vector) specifies the dis-
tance of the point from an axis or origin of the
system of coordinates.”

It seems that Gallistel proposes that a cognitive map
would be coded in Cartesian or polar absolute coordi-
nates with metrics.

“The thesis T will argue is that the intuitive be-
lief that the cognitive maps of lower animals are
weaker than our own is not well founded... There
is experimental evidence that even insect maps
are metric maps.”

Yet, models not using the cognitive map concept have
been proposed to explain the navigation of insects (they
are based on a mechanism very similar to the one we used
to learn “places” — see the interesting review on naviga-
tional systems (Trullier et al., 1997)). With Schmajuk,
we prefer a more moderate definition of the cognitive
map (Schmajuk and Thieme, 1992):

“...The cognitive map [...] is a topological map,
1.e, 1t represents only the adjacency, but not dis-
tances or directions, between places... The cogni-
tive map allows the combination of information
about spatially adjacent places, and thereby the
inference of the connections to remote places.”

To elaborate such a representation, we can consider a
map of neurons fully interconnected. When a situation is



recognized, it is coded on a neuron N7 , which is activated
during a time T (see figure 4-a). When a new situation is
coded on N3, a simple Hebbian learning allows to learn
the time relationship (and thus the topological relation-
ship) between those two situations (see figure 4-b).
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Figure 4 a) Neuron N; is activated. b) Neuron N is
activated while Ny is still activated. Links Wy, n, and
Whn,n, can be learned. ¢) The motivational neuron is
activated. The link between this neuron and the neuron
coding the last situation encountered is learned.

Indeed, if Xy, is neuron N; activity and YN, 1ts cor-
responding short term memorization with:

— T XnvO)+X
Xn,(t+1)= ];ﬂ(_i_)l i

The Hebbian learning rule is given by :

dWn,na = ¢ Xn, - Xn,
dWn,nv1 =¢- Xn, - X,

The topological link between two neurons can thus
be learned generalizing the mechanism to all the en-
countered situations allows to build a graph of spatial
relationships between the different situations the robot
encounters. The last step to realize the planification, 1s
to learn the link between the recognition of a situation
and the satisfaction of a motivation. For that purpose, it
must be considered that the recognition of this situation
activates a given “motivational” neuron. Then, a sim-
ple Hebbian rule allows to reinforce the link between the
motivational neuron and the recognition of the situation
(see figure 4-c).

In order to perform planification process, a solution
can consists, as for resistive grids, to propagate back-
ward the activation of the motivational neuron. In fact,
the activity of a neuron in the cognitive map must be a
function of its topological distance to the goal (in term
of number of situations).

We propose the activation law given below:

Yy = mJaX(Wij “Y5)

As the neuron activity must be bounded by 1, connec-
tions weights must be bounded between 0 and 1.Indeed,
if all weights value are 1, all neurons activity is 1 and it is
impossible to decide which is the shortest path. Weights
value must thus be bounded with a value Wjys,, which
is less than 1. It must noted that there must be several
iterations before stabilization of the result (the minimal
number of iterations is the number of intermediate situ-
ations to reach the goal).

The algorithm can thus be written:

1. Initialization :

— N;, 1s the motivational neuron

— Tj, 1

— z; + 0, Vi ;é 19

2. Do:

— Vi, z; < max(W;; - 2;)

— While the net is not stable (max distance be-
tween the current node and the goal in connec-
tions number)

We have proved that this algorithm is formally equiv-
alent to Bellman’s shortest graph distance algorithm
(Bellman, 1958).

To fix the ideas, let us take the example of the naviga-
tion if the maze represented on figure figure 5. After ex-
ploration, when the robot is brought back to the starting
point A, it should perform sequence A - B — C' = D,
instead f A > B> F—>F—->G—C—D.

Figure 5 Complex maze with two pathways of different
size leading from A to D.

If neuron coding D activity i1s forced to 1 due
to its link with motivation, (see figure 6), according
to neuron activity equation y; = max; (Wi -y;) =
max; (Waraz - y;), and if Warez = 0.9, C and G activity
is 0.9. F activity is 0.92 = 0.81, and E is 0.9 = 0.729.
Besides, as B activity is computed according to the max



value, its activity is 0.9? = 0.81 instead of 0.9* = 0.6561.
Its activity thus directly depends on its distance to the
goal (see figure 6).
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Figure 6 The motivational neuron activates the recog-
nition of D. Due to the links learned during the explo-
ration phase, there is a backpropagation of the activity.
The neurons activity is directly a measurement of the
distance to the goal.

We simulated the behavior of an animat evolving in
a complex maze in which it could find different “food”
sources (figure 7). The robot starts moving at random
and gradually discovers its environment (walls, “food
sources”). When a movement is possible between two
“places” (two adjacent squares of the discretized envi-
ronment), a link at a fixed value (Wasep = 0.9) is cre-
ated. When a “food” source is reached, the neuron asso-
ciated with the current position is also associated with
the “hunger” motivation. In this implementation, it is
considered that each time the robot moves, it consumes
an internal resource associated to an “energy level” vari-
able. When this variable level is too low (according to a
given threshold), the robot begins the planification. If it
has already discovered one or several “food” sources, it
quickly reaches the nearest.

Moreover, in our tests, we have added the possibility
of learning to avoid areas in order to test if the system
was able to avoid a given area of the maze even if crossing
this area it would reach the “food” source quicker. In
fact, it has been possible only associating a lower weight
value (0.7) to the link that would make the robot enter
a “to avoid” area.

We have also simulated the behavior of an animat
placed in an open environment. Thanks to a mecha-
nism allowing “place learning” (fusioning the recognition
— “what” — and the position — “where” — of landmarks
(Gaussier et al., 1997)), the robot can learn where “food”
and “water” sources are when it can find them. More-
over, when it explores the environment, it can learn new
places as soon as they are different enough from places
it has already learned before (according to a “recogni-
tion” threshold) and it learns to link them with the last
place encountered. From time to time, the animat builds
a topological representation of its environment it can use
to plan its action. Besides, two internal variables corre-
sponding to “food level” and “water level” are dynami-
cally updated according to differential equations. When
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Figure 7 Complex maze used to test our planification
algorithm efficiency.

their level 1s too low, it activates a motivational neuron
associated with the corresponding motivation (“hunger”
resp. “thirst”) what make the robot plan its action to
reach the nearest place where it can satisfy its motiva-
tion. We have tested this architecture on many different
simulated open environments, and it seems to work prop-
erly even if:

— there are several places where the animat can be re-
warded.

— the “food” or “water” sources disappear.

— the number of motivation is increased (e.g. “homing”
behavior)

In each case, the system is able to solve both shortest
path finding and action selection problem.

Yet, in those simulation, we have supposes that there
were no problem to recognize situations and the move-
ment was selected following the gradient of the cognitive
map neurons activity. The problem is that, for an ex-
periment in a real environment, we should be able to
recognize situations and to know to which movements
they can be linked. In fact, the planification algorithm
should interact with a sensory-motor association system
similar to the architecture we described in section 2.

4. Linking the SM level and the
planification level
Usually, classical plan generation mechanisms are treated

by resolution systems based on formal logic. The prin-
ciple consists in representing knowledge as a priori rules



‘

v‘

Learned places
—|— Landmarks (visible or not according to the animat position)
~ Links between situations

Figure 8 Simulation of an animat which plans its move-
ments in an open environment in which both “food” and
“water” sources can be found.

whose preconditions depends on the perceived situation
and whose results consists in performing particular ac-
tions. Plan generation systems make the formal corre-
spondence allowing to define, starting from the current
situation, the set of rules to chain to reach the goal. Yet,
in order to “ground” to the real world, interfaces between
symbols corresponding to the rule preconditions and the
situations they correspond to in the real world must be

defined.
Motivation

e

Figure 9 The informational flow corresponding to the
recognition and to the planification are summed at the
same level.

In our opinion, we think it is necessary to integrate
within the architecture dedicated to planification a mech-
anism which allows the manipulation of internal repre-
sentations elaborated from the perception of the envi-

ronment. Usually, it is neglected that the internal rep-
resentation must be constructed dynamically, while ex-
plorating the environment. It must be noted that plan-
ification can only be done on already known situations.
There cannot be both learning and use of the information
at the same time. It is thus necessary to integrate two
working modes: an exploration mode and a planification
mode. During exploration, the system must be able to
learn different places (if there are perceptually different
enough), to learn the topological relationship between
those places, to learn the movement allowing to go from
one place to another and to learn the places which can
be associated to a goal. During planification, information
learned during exploration can be used to reach the goal
linked to the apparition of the corresponding internal
motivation.

Then, why not using a mixed version of the sensory-
motor learning architecture presented in section Zand the
planification architecture presented in section 3% Unfor-
tunately, it is impossible to mix planification and recog-
nition on the same neuron. Indeed, situation recognition
and motivation backpropagation correspond to two dis-
tinct informational flows. The entire set of information
cannot be treated by the same neuron map. If a single
neuron must both decide which situation is recognized
and propagate the motivational information from goal
to sub-goals, there is obviously an ambiguity on the rea-
son why the neuron is activated (see figure 9).

At least two levels are thus necessary so as to sep-
arate the informational flows: one corresponding to the
“goal” level, another corresponding to the recognition of
the current situation and its association to a movement
(“sensory-motor” level). As the information coded by a
neuron must both take into account the two aspects of
the information it codes (“goal” or “recognition”), cor-
responding neurons of the two levels must be linked to-
gether. The neurons activity updating depends on the
working mode in which the system is. During learning,
the information must go “bottom-up” from the recogni-
tion level to the “goal” level so as to allow the cognitive
map learning. Conversely, during planification, the infor-
mation coming from the “goal” level must go “top-down”
in order to select the action to do (see figure 11). This
working mechanism corresponds to the neurobiological
model of cortical columns proposed by Burnod (Burnod,
1989). The higher level of the column corresponding to
the cortical level and the lower level to the thalamic one.

We can wonder if we can directly superimpose the
planification level to the sensory-motor architecture de-
scribed in 2.During the exploration phase, the system
could learn perceived situation and how to link them
with actions. Besides, due to the superimposition of the
“goal” level, a “cognitive map” could be learned accord-
ing to categorized situations.

For instance, in the maze represented on figure 10,



Figure 10 Maze example for planification

situation A is associated with “go ahead”, B both with
“turn left” and “turn right”, C' with the satisfaction of
the motivation, D is a dead-end.

During planification, the system must use the infor-
mation coming from the knowledge the goal is in C' to
perform the action sequence allowing to reach this goal
starting from A. The problem is that when the animat
arrives in B there is no way to chose which one must be
performed (B is linked with two movements !).
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Figure 11 It is impossible to plan using only situation
recognition. Indeed a situation can be linked to two dif-
ferent movements, and it is thus impossible to decide
which action must be selected.

In fact, there should be two distinct representations
each associated with one movement. Besides, this repre-
sentation must take into account both starting and fin-
ishing situation. A solution consists in building a repre-
sentation of the transition between two situations (see
figure 12). Let AB, the internal representation of the
transition between A and B. The associated action is
the movement allowing to go from A to B and is learned
using PCR algorithm. The idea of this representation has
been inspired by a model developed by (Banquet et al.,
1998). As the internal representation is elaborated on
transitions recognition and not only on scenes recogni-
tion, an internal representation is necessarily linked with
only a single movement. In situation B, for instance, the
animat may turn left (arrives in C') or turn right (arrives
in D). Transition BC' and BD will be created and re-
spectively associated with “turn left” and “turn right”

movements.
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Figure 12 Use of the transitions for actions planification.

During exploration, the “recognition” level creates an
internal representation for each transition between scenes
and associates the movement allowing to go from one to
the other. Besides, at the “goal” level, connections be-
tween representations are learned so as to create a graph
of the topological relationships between scenes. Further-
more, when the animat reaches the goal, it learns the
association between the recognition of the last transition
and the motivation satisfaction. It is very important to
notice that to create representation AB the animat must
already be in B.

During planification, the motivation backpropagation
toward the current state allows to activate the graph
nodes indicating movement to perform to reach the goal.
Conversely with the exploration phase, what is impor-
tant now is to decide what movement to perform to reach
the goal when recognizing a given place. It is thus nec-
essary to build a system allowing to predict the scene(s)
which can be reached from the current scene. This mech-
anism, linked to the motivation backpropagation algo-
rithm should be able to select between different possi-
ble movement which is the best to reach the goal more
rapidly. For instance, in B, the system must be able to
predict both BC and BD transitions and make BC' win
in order to perform the corresponding movement (turn
left).

The transition learning mechanism is decomposed in
two steps (see figure 13). The first step of the data treat-
ment consists in learning perceptual scenes (PTM1). The
second step is then to make the fusion of two successive
situations in order to recognize it.

It is essential to rigorously sequence learning and use
phases in order to make the architecture works properly
for exploration and planification. The system architec-
ture must thus take into account requirements imposed
by both working phases.

The global architecture propose is represented figure
14. For the moment, the solution we propose has only be
realized in simulation. It is now being implanted for real.
But we expect being confronted to severe problems. In-
deed, while it has been shown places can be learned very
simply (Gaussier et al., 1997), the fusion of two places in
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Figure 13 Fusion mechanism: the direct input is fu-
sioned with the delayed input in order to build a rep-
resentation of the transition.
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Figure 14 Starting from PTM1 (scenes recognition), a
fusion mechanism of the input and the delayed input
allows to elaborate the transition recognition (PTM2).
The activity of the “goal” level which depends on the
distance from the goal is used to bias the recognition
level activity so as to select the best action to reach the
goal.

a transition requires important efforts on novelty detec-
tion and information compression.

5. Conclusion

In this article, we have proposed an architecture which
allows to build a cognitive map from the sensory-motor
level (which includes in fact two sub-levels: reflex and
conditioning). Our claim is that this superimposition of
these levels is necessary for being able to integrate and
control the different information flows. Yet, links between
the different levels must take into account the system dy-
namic, fusioning information appearing at different time
steps.

In fact, we would like to draw a parallel between our
architecture and biological data concerning the way the
brain gradually integrates perceptual data to be able to
perform more and more complex behaviors (see figure
15). At the top level, we can find specific integrative
structures such as the pre-frontal cortex and the hip-
pocampus.
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Figure 15 Schematic representation of the information
integration in the brain.

At the lower level, the reflex system represents a pri-
ori given by the genetic history of the species. In the
robotic context, this a priori can be every knowledge on
the structure of the task the robot must learn. Yet, our
aim is not to constraint learning too much for the robot
to be able to construct its knowledge by itself thanks to
learning rules. In our opinion, the reflex system should
only be used to facilitate the robot control giving general



knowledge on the environment. That is the reason why
we are currently trying to implement our algorithm using
dynamic field theory in order to make control smoother
and more general (Schoner et al., 1995).

Our long term goal is to integrate in a same approach,
robotic control and artificial intelligence. The architec-
ture we propose is a first step to reach the “symbolic”
level defended by classical AI, but we must go beyond. In
particular, our architecture does not deal with the prob-
lem of planification structuration: our system can plan
but it cannot plan to plan! (see (Donnart and Meyer,
1996)) This problem is yet very important if we con-
sider the scaling problem. Indeed, we have shown that,
at the sensory-motor level, the complexity directly de-
pends on the number of possible associations they might
be (number of input/output pairs). At the planification
level, a focalisation system, based on the animat motiva-
tions, could allow selecting given sensory-motor schemes
among all the possible ones. It would thus allow to solve
this problem of complexity explosion.
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