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Abstract Imitation and learning from humans require1 1

an adequate sensorimotor controller to learn and encode2

behaviors. We present the Dynamic Muscle Perception–3

Action(DM-PerAc) model to control a multiple degrees-of-4

freedom (DOF) robot arm. In the original PerAc model, path-5

following or place-reaching behaviors correspond to the sen-6

sorimotor attractors resulting from the dynamics of learned7

sensorimotor associations. The DM-PerAc model, inspired8

by human muscles, permits one to combine impedance-9

like control with the capability of learning sensorimotor10

attraction basins. We detail a solution to learn incremen-11

tally online the DM-PerAc visuomotor controller. Postural12

attractors are learned by adapting the muscle activations in13

the model depending on movement errors. Visuomotor cat-14

egories merging visual and proprioceptive signals are asso-15

ciated with these muscle activations. Thus, the visual and16

proprioceptive signals activate the motor action generating17

an attractor which satisfies both visual and proprioceptive18

constraints. This visuomotor controller can serve as a basis19

for imitative behaviors. In addition, the muscle activation pat-20

terns can define directions of movement instead of postural21

attractors. Such patterns can be used in state-action couples22

to generate trajectories like in the PerAc model. We discuss23

a possible extension of the DM-PerAc controller by adapting24

the Fukuyori’s controller based on the Langevin’s equation.25

This controller can serve not only to reach attractors which26
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were not explicitly learned, but also to learn the state/action 27

couples to define trajectories. 28

Keywords Visuomotor control · Impedance control · 29

Perception–action loop · Neural network 30

1 Introduction 31

In order to act efficiently in unknown environments and 232

collaborate with humans, robots must be able to con- 33

trol and adapt their behaviors. Contrary to the classical 34

motor control approach, human-robot interaction and imi- 35

tation paradigms take into account that a human part- 36

ner can influence and improve both the behavior and the 37

behavioral learning of a robot. Our past work, follow- 38

ing a developmental approach (Lungarella et al. 2003), 39

along with collaborations with developmental psycholo- 40

gists, cognitive psychologists, and neuro-biologists have 41

led us to understand that the tasks and behaviors cannot 42

be reduced to a set of controlled parameters. Behaviors 43

rather emerge from the dynamics of perception–action cou- 44

pling (Gaussier and Zrehen 1995; Maillard et al. 2005). 45

The behavior is built upon a wide range of interactions at 46

different levels. A behavior learning system must be able 47

to capture the dynamical sensorimotor attractors describ- 48

ing the behaviors. In such conditions, the issues of learn- 49

ing, adapting, and sharing these attractors are fundamental 50

in order to achieve natural and intuitive nonverbal human- 51

robot interaction. What are the constraints on the low- 52

level motor control to learn such attractors? What kind of 53

model of motor control should be used and how can it be 54

learned? 55

Impedance control enhances optimal control in the case 56

of interaction with the environment (Sect. 2.1). In impedance 57
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control, position and velocity constraints determine the58

movements with respect to the desired trajectory. In the59

framework of human robot interaction, regression-based60

solutions (Ijspeert et al. 2003; Calinon et al. 2007) can learn61

the desired trajectories from data obtained during the task62

demonstration by a human (Sect. 2.2). The trajectories result63

from mixtures of adapted kernels. Impedance control can be64

linked to muscle activations (Sect. 2.3). Though, the hypoth-65

esis of a desired trajectory is usually kept while focusing66

on the link between muscle activations and the impedance67

control parameters (stiffness,…). On the contrary, we defend68

the perception–action (PerAc) approach claiming that behav-69

iors correspond to sensorimotor attractors emerging from70

the dynamics of multiple learned sensorimotor associations71

(Sect. 3).72

In our first works on the emergence of imitation (Gaussier73

et al. 1998; Andry et al. 2004), we showed that an arm74

controller using the learning of visuomotor associations to75

build a homeostatic controller can lead to the emergence of76

low-level imitative behaviors if the perception is ambigu-77

ous (i.e. when mistaking partner’s hand for its own hand).78

However, this visuomotor controller had several limitations.79

In particular, it did not allow the coding of trajectories by80

state-action couples like in the PerAc approach. We thus pro-81

pose, in this paper, a model called Dynamic-Muscle PerAc82

to control a robot arm with multiple degrees-of-freedom83

(Sect. 4). The DM-PerAc model is based on simple models84

of muscles and joints with dynamic equations correspond-85

ing to impedance control. This DM-PerAc model learns86

the inverse kinematic model by learning visuomotor asso-87

ciations. It also learns postural attractors to link percep-88

tion (visuomotor categories) with actions coded as muscle89

activations, i.e. it also learns the inverse dynamic model.90

The behavior and properties of the DM-PerAc visuomo-91

tor controller are evaluated in Sect. 5. Like in our previous92

works (Andry et al. 2004), the DM-PerAc visuomotor con-93

troller is a good bootstrap for imitative behaviors (Sect. 6.2).94

In addition, the muscle activation patterns can be used in95

state/action couples to code trajectories like in the PerAc96

model (Sect. 6.1). In Sect. 6.3, we introduce Fukuyori’s con-97

troller to improve performance and we discuss its possi-98

ble role to learn trajectories with the DM-PerAc model in99

Sect. 7.100

2 State of the art of online, incremental motor control101

for learning from interaction102

2.1 Impedance control103

In optimal control theory (Todorov 2007), the desired trajec-104

tory is an optimal trajectory crossing given via-points and105

minimizing some movement variables like jerk1 (Flash and 106

Hogan 1985). The motor control should be flexible enough 107

to allow physical interaction with the environment. Studies 108

of movement properties have led to the impedance control 109

model (Hogan 1984) as an approximation of neuro-muscular 110

properties. According to the equilibrium trajectory hypothe- 111

sis (Flash 1987), motor programs are internally represented 112

as the trajectories of an equilibrium point. Impedance con- 113

trol is sufficient to control manipulators acting in contact 114

with the world (Chiaverini et al. 1999). Impedance control is 115

also a usual controller for prostheses and exoskeleton which 116

involve direct physical interaction with a human (Jiménez- 117

Fabián and Verlinden 2011). Impedance control is based on a 118

second order “damped mass spring”-like system (1) enabling 119

constrained motion, dynamic interaction and obstacle avoid- 120

ance. 121

M
dV

dt
= K (X0 − X) + B(V0 − V ) (1) 122

where V is the velocity and X is the Cartesian position of 123

the end effector. The coefficient K (equivalent to the spring 124

stiffness) and B represent the constraints related to the posi- 125

tion command X0 and the speed command V0, respectively. 126

Some other versions of impedance control use the proprio- 127

ceptive information (e.g. Albu-Schäffer et al. 2007) instead of 128

the Cartesian position. In addition, the via-points, which are 129

necessary to compute the desired trajectory (X0(t), V0(t)), 130

can be learned from watching (Miyamoto and Kawato 1998). 131

2.2 Learning tasks from a human with regression 132

techniques 133

The trajectories can be directly learned from training data 134

obtained during a task demonstration by a human. In order to 135

learn how to fulfill a task, a human teacher can provide feed- 136

back or data which are integrated in a sensorimotor model 137

of the task. Function approximation based on local regres- 138

sion techniques (Atkeson et al. 1997) is sufficient to learn 139

forward or inverse models of robot control. Learning an ini- 140

tial model from a human demonstration reduces the size 141

of the space to be explored. Demonstrations facilitate and 142

improve subsequent reinforcement learning (Schaal 1997). 143

More recent, the Locally Weighted Projection Regression 144

algorithm (LWPR) (Vijayakumar et al. 2005) merges both 145

the incremental learning properties of the Receptive Field 146

Weighted Regression (RFWR) algorithm (Schaal and Atke- 147

son 1998) and the projection of input data in order to reduce 148

the dimensionality problem. The authors showed a demon- 149

stration with a 30DOF SARCOS humanoid robot learning 150

1 In the minimum-jerk approach, the movements maximize the smooth-
ness of the motion.
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the dynamic inverse model and performing eight-shaped tra-151

jectories with its arm.152

Regression techniques to learn models of motor con-153

trol were also used in learning from demonstration para-154

digm (Argall et al. 2009). The Dynamic Movement Prim-155

itives (DMP) (Ijspeert et al. 2003, 2013; Schaal 2006; Hoff-156

mann et al. 2009) are based on the RFWR algorithm. The157

primitives are control policies that are activated depending158

on a local basis function. They provide motor control as a159

second-order dynamic system. The combination of primitive160

shapes in the attractor landscape produce the desired trajec-161

tory. This combination depends on a phase variable which162

gives the temporal reference of the movement. The approxi-163

mated function is the time-dependent trajectory, and locally164

weighted regression of training data determine the parame-165

ters of the basis functions (number, centers, bandwidths) and166

the contribution of corresponding primitives. The DMP algo-167

rithm shows interesting properties of spatial and temporal168

invariance and was applied to learn discrete and rhythmic169

movements. However, the correspondence problem (Nehaniv170

and Dautenhahn 2002) was completely eluded as the train-171

ing data were obtained from a joint-angle recording system172

on the human. A particular coupling must be introduced173

in the dynamic equation of the phase variable in order to174

tackle correctly perturbations. The action of this coupling is175

to slow the evolution of the phase variable when there are176

perturbations.177

Similarly, a Gaussian Mixture Model (GMM) can also178

learn a model of a demonstrated task by encoding proprio-179

ceptive and Cartesian information in Gaussian kernels (Cali-180

non et al. 2007). The learning is based on an Expectation-181

Maximization process which adapts the Gaussian kernels182

to describe probabilistically the input data obtained in a183

training session. Then, given partial information such as184

only the Cartesian position, Gaussian Mixture Regression185

extracts the probable proprioception to control a robotic186

arm. Depending on the task, vision or motion capture187

devices can track particular elements (e.g. spoon, human188

head) (Calinon et al. 2010a,b). Still, the computation of189

the 3D Cartesian coordinates of the visual markers requires190

particular calibrations of the external devices. Calinon et191

al. (2009) uses a dynamical second-order motor controller192

and Hidden Markhov Models (HMM) instead of GMM.193

HMM encodes the sequential dependencies in the task,194

whereas the motor controller now implements impedance195

control. A trade-off between the position constraint and196

the speed constraint is managed depending on the vari-197

ance in the demonstrated trajectories. This version of the198

model is similar to DMP. The main difference is that199

the learning of the constraints on the position and the200

velocity profile can take into account the mutual influ-201

ence between different degrees-of-freedom, which is not202

the case with DMP. Some recent works (Kronander and203

Billard 2012; Rozo et al. 2013) studied the online adap- 204

tation of the control stiffness from the position varia- 205

tions and haptic feedback. This adaptation of the control 206

improved the quality of the collaboration between human and 207

robot (Rozo et al. 2013). 208

2.3 Adaptation of muscle activations and impedance control 209

In the case of human arm control, the actions are gener- 210

ated by muscle contraction. The VITE model (Bullock and 211

Grossberg 1989) is based on equations describing the muscle 212

activations. The resulting dynamics is similar to the dynam- 213

ics produced by an impedance controller (Hersch and Bil- 214

lard 2006). However, the VITE model also assumes a target 215

position to drive muscle activations. In iterative and adap- 216

tive control (Slotine 1988), the behavior can be adapted by 217

changing the control parameters instead of changing the com- 218

mand. Considering the adaptation properties at the level of 219

muscular control (Burdet et al. 2006; Franklin et al. 2008), 220

the authors proposed a muscle-centered model of adaptive 221

and iterative control to maintain a posture or to follow a 222

trajectory under disturbances (Ganesh et al. 2010). The con- 223

troller takes into account a feedforward torque command and 224

a feedback control to generate the final torque command. 225

The feedforward torque command is generated by muscular 226

activation. The feedback controller is a proportional deriv- 227

ative. Such control can be equivalent to impedance control 228

if the apparent inertia is assumed to vary and to be equal 229

to the inherent inertia of the robot. The muscle activations 230

are adapted in order to reduce the feedback error. Indeed, 231

in the model (Ganesh et al. 2010), the adaptation of the 232

muscle activities directly induces changes of the feedfor- 233

ward torque and of the stiffness in the feedback controller. 234

Feedforward torque modification enables one to compen- 235

sate for an applied external force. In the case of rapidly 236

varying disturbances, the stiffness of the feedback con- 237

troller is increased, so the robustness of the controller also 238

increases. However, increasing the stiffness from a muscu- 239

lar point of view is energy consuming. Thus, the stiffness 240

will tend to decrease when the unpredictable perturbations 241

cease to occur. This model permits maintaining a desired 242

posture or following an a priori given trajectory. The princi- 243

ple of adapting the muscle activations should not be reduced 244

to adapting the parameters of the impedance control. This 245

principle is also interesting to learn the perception–action 246

coupling. 247

3 The perception–action model and arm control 248

For many years, we have defended the perception–action 249

approach (PerAc, Gaussier and Zrehen 1995) claiming that, 250

in an active system, coupling perception and action enables 251
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(a)

(b) (c)

(d)

Fig. 1 a PerAc model. b–d Examples of built dynamics in 2D spaces.
b Fixed point attractor. c Limit cycle in the case of a navigation exper-
iment. d Trajectory following. In b and d, the gray dotted lines are the
Voronoi boundaries. The plain black line is a trajectory sample

building of behaviors. Fast online learning of associations252

between sensory signals and motor signals is sufficient to253

build sensorimotor attraction basins. Let us consider the sen-254

sorimotor system of an agent acting in a given environment255

(or state space) and having two sensation vectors Xr and256

Xg (Fig. 1a). Firstly, the proprioception vector Xr repre-257

sents the coarse feedback information from the execution258

of the motor command or the direction of the goal (if the259

goal is in the immediate neighborhood). It can be considered260

a reflex or a regulatory pathway that links proprioceptive261

sensation to the motor command Ac. Secondly, the global262

sensory vector Xg represents more global information about263

the environment. A local but robust distance measure (met-264

ric) can be computed to compare global sensory vectors. In265

the PerAc model (Fig. 1a), the global sensory vector is cat-266

egorized and a competition (soft-WTA) between the cate-267

gories allows to define recognition activities R. On the basis268

of the distance measure, the categories which best represent269

the current state are determined. Categories are associated270

with concurrent actions estimated from the proprioceptive271

vector Xr . An action field is thus defined. This action field272

associates particular actions (movement vectors or forces)273

to areas of the state space according to the recognized cate-274

gories. Depending on the built action field, the dynamics of275

the system can be shaped to produce interesting behaviors,276

e.g. attractor points, limit cycles, or trajectories. Figure 1b–277

d shows examples of dynamics defined in a 2D space. In278

Fig. 1b, d, the Voronoi diagram shows for any point of the279

space which category wins the recognition competition. The280

associated action is thus performed as long as the state of281

the system is in the same Voronoi area. A trajectory sam-282

ple is given in Fig. 1b. The system reaches the boundary283

of the Voronoi area where it started, then it follows this284

boundary to the defined attractor point. Whatever the ini- 285

tial position is, the learned dynamics leads the system to the 286

attractor point with a similar kind of trajectory. The attrac- 287

tion basin emerges from the system dynamics generated by 288

the state/action couples. Figure 1c shows a configuration of 289

action field that produces a limit cycle. No time basis is nec- 290

essary. As the system moves, it reaches another area of the 291

action field and performs the corresponding action which 292

brings and maintains the system close to the followed limit 293

cycle. Not using a time basis has several advantages. No 294

synchronization of the time reference is needed, which is 295

quite a complex process, especially when there are pertur- 296

bations of the trajectory. The learning is also more direct, 297

and can be performed online very rapidly because the model 298

simply learns what should be done in a directly sensed 299

context. 300

A similar kind of state/action combination can also pro- 301

duce a simple trajectory following (Fig. 1d) Indeed, partial 302

limit cycle construction can provide a dynamics with which 303

the system behaves as if it is “attracted” by a trajectory and 304

remains in its close vicinity. In the state/action configuration 305

of Fig. 1d, the system can only get closer to an “equilibrium” 306

path where, due to the alternate category recognition, the 307

effects of the associated actions tend to equilibrate. The sys- 308

tem is maintained in the vicinity of this path. Depending on 309

the orientation of the learned movement actions, the system 310

will tend more to reach the trajectory or to move forward. 311

By allowing the system to come back to the trajectory, the 312

PerAc model can manage perturbations. 313

The PerAc model has been proven to be an efficient con- 314

trol for navigation and path following (Giovannangeli et al. 315

2006), with good robustness against perturbations such as 316

obstacle avoidance. In these works, the learned categories 317

are place-cells based on visual recognition of the robot’s 318

location (see Giovannangeli et al. 2006 for details). The 319

state/action associations are learned online from interaction 320

with a teacher (Giovannangeli and Gaussier 2010). When 321

the robot moves away from the desired trajectory, the human 322

teacher changes its orientation to correct its behavior. This 323

feedback is used to learn new place-cell/orientation cou- 324

ples to complete the sensorimotor control and to modify 325

the robot’s behavior. This sensorimotor learning enables the 326

robot to follow trajectories (limit cycles, Fig. 1c) and even 327

to reach particular locations which become attractors for the 328

dynamical system. In the PerAc approach, the perception is 329

considered to be the result of learning sensation/action asso- 330

ciations allowing a globally consistent behavior while fac- 331

ing an object. For instance, by learning sensorimotor asso- 332

ciations, a robot can learn how to return to a given object 333

which can be interpreted as the robot is “perceiving” the 334

object (Maillard et al. 2005). 335

The same sensorimotor association principle can be a basis 336

for the emergence of low-level imitative behaviors (Gaussier 337
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et al. 1998). In the case of arm control, we showed (Andry et338

al. 2004) that an imitation of directly observed gestures can339

appear as a side effect of a homeostatic visuomotor controller340

with perceptual ambiguity. During a first phase, the system341

learns associations between visual and motor signals build-342

ing a visuomotor homeostat. Because of low visual capabil-343

ities, the robot is unable to discriminate its own hand from344

the hand of a teacher (ambiguity of perception). As the con-345

trol architecture implements a homeostat, the system tends346

to maintain the equilibrium between visual and propriocep-347

tive information. If a difference is perceived, then the system348

acts to come back to the equilibrium state. To do so, the349

robot moves its arm so that its proprioceptive configuration350

corresponds to the perceived visual stimuli according to its351

sensorimotor learning. As a result of these movements, the352

demonstrator’s gestures are imitated (Andry et al. 2004). The353

correspondence problem (Nehaniv and Dautenhahn 2002) is354

avoided as the robot only imitates what is observed with its355

own capabilities.356

In the model of Andry et al. (2004), Lagarde et al. (2010),357

the control was performed in the visual space. A forward358

kinematic model allowed the estimation of the visual position359

of the robot hand. This position was then compared with the360

perceived visual position to generate movements (see Andry361

et al. 2004 for details). A first drawback was that erratic esti-362

mations of the visual position of the robot hand produced363

an erratic control. Because the forward model learning was364

based on Self-Organizing Maps (Kohonen 1982), false esti-365

mations could occur until learning convergence. Thus, the366

controller should not be used before the end of learning.367

The learning process was not incremental. Finally, the tra-368

jectories were not coded by sensorimotor couples like in the369

PerAc model. Indeed, the motor commands were extracted370

from the Dynamic Neural Fields (Schöner et al. 1995) by371

using an ad hoc readout mechanism. This solution presented372

interesting properties (memory, bifurcation) (see Sect. 5.4),373

but was only able to define attractor positions. Moreover,374

we were not able to explain how the readout process could375

be learned or tuned. Here, we are interested in a model that376

can bootstrap imitative behaviors and can also code trajec-377

tories according to the PerAc approach. The model should378

also be incremental and able to manage multiple degrees-of-379

freedom.380

In Iossifidis and Schoner (2006), Andry et al. (2004), the381

authors developed arm controllers which work in spaces dif-382

ferent from the motor space, reducing the number of dimen-383

sions. The difficulty is then to extract a motor command from384

the control in the lower dimension space. In the DM-PerAc385

model, we use the alternate solution consisting of perform-386

ing the control in the proprioceptive space. The generation387

of the motor command is simplified, whereas the difficulty388

is to learn sensorimotor attractors. The resulting motor con-389

troller should be able to learn either a particular movement390

or a postural attractor. In the next section, we describe the 391

Dynamic-Muscle PerAc (DM-PerAc) model which provides 392

a common coding basis for both aspects of the control. The 393

DM-PerAc model is based on a simplified model of joints 394

and muscles where both particular movements and postural 395

attractors are coded as muscular activations. We also detail 396

how the DM-PerAc model learns visuomotor attractors. 397

4 Dynamic-muscle PerAc model 398

We now present our model, Dynamic-Muscle PerAc, to con- 399

trol a robotic arm. This model combines control equivalent to 400

impedance control with the PerAc principle. The parameters 401

and equations of the DM-PerAc model are all summarized 402

in the Appendix. 403

4.1 Control of joint position with a simplified muscle model 404

Different models such as Hill’s model (Hill 1938) and Hux- 405

ley’s model (Huxley 1957) have been developed describing 406

different properties of the muscles. In the lumped-parameter 407

nonlinear antagonistic muscle model (Winters and Stark 408

1985, 1987), the movements of a joint are produced by a 409

couple of antagonist muscles. The muscles are simulated by 410

Hill’s muscle model. This model is based on three compo- 411

nents: a contractile element, a series elastic element, and a 412

parallel elastic element. In Klute et al. (2002), the two elastic 413

elements are neglected to focus on the dominant contractile 414

element. The contractile element can be approximated by a 415

force generator in parallel with a damping element (Cook and 416

Stark 1968). The force generator implements the force-length 417

relation in muscles with the force that can be modulated by 418

neural signals (Winters and Stark 1987). The damping ele- 419

ment implements the force–velocity relation given by Hill 420

(1938). 421

Our model, called Dynamic-Muscle PerAc (DM-PerAc), 422

is also based on couples of antagonist muscles (hereafter 423

noted + and −) around the joints with each muscle approx- 424

imated as a contractile element. However, unlike (Klute et 425

al. 2002; Winters and Stark 1987), we use a simplified lin- 426

ear model of a contractile element which generates torque 427

instead of force. In the DM-PerAc model, the torque gener- 428

ator is a spring with variable stiffness, whereas the damping 429

element is a simple viscous damper (Fig. 2). The varying 430

stiffness is given by the muscle activations A. The joint posi- 431

tions are controlled with the Eqs. (2–8). As these equations 432

are the same for each joint, the joint index j is not displayed. 433

In addition, the time step (t) dependency is only indicated to 434

disambiguate terms when different time steps are involved in 435

the same equation. For each joint, the agonist and the antag- 436

onist muscles generate the apparent torques τ+ and τ− (2). 437
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Fig. 2 Simplified model of muscle control relying on a spring damped
model of muscles. Damping properties are hypothesized to be mechan-
ical properties of the arm still related to the muscle stiffness

438

{

τ+ = −A+ · θ+ − σ+ · θ̇+

τ− = −A− · θ− − σ− · θ̇− (2)439

where A+ (resp. A−) is the muscle activation and σ+ (resp.440

σ−) is the damping2 of the agonist (resp. antagonist) muscle.441

The angular values θ+ and θ− are measured respectively442

from the full flexion position θmax and from the full extension443

position θmin (3).444

θ+ = θ − θmax, θ− = θ − θmin and θ ∈ [θmin, θmax] (3)445

with θ the angular position of the joint.446

The dynamical equation of the system links the rotational447

acceleration θ̈ and the moment of inertia I with the torques448

generated by the agonist and antagonist muscles given by (2)449

and the torque τe given by external forces.450

I · θ̈ = τ+ + τ− + τe

= −A+ · θ+ − σ+ · ˙θ+ − A− · θ− − σ− · ˙θ− + τe

(4)451

Equations (3) and (4) gives the Eq. (5) where σ = σ+ +σ−:452

I · θ̈ = A+ · (θmax − θ) − A− · (θ − θmin) − σ · θ̇ + τe (5)453

In the absence of external torques/forces (τe = 0), the454

system defines an attractor at the convergence point θeq =455

A+·θmax+A−·θmin
A++A− . To simplify this controller, the angular posi-456

tions θ of the joint are normalized so that for each joint, they457

vary between 0 and 1.458

θmin = 0 < θ < θmax = 1, θ+ = 1 − θ and θ− = θ (6)459

2 The damping can be constant. However, controlled movements are
improved if the damping varies with the stiffness. For instance, the
damping can be defined as proportional to the square root of the stiffness
like in Ganesh et al. (2010).

In this particular case, our control Eq. (5) is equivalent to (7) 460

with θeq = A+

A++A− with K = A+ + A−. 461

θ̈ =
K

I
· (θeq − θ) −

σ

I
· θ̇ (7) 462

The Eq. (7) corresponds to a classical mass-spring damping 463

system with a stiffness K and an equilibrium position θeq . 464

The equilibrium position is unchanged when both A+ and A−
465

are multiplied by the same factor. Such a factor only modifies 466

the equivalent stiffness K . An adaptation of the stiffness K 467

and the damping σ controls the rise time, overshoot, and 468

settling time. The controller was simulated using discrete 469

time with a time increment ∆t . With I the moment of inertia 470

and τ the sum of the torques τ = τ+ + τ−, the equations of 471

the dynamical system are: 472

⎧

⎨

⎩

θt = θt−∆t + θ̇t · ∆t

θ̇t = θ̇t−∆t + θ̈t · ∆t

θ̈t = τt/I

(8) 473

The variables θt , θ̇t , θ̈t correspond, respectively, to θ, θ̇ , θ̈ in 474

the Eqs. (2–7). 475

In our model (5), the generated torque depends on the 476

activation A of the muscles and on the lengths of the mus- 477

cles (angles θ ). This dependance on the muscle length makes 478

our model look like the “lambda” model of Feldman (1966, 479

1986). In the Theory of the Equilibrium Point (Feldman and 480

Levin 2009), also called the Theory of Threshold Control, the 481

motor control is based on threshold functions (λ) defining the 482

activation of the agonist and antagonist muscles. However, 483

in our model, the activation thresholds are not controlled. 484

The activation of the muscles is directly the controlled para- 485

meter. Therefore, our model is closer to the “alpha” model 486

as described in Bizzi et al. (1992). In the alpha model, the 487

generated torque is directly controlled by the muscle activa- 488

tions producing the equilibrium point trajectories and adapt- 489

ing the stiffness. Following our simple model of muscle, in 490

our model, the generated torques depend on both the acti- 491

vation of muscles (i.e. their stiffness) and on the muscle 492

lengths. Our model has also a major difference from the 493

alpha model as it associates muscle activations with learned 494

visuomotor configurations instead of relying on a tempo- 495

ral sequence of muscle activations. In the next section, we 496

explain how the muscle activations are learned and asso- 497

ciated with the recruited visuomotor categories in order to 498

allow motor control. 499

4.2 Categorization of proprioceptive and visual space 500

The DM-PerAc model can use the previously described sim- 501

plified muscle model with learned visuomotor associations 502

to build a visuomotor controller (Fig. 3). Visual and pro- 503
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Fig. 3 Architecture of the visuomotor arm controller. Both visual and
proprioceptive information are categorized. The visual input is associ-
ated with the proprioceptive input. The visuomotor categories are then

associated with the muscle activations defining the motor attractors. The
visual input activates the associated visuomotor categories and thus the
corresponding motor attractors

prioceptive signals are merged into visuomotor categories504

which are associated with the muscular activations deter-505

mining the arm movements, i.e. defining postural attractors.506

First, we present how the visual and proprioceptive cate-507

gories are learned and computed. In the next section, we508

will present how the visuomotor categories are built from509

the learned visual and proprioceptive categories. We will510

also detail how the postural attractors are learned as muscle511

activations associated with the visuomotor categories. Both512

processes occur alternatively and participate in the sensori-513

motor babbling process, allowing the robot to learn how to514

act.515

Proprioceptive categories are recruited during a senso-516

rimotor exploration process. Considering the agonist/anta-517

gonist muscles, the proprioceptive information is defined by518

the angular positions of the controlled joints P = [θ+
1 . . .519

θ+
N θ−

1 . . . θ−
N ] (index m).3 Each value θ+/− is positive and520

normalized with respect to the agonist or antagonist refer-521

ences (see Fig. 2). The categorization of the proprioceptive522

input is described by (9) and (10). The proprioceptive inputs523

P are encoded into categories SP with Gaussian responses524

depending on a variance parameter β P . The variance para-525

meter β P enables increasing or to reducing the selectivity526

of the sensory categories. They are recruited with a process527

based on Adaptive Resonance Theory (Carpenter and Gross-528

berg 2002). If the current input P is too different from any529

encoded sensory pattern WP
i , i.e. if the recognition SP

i is530

under a vigilance threshold λP , then a new category ir is531

3 Bold letters indicate vectors, whereas plain letters are scalars.

recruited (εP = 1). The current sensory input P is stored 532

on the weights WP
ir

to the ir th category. Even though a slow 533

adaptation of the encoded categories is also possible, we do 534

not consider it in this article. 535

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

S P
i = exp

(

−
∑

m (Pm−W P
im )2

2β P

)

∆W P
ir j = εP · (Pm − W P

ir m)

with εP = H (λP − maxi (S P
i ))

(9) 536

with the Heaviside function H (x) = 1 if x > 0 and 0 537

otherwise. The recognition activities SP are normalized to 538

give the output of the recognition process RP (10). 539

R P
i =

S P
i

∑

S P
(10) 540

The output R P
i can be interpreted as the probability that the 541

sensory category i is the current sensory state of the robot. In 542

practice, we approximated the sensory categorization process 543

to a winner-takes-all which corresponds to the variance para- 544

meter β P tending to 0, i.e. the selectivity for the categories 545

R P
i is maximal. 546

In our robotic setup, the visual information is captured by 547

a single camera. A visual feature detector (e.g. color detector) 548

enables extracting points of interest. The information is then 549

projected over two 1D fields or vectors using population cod- 550

ing. Each vector codes the accumulated salience for the pro- 551

jected points of interest. The retina-centered vectors are then 552

converted into body-centered vectors by a transformation 553
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using the pan and tilt angles of the camera. The body-centered554

vectors are computed as dynamic neural fields (Schöner et al.555

1995). Thus, they exhibit bifurcation and memory properties556

which are interesting in this attentional processing context.557

The coordinates (v1, v2) of the maximally salient points in558

this field are considered the visual input. The visual cate-559

gories are updated and learned using the Eq. (11) based on560

the Eq. (9).561

⎧

⎪

⎪

⎨

⎪

⎪

⎩

RV
k =

SV
k

∑

SV with SV
k = exp

(

−
∑

l (Vl−W V
kl )

2

2βV

)

∆W V
kr l = εV · (Vl − W V

kr l)

with εV = H (λV − maxk(SV
k ))

(11)562

The recruitment of a visual category RV
k increases the vig-563

ilance threshold λP of the proprioceptive categorization in564

order to facilitate the recruitment of a proprioceptive cate-565

gory if none already encodes the current posture.566

4.3 Associating learned visuomotor categories with muscle567

activations568

The visual and proprioceptive signals are merged in a visuo-569

motor layer. There is a bijection between the proprioceptive570

categories and the visuomotor categories. Whenever a new571

proprioceptive category is recruited, a new visuomotor cate-572

gory SV M
i is also recruited and associated with it. The visuo-573

motor category is then associated with the muscle activations574

A maintaining the categorized posture. The aim of the visuo-575

motor learning process is to determine which visual category576

RV
k is maximally activated when the arm reaches the attrac-577

tor posture S P
i . The connection weights W V M

ik are increased578

depending on the co-activated visual (RV
k ) and propriocep-579

tive (S P
i ) categories (12):580

∆W V M
ik = εV M · S P

i · ( f (S P
i ) · f (RV

k ) − W V M
ik ) (12)581

with εV M a constant learning rate. The function f is defined582

by f (Xl) = 1 if Xl = maxl(Xl) and f (Xl) = 0 other-583

wise. The co-activation is only learned when the arm is close584

enough to the posture S P
i , so the learning is modulated by585

the factor S P
i that checks if the similarity measure S P

i is high586

enough. Incorrect visuomotor associations can be progres-587

sively forgotten.588

The activities of the neurons in the visuomotor layer are589

computed with the following Eq. (13):590

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

RV M
i =

SV M
i

∑

SV M with SV M
i = R P

i ·
∑

k

(

g
(

W V M
ik

)

· RV
k

)

g(W V M
ik ) = 1 if

(

W V M
ik

maxk (W V M
ik )

)n

> 0.5

0 otherwise

591

(13)592

A weight W V M
ik contributes either as a factor 1 or 0 in 593

the update equation. The connection with maximal weight, 594

among the input connections to a neuron i , always gives a 595

factor equal to 1. Other connections can be “active” (factor 596

equal to 1) if their weights are close enough to the maximum. 597

Several visual categories can then activate the same visuomo- 598

tor category. The normalization of the activities of the visual 599

categories RV
k ensures that the activities of the visuomotor 600

categories SV M are always smaller than 1. The saturation of 601

the neural activities is thus avoided. In addition, when the 602

exponent n tends to +∞ only the connection with maximal 603

weight is equal to 1 and any others are null. We consider this 604

particular case in the experiments. 605

The learning is performed online and fast. It is also incre- 606

mental. By modifying some parameters (vigilance λP/λV or 607

variance β P/βV ) of the sensory categorization process, new 608

visual and proprioceptive categories can be added online and 609

are directly available for the visuomotor control. The vigi- 610

lance parameter determines how much categories can over- 611

lap. Increasing the vigilance, i.e. allowing more overlapping, 612

will increase the number of recruited categories. The vari- 613

ance parameter of the Gaussian kernels can be decreased 614

with a similar result. If the variance is reduced, the selectiv- 615

ity of the categories increases and more categories will be 616

recruited. Maintaining the vigilance level enables maintain- 617

ing a certain level of overlapping and thus of interference 618

during learning. 619

As a result of a visuomotor association learning, a visual 620

input can elicit visuomotor categories which activate motor 621

actions (muscle activations) to drive the arm to the propri- 622

oceptive configuration associated with the visual constraint. 623

When a new visuomotor category is recruited, the muscle 624

activations which enable maintaining the visuomotor config- 625

uration (in practice, maintaining the proprioceptive configu- 626

ration is enough) are learned. Muscle activation coefficients 627

are learned online in a perception–action process. The sen- 628

sorimotor loop is essential. As the system acts, it corrects or 629

modifies its motor commands online to maintain the desired 630

posture of the arm. The corrective movements are learned 631

by increasing the adequate connection weights to the muscle 632

activation neurons A = [A1 . . . A2N ] = [A+, A−]. The 633

activities of the visuomotor categories RV M determine the 634

muscle activations A with (14): 635

Am =
∑

i

W A
mi · RV M

i (14) 636

where the weight W A
mi is the learned activation of mth mus- 637

cle to maintain the arm in the proprioceptive configuration 638

i . In order to learn the muscle activations, the proprioceptive 639

configuration corresponding to a recruited visuomotor cate- 640

gory is stored. This proprioceptive signal P̂ is then used as 641

a supervision for the muscle activation learning. The desired 642
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position P̂m is learned in one shot by associating P to RV M
ir

643

when the ir th visuomotor category is recruited. The corre-644

sponding update and learning equations are (15):645

P̂m =
∑

i

W P̂
mi · RV M

i with W P̂
mir

= Pm − W P̂
mir

(15)646

During the muscle activation learning process, the system647

selects a visuomotor configuration that is to be learned (for648

instance, the last recruited visuomotor category ir ). The robot649

tries to reach the visuomotor configuration using the associ-650

ated proprioceptive configuration P̂ to correct movements.651

This selection means that only the target visuomotor configu-652

ration is active (with ir the selected configuration, RV M
ir

= 1653

and RV M
i ̸=ir

= 0), so only the corresponding weights W A are654

modified. When the system learns the muscle activations, no655

other visuomotor category can be learned, and the visuomo-656

tor exploration is suspended. The exploration resumes when657

the motor control meets the condition (no more correction).658

The learning Eq. (16) is based on a positive and a negative659

term and one learning factor:660

∆W A
mi = H (L − thL) · (εA · Cm · RV M

i · (1 − W A
mi )661

−αA · W A
mi · max

j
[K j − nc]+) (16)662

where εA is a learning rate, αA is a decay rate and [x]+ = x if663

x > 0 and 0 otherwise. The positive term in (16) increases the664

muscle activations, thus changes the attractor so that the equi-665

librium posture matches the desired posture P̂ . This adapta-666

tion is based on the correction signal C detailed below (17).667

The role of the negative term in (16) is to normalize the stiff-668

ness K j of the joints j to the constant value nc.4 As the669

negative term changes all muscle activations with the same670

factor αA, it does not modify the equilibrium posture, only671

the stiffness is modified. This normalization process is nec-672

essary to avoid the saturation of both the weights W A
mi and673

the neural activities Am which would prevent any further674

correction of the movements.675

The part of the architecture in the gray rectangle in Fig. 4 is676

dedicated to the computation of the correction signal C . For677

each joint, the signal C compares the desired movements678

MD with the current movements M (17) to determine if a679

muscle should contract more, i.e. if the muscle activations680

associated with the target visuomotor configuration should681

be increased.682

Cm = H (M D
m − Mm) (17)683

Each neuron in the desired movement layer M D evaluates684

the need to contract the muscle m (M D
m = 1 or 0) to correct685

the posture. To do so, the equation of M D
m (18) determines if686

4 In practice, the range of activities was [0, 1] and we used nc = 0.1.

Fig. 4 Neural network learning the muscle activations to maintain the
robotic arm in desired proprioceptive configurations. Learning is based
on a neuromodulation process increasing the weights W A

mi so the muscle
activations A enable maintaining the desired posture. A second neuro-
modulation loop induces the normalization of the stiffness K of the
different joints to avoid saturating the muscle activations

the muscle “length” Pm (i.e. θ+ or θ−) should be reduced to 687

match the desired “length” P̂m . 688

M D
m = H (Pm − P̂m − thD) (18) 689

where thD is a threshold under which no correction is 690

requested. It defines the accuracy constraint for the move- 691

ments. The correction signal Cm (17) does not change the 692

muscle activations if the current movement Mm already 693

reduces the muscle length, i.e. if Pm is decreasing. This 694

condition allows avoiding overshooting the correction of 695

the movements. This condition is computed by Mm(t) = 696

H (Pm(t − ∆t) − Pm(t)) with Mm = 1 when no change of 697

the muscle activation should occur. 698

The learning factor (H (L − thL)) induces learning of 699

muscle activations during a variable period of time depending 700

on the comparison between the “learning enabling” signal L 701

and the threshold thL . This signal L evaluates the need to 702

continue adapting the muscle activations (19). 703

L(t) = [H (L(t − ∆t) − thL) ·
∑

m

[Cm − Ĉm]+

+γ L · L(t − ∆t) + tg(t)]
+

(19) 704

In our implementation, the learning is triggered (tg(t) = 1 ; 705

0 otherwise) when a new visuomotor category ir is recruited. 706

Therefore, the muscle activations are directly learned after 707

the recruitment of each visuomotor category, ensuring that 708

motor commands are associated with all visuomotor cate- 709

gories. Yet, the muscle activation learning may also be trig- 710

gered by other signals, such as a random signal arbitrarily 711
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Fig. 5 Webots simulation of a Katana arm. Learning a postural attrac-
tor in the 4DOF motor space. The evolution of the muscle activation
and of the resulting equilibrium point is given for the 2nd articulation
of the arm. A uniform random noise ([−0.5, 0.5]) is added to the torque
command. When the movement of a joint is in the direction opposite to

the target direction, the corresponding muscle activation is increased.
As the stiffness increases, the shift of the position of the equilibrium
point at each correction becomes smaller to enable performing a gra-
dient descent toward the target position. In addition, a bigger stiffness
increases the robustness to the noise

selecting categories to refine the associated motor command.712

The muscle activation learning continues as long as there713

is an unexpected correction of the muscle activations. Such714

unexpected correction is determined by comparing for each715

muscle occurring correction Cm with its prediction Ĉm . The716

occurrence of an unexpected correction increases the value of717

the signal L , thus extending the learning time period. The for-718

getting factor γ L modulates the time period during which no719

unexpected corrections must occur before the attractor adap-720

tation ends. The prediction Ĉ of the corrections is learned721

by conditioning with C the unconditional stimulus and RV M
722

the conditional stimulus (20).723

Ĉm =
∑

i

W C
mi · RV M

i with ∆W C
mir

=εC · RV M
ir

·(Cm − Ĉm)

(20)724

The learning rate εC is small to have a memory effect. The725

learned muscle activations are expected to maintain the arm726

close to the postural target, so no more corrections are neces-727

sary. The learning of this posture can then stop and the motor728

exploration resumes. Sometimes the arm may be blocked by729

an obstacle (possibly itself). The current version of the archi-730

tecture does not include an obstacle avoidance process (still,731

a security module can block movements to prevent damages),732

so the muscles may only be more and more contracted with-733

out correcting the position. The deadlock is broken when the734

prediction Ĉ of the continuous correction finally compen-735

sates the detected correction C and stops the learning. The736

motor exploration can then resume and the muscle activa-737

tions related to this unsuccessfully learned postural attrac-738

tor are not used for the control. Interestingly, in Redgrave739

and Gurney (2006), the authors hypothesized that the role740

of dopamine could also be to detect novelty and maintain741

or repeat recent actions providing the adequate context for742

learning. In our case, detecting unpredicted situations (cor-743

rections) can maintain the learning of a given posture instead 744

of resuming the motor exploration. 745

As mentioned above, the weights W A
mi and the muscle 746

activations A are bounded (A ∈ [0, 1]N ) due to the learning 747

rule (16). Hence, the muscle activations A are multiplied 748

by a constant stiffness factor G increasing the amplitude 749

of the apparent stiffness. The resulting equilibrium point is 750

unchanged, whereas the apparent stiffness is now equal to 751

G · K . The previous dynamic Eq. (5) becomes (21): 752

I j · θ̈ j = G · (A+
j · (θ j,max − θ j ) − A−

j · (θ j − θ j,min)) 753

−σ j · θ̇ j + τ j,e + η j (21) 754

For each joint j , a noise term η j is also added in the motor 755

command producing varying exploratory movements to help 756

the learning of the muscle activations. 757

5 Experimental results 758

5.1 Postural attractor learning 759

The process to learn postural attractors was tested and vali- 3760

dated in a simulation5 of the Katana arm used in our robot- 761

ics experiments (Figs. 5, 6). In this experiment, the external 762

torque τe was null. As the arm moves, the muscle activa- 763

tions are increased so that each joint is maintained at the 764

desired position (Fig. 5). The progressive adaptation of the 765

muscle activations depends on random movements (7). Still, 766

the arm finally stabilizes at the desired posture (Fig. 6). 767

As the muscle activations increase, the shifts of the equi- 768

librium point due to learning become smaller and smaller. 769

This property results from the ratio in the equation of the 770

equilibrium point
(

θ j,eq =
A+

j

A+
j +A−

j

)

. Thus, the equilibrium 771

5 With the software Webots (Cyberbotics).
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Fig. 6 The attractor learning test is reproduced 10 times. Left: Mean
position of the learned attractor for joint 2 with the limits of the gray
area representing the standard deviation. Right: Average and standard
deviation of Euclidean target distance in the normalized joint space. The
red line is the distance constraint thD for each joint proprioception. The
mean distance to the target decreases down to this constraint

position converges to the desired position while the stiff-772

ness (K j = A+
j + A−

j ) increases. The behavior adapta-773

tion is quite slow because of the low frequency of the hard-774

ware control loop of the Katana arm (about 7 Hz). Another775

major constraint is the speed encoding in the robot arm776

firmware. Very low speed is not available because of the777

discretization of the values. Instead of an unnatural freez-778

ing of movements when the speed should be very close779

to null, the articulations keep rotating at the fixed mini-780

mal speed. In fact, these small oscillations give a more nat-781

ural aspect to the idle movements of the arm. The feeling782

of a frozen system is avoided during human–robot interac-783

tion. In this experiment, there was no external torque. The784

reason is that the servo controllers of the Katana electrical785

robotic arm are not compatible with external perturbations.786

This is a strong limitation of the hardware. We performed787

simulations to show that our model can also manage this788

case.789

5.2 Maintaining a particular posture under external torque 790

In order to show that our model can also cope with external 791

torques, we use a simple simulation of a 1D arm (Fig. 7a). 792

First, the muscle activations are learned in the case of a 793

gravitational torque (Fig. 7b–c). In the equation of con- 794

trol (21) the external torque is the following gravitational 795

torque τe = −ma ∗ g ∗ le ∗ sin(θ) with mass ma, gravity 796

constant g = 9.81, and length le between the rotational axis 797

and the gravity center. In order to compensate for this torque, 798

the muscle opposing gravity contributes more to maintain 799

the posture (Fig. 7c). This solution is more energy efficient 800

and accurate than simply increasing the overall impedance. 801

It corresponds to the change of reciprocal activation level 802

observable in human motor behaviors in equivalent circum- 803

stances (Franklin et al. 2008). The movements resulting from 804

the learn controller are shown in Fig. 7d. Figure 7e shows that 805

the error made is indeed below the accuracy threshold used 806

during learning. 807

We also tested the impact of increasing the noise level of 808

η j (in (21)) which corresponds to stochastic perturbations 809

of the movements. If the controller was learned with a low 810

noise level, the movements are strongly perturbed by the 811

noise. The position error while maintaining the learned pos- 812

ture has a strong variance (Fig. 7f). Then the postural attractor 813

was learned with the increased noise level (Fig. 7g–h). As a 814

result, the muscle activations are also increased, which cor- 815

responds to increasing the stiffness (Fig. 7h). Thus, the pro- 816

duced movements are less perturbed by the noise (Fig. 7i–j). 817

Our model can learn how to maintain posture control under 818

a gravitational torque, and it can also increase the stiffness 819

of the movement to resist to stochastic perturbations during 820

learning. 821

(b) (c) (d) (e)(a)

(g) (h) (i) (j)(f)

Fig. 7 a A simple 1D model of an arm is used to test muscle activa-
tion learning under gravitational torque. The parameters are g = 9.81,
ma = 2 kg and le = 0.4 m. The angle θ is normalized with respect to
the movement range [0, 5π/4]. b Trajectories for 30 samples of posture
control learning. c Evolution of the muscle activations during learning.
The muscle opposing gravity contributes much more than the other one.

d 10 examples of trajectories produced by one of the learned posture
controllers. e Corresponding position error with respect to the target
(0.85). f The noise level η j is increased (from 0.1 to 1.5). The move-
ments are then less accurate. g–h The posture control is learned as in
b-c, but with the increased noise level η j = 1.5. i–j As a result, the
accuracy in reaching the target position is improved (lower variance)
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(a) (d)

(b) (e)

(c) (f)

Fig. 8 Simulation of online learning and adaptation of sensorimo-
tor attractors with a 4DOF arm and a 2D camera. Left-hand column
presents the results after an initial sparse learning and the right-hand
column gives the results after learning continued with learning para-
meters inducing more selectivity in the state recruitment. a During the
motor babbling, the robot recruits visual states (red diamonds) and pro-
prioceptive states (black circles). Each proprioceptive state is associated
with one visual state (blue link). b After learning, the visual input is
artificially switched to a star-shaped trajectory in the visual space (dark
line). According to the visual state recognition, the robot moves so the
arm end effector trajectory tries to follow the visual input (gray dashed
line). c Movements performed in the 3D Cartesian space during the
star shaped trajectory reproduction. d As the parameters changes, the
robot can complete its previous learning by recruiting more visual states
and proprioceptive states. e The movements of the arm matches more
closely to the star shaped trajectory in the visual space. f Corresponding
movements in the 3D Cartesian space

5.3 DM-PerAc visuomotor controller822

We validated the visuomotor controller in the same 3D sim-823

ulation of a Katana robot arm as in the previous section. In824

Fig. 8a–c, the robot performs a motor babbling with parame-825

ters inducing a low selectivity, and thus a very low level of826

accuracy for the recruited visual and proprioceptive states. A827

simple test to evaluate the visuomotor learning is to reproduce828

a trajectory given in the visual space. A star-shaped trajectory829

is given as visual input to the system (Fig. 8b). The trajectory830

resulting from the visual processing of the arm end effector831

tracking is displayed. The robot tries to follow the trajectory,832

but because of its sparse learning, the performance is very833

limited. In the developmental process of the robot, the para-834

Fig. 9 Comparison between the trajectories from initial (Left-hand
column) and consecutive learning (Right-hand column). Initial learn-
ing: mean error 6.0 degrees, standard deviation 3.5 degrees. Consec-
utive learning: mean error 4.3 degrees, standard deviation 2.5 degrees

meters determining the sparsity of learning may be changed 835

to recruit more visual and proprioceptive categories (Fig. 8d– 836

f). The new visuomotor attractors are integrated online to the 837

initial learning. The performance of the system is increased. 838

Figure 9 displays the visual trajectories of the desired and 839

real position of the arm end effector. The mean square error 840

is shown with the mean error and the standard deviation to 841

compare the evolution of the performance with the inclu- 842

sion of more attractors. The same kind of performance could 843

have been obtained by directly learning with the parameters 844

increasing the selectivity of the coding. 845

To sum up Figs. 8 and 9, learning a postural attractor 846

takes time, and learning many attractors will slow the explo- 847

ration of the whole motor space, but provide a better coding 848

resolution, and therefore, a more accurate trajectory. Thus, 849

very accurate trajectories could only be reproduced at the 850

cost of a longer exploration and learning phase. In previ- 851

ous studies (Andry et al. 2004) we have simulated with the 852

PerAc model that the learning time of all the possible senso- 853

rimotor associations of a 6DOF model of the Katana robotic 854

arm with a high resolution CCD camera would require hun- 855

dreds of thousands of movements. Taking a mean approxi- 856

mation of the time necessary to perform one simple move- 857

ment with our mechanical robot, we have calculated that 858

the whole exploration and learning of all the possible cat- 859

egories would require more than 3 years (without optimiza- 860

tion). This amount of time is still applicable to the DM-PerAc 861

model, since the number of possible categories (if we con- 862

sider purely the maximal amount possible) is similar. Of 863

course, such a computation is a caricature, since the creation 864

of categories is by definition a means to avoid systematic 865

learning. 866
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Nevertheless, several considerations lead us to think that867

such algorithms are consistent with the developmental course868

of a human baby :869

– This time course (several years) taken as an order of870

magnitude is acceptable, compared to the time needed871

to develop the coordination of the whole human body872

(even if we limit to the coordination of one arm or one873

hand). We just have to refer to the time needed to master874

some movements in sports such as a golf swing, or the875

time to learn to write. Progressive learning is still present876

after months or years.877

– If the maximal learning time is very long, DM-PerAC878

allows a very fast learning of simple trajectories with879

10 to 20 attractors. The robot can thus perform simple880

tasks even if with limited accuracy. This fast acquisition881

of coarse and elementary actions is crucial in terms of882

behavior, and is consistent with developmental psychol-883

ogy: coarse actions support early imitation to commu-884

nicate before the age of 9 months (Butterworth 1999),885

or object grasping before the age of 9 months (Law et886

al. 2014), and of course early sensorimotor exploration887

before the first year (Gergely 2001).888

– In addition to these elementary actions, the DM-PerAc889

model can let the category creation continue in order to890

improve the capabilities of the robot. New visual and pro-891

prioceptive categories can be recruited while the motor892

babbling is resumed. Therefore, the robot can continu-893

ously evaluate the co-occurring proprioceptive and visual894

inputs to improve its visuomotor model with the newly895

learned categories. The visuomotor associations can be896

progressively updated as the system continues its bab-897

bling.898

– Altogether, these characteristics allow speculation about899

when the babbling should stop. We can formulate the900

hypothesis that the visuomotor babbling goes on while901

the agent has not received remarkable repeated feedback.902

The feedback could be purely “physical” (for example,903

a tactile sensorimotor contingency when an object is904

grasped) or “social” (the expression of a caregiver) and905

modulate the strength of the learning. Thus, fast coarse906

actions and long progressive learning can be complemen-907

tary in a global progress loop.908

Interestingly, classical developmental psychology studies909

also observe that such progress loop are guided by the910

cephalocaudal (the more the limbs are far from the head, the911

later they are available and mature to be implied in actions)912

and the proximodistal (the more the articulation are far from913

the root of the limb, the later they are available and mature914

to be implied in actions) laws. These laws reflect constraint915

of the body development that imposes a step by step process916

of the motor control. One of the consequence of this scheme917

is to constrain a coarse to fine learning where each change 918

in the child’s development result in an increasingly refined 919

level of skill development (Santrock 2005). 920

In Droniou et al. (2012), several regression algorithms 921

(including LWPR Vijayakumar et al. 2005) were compared 922

on the visuomotor control learning and performance. The 923

evaluation task is target tracking by the arm end effector of 924

a robot. The system must produce the movements to reach 925

a target given by its visual position, thus the learned inverse 926

kinematic models are compared. A stereo camera detects the 927

target, and its 3D Cartesian position is computed. In most of 928

the tests, the target follows a star-shaped trajectory path in 929

a vertical plane. The regression algorithms learn a forward 930

kinematic model in order to perform the tracking, thus focus- 931

ing the exploration process on the motor space to perform 932

the task. The forward model allows estimating the Jacobian 933

matrix of the kinematic model, the inversion of this matrix, 934

and the 3D position of the target that provide the motor con- 935

trol of the robotic arm. In this article, we have tested the DM- 936

PerAc visuomotor controller on tracking a target moving on a 937

star-shaped trajectory. In our experiment protocol, the visuo- 938

motor learning is open-ended. Also, the target coordinates 939

are simulated (no occlusion) in the 2D visual space. The 940

trajectories after learning are comparable to those obtained 941

in Droniou et al. (2012). Still, the regression techniques pro- 942

duce smoother trajectories more accurate at the points of the 943

star path. However, inverting the Jacobian matrix requires 944

a specific processing in order to avoid singularities. Such a 945

matrix inversion is not satisfying from the perspective of the 946

developmental approach and is also difficult to model as a 947

biologically plausible process. 948

5.4 Bifurcation property of the DM-PerAc controller 949

We compare the properties of the DM-PerAc controller with 950

the properties of the Dynamic Neural Field based controller. 951

Dynamic Neural Fields (DNF) based on the Amari equa- 952

tion (Amari 1977) are a solution to motor control used to 953

navigate (Schöner et al. 1995; Giovannangeli et al. 2006) or 954

to control a robotic arm (Iossifidis and Schoner 2004; Andry 955

et al. 2004). Biological studies showed that the activations 956

of some neurons in the motor cortex are correlated with the 957

direction of the movement to be performed (Georgopoulos 958

et al. 1986). In DNF, the activity profile of the field takes the 959

shape of a Gaussian centered on the input stimuli. Besides, 960

the derivative of the activity profile can provide the dynamics 961

of the control (Schöner et al. 1995). Dynamic Neural Fields 962

have interesting dynamical properties: memory to filter non- 963

stable or noisy stimuli, and bifurcation capabilities enabling 964

reliable and coherent decisions when multiple stimuli are 965

presented. 966

In Fig. 10, we show that (i) the trajectories generated by the 967

DM-PerAc model can be analyzed and integrated to build the 968

123

Journal: 422 MS: 0640 TYPESET DISK LE CP Disp.:2014/12/8 Pages: 20 Layout: Large

A
u

th
o

r 
P

ro
o

f



un
co

rr
ec

te
d

pr
oo

f

Biol Cybern

(a)
0 5 10 15 20

0

0.5

1

time (s)

θ

trajectories

(b)
0 5 10 15 20

0

0.5

1

θ

time (s)

trajectories

(c) 0 0.5 1

−0.2

0

0.2

θ

sp
e
e
d

velocity profile

(d) 0 0.5 1

−0.2

0

0.2

0.4

0.6

θ

sp
e
e
d

velocity profile

(e) 0 0.5 1

0.95

1

1.05

θ

P
e

r

DNF equivalent activity profile

(f) 0 0.5 1

0.7

0.8

0.9

1

DNF equivalent activity profile

θ

P
e

r

Fig. 10 Bifurcation capabilities in the DM-PerAc controller. Top row
a–b shows the trajectories (blue lines) and the two learned attractors
(black dashed lines). The middle row c–d displays the angular velocity
profiles in function of the proprioception θ . The bottom row e–d gives
the perception activity profile equivalent to the activities in a Dynamic
Neural Field. In the left-hand column, the learned attractors are dis-
tinct whereas in the right-hand column they are closer, resulting in one
merged behavioral attractor

DNF equivalent profile of activity, and (ii) there are bifurca-969

tion capabilities in our controller. In our tests, the state space970

is [0, 1]. Trajectories generated by the DM-PerAc controller971

are averaged into the actions Ac(θ) depending on the state of972

the system (position). In practice, Ac(θ) is discretized into973

a vector with components that are the values for different θ .974

The result is thus the velocity profile given in Fig. 10c and d.975

In Maillard et al. (2005), we proposed that the action Ac is976

the derivative of a potential function defining the perception977

of the system. The action Ac is thus spatially integrated to978

obtain the perception Per (22).979

∀k, Perk =

∫

[0,k/n]
Ac(θ)dθ + cste (22)980

where Per is a vector of dimension n with components equal981

to the integration of the action Ac at different positions θ =982

k/n. The integration constant cst is chosen so the maximal983

component value of Per is equal to 1. The perception profile984

Per is equivalent to the activity profile of a DNF, and shows985

bifurcation properties (see Fig. 10). The DM-PerAc model986

can produce behaviors similar to those obtained with the use987
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Fig. 11 a Trajectories in 1D space with an asymmetric muscle acti-
vation pattern (a muscle is inactive). Trajectories start from different
random positions. Activation signals are G · A+ = G · K = 5, A− = 0.
The control parameters are σ = 5, ∆t = 0.05 and the moment of
inertia I = 1. b–c Attraction basins in a bounded 2D space [0, 1]2

with DM-PerAc model. Given the learned position/movement couples
(black diamonds, thick black lines), a force-field is generated (small
gray points and lines). For each joint, only one of the agonist/antagonist
muscles is activated as in a). Initial (circle) and final (square) points
of the trajectories are indicated. b Vector field corresponding to one
learned proprioception/activation couple. c, d Four state/action couples
are learned. Four trajectories with different starting points are repre-
sented in the 2D state space. With only four couples, the system can
learn a loop trajectory. The size of the loop depends on the speed, thus
is related to the damping σ and the stiffness K . c σ = 10, G · K = 10.
d σ = 5, G · K = 10. The other parameters of the system are the time
increment ∆t = 0.05 and the moment of inertia I = 1

of an explicit DNF without the need to define the whole field. 988

However, the property of memory is not directly available in 989

the model, but some other processes could complete the DM- 990

PerAc architecture to obtain this property. 991

6 Use and extensions of the DM-PerAc model 992

6.1 Encoding trajectories with the DM-PerAc controller 993

It is possible to use the learned postural attractors in a time- 994

based sequence with the attractors that are successively and 995

transiently activated. This process was used in the work 996

described in Sect. 6.2. However, the DM-PerAc architecture 997

is not limited to using this kind of trajectory coding. Now, 998

we consider the case where only one of the muscles around a 999

joint is activated (activation different of 0) while the other one 1000

is inactive. This configuration of activation signals induces 1001

movement toward the extreme limit of joint (full flexion or 1002

extension) (Fig. 11a). At the lower level of motor control, 1003

the muscle activations can be either interpreted as defining a 1004

postural attractor or as defining locally the movement to be 1005

performed (orientation and strength). As explained in Sect. 3, 1006
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such associations between sensory categories and actions can1007

define trajectories. The studied task is simply to reproduce1008

a loop in the 2D motor space. Among four encoded states,1009

each of them are associated with two 1D controllers, i.e. four1010

muscle activation coefficients each. The muscle activations1011

correspond to the demonstrated direction of movement. For1012

each joint, only one of the muscle activations (agonist or1013

antagonist) is different from null. An example of a vector1014

field in 2D space defined by one state/action couple is given1015

in Fig. 11b. An attraction basin can effectively be generated1016

(Fig. 11c, d). The trajectories in the 2D state space show that1017

the stiffness K and the damping σ control the movement1018

speed, and thus can change the size of the loop. Trajectories1019

could be encoded using the low-level state/muscle activation1020

associations. This coding can thus be a basis for both posture1021

and trajectory encoding. In the next section, we will focus on1022

learning stable postural attractors.1023

6.2 Imitative behaviors with the DM-PerAc controller1024

The visuomotor controller based on the DM-PerAc model1025

can be used for the emergence of low-level imitative behav-1026

iors and can even be a basis for deferred imitation. An arm1027

controller, based on learning visuomotor associations, can1028

let low-level imitation emerge (Andry et al. 2004). In a first1029

phase of babbling, the robot learns its body schema as mul-1030

tiple associations between the visual position of its arm end1031

effector and the joint configuration of its arm. If the robot’s1032

visual perception is limited enough (using only movement1033

information or the detection of colored patches), the robot1034

can look at the hand of an interacting human and still believe1035

it is its own hand. According to the previously learned visuo-1036

motor associations, this situation can induce an incoherence1037

between the visual information from the teacher’s hand and1038

the motor information from the hand of the robot. As the1039

controller is a homeostat, it tends to maintain equilibrium1040

between the visual and the motor signals. Thus, the robot1041

tries to reduce the visuomotor incoherence by moving its1042

hand to match the visual input. Low-level imitation emerges1043

as the movements of the robot follow the movements of the1044

human (Fig. 12). In the next stage of development of the1045

robot, this low-level visuomotor controller can be the basis1046

for learning from observation. We consider that the learning1047

robot can now memorize the sequence of the visual posi-1048

tions demonstrated by the teacher while it is inhibiting its1049

own movement (de Rengervé et al. 2010). Then, as the robot1050

internally rehearses the encoded visual sequence, the pre-1051

dicted visual position of the next state can be given to the1052

low-level visuomotor controller. The robot reproduces the1053

demonstrated sequence of gestures according to what was1054

perceived during the demonstration. The robot is capable1055

of doing some deferred imitation (de Rengervé et al. 2010,1056

2013).1057

Fig. 12 Example of imitation behaviors. Left: Low-level imitation of
meaningless gestures. Qualitative comparison of imitated gestures per-
formed in front of the robot. Perception ambiguity and a homeostatic
controller induce movements to maintain perceptual equilibrium. The
robot performs low-level imitation of directly observed gestures. Middle
and right: Gesture imitation can be used to bring the arm end effector
toward objects (here, to grasp a can) or interesting parts of the environ-
ment. It can become a common basis for learning by observation and
learning by doing

6.3 Attractor selection and visuomotor control refining 1058

The refining potential of the DM-PerAc model can be 1059

enhanced by the Yuragi (fluctuations)-based attractor selec- 1060

tion model (Fukuyori et al. 2008) which relies on the follow- 1061

ing Langevin’s Eq. (23): 1062

, · ẋ = ξ · f (x) + η (23) 1063

where , is a time constant, the vector x describes the state of 1064

the system, and the function f is the dynamics of the attrac- 1065

tor selection model. The main constraint that this attractor 1066

function f must respect is to define attractors. For instance, 1067

the function f can simply derive from a potential function 1068

with attractor points. Other particular examples of definitions 1069

of the function f can be found in Fukuyori et al. (2008), de 1070

Rengervé et al. (2010). When the coefficient ξ is big, the 1071

term ξ · f (x) predominates. The state of the system con- 1072

verges to one of the attractors defined by f . Feedback on the 1073

current movement performance modulates the coefficient ξ . 1074

The feedback gives more influence to the attractor function 1075

f or to the stochastic exploration term η. As a result, the sys- 1076

tem can switch from exploration between the different known 1077

attractors to exploitation of the closest attractors. According 1078

to the feedback, the function f can be adapted so that some 1079

attractors are shifted toward the desired positions. Thus, the 1080

desired positions can be learned. 1081

The principle of muscle activation learning (Sect. 4.3) 1082

in DM-PerAc is quite similar. The first difference is that 1083

the function f depends on the muscle contraction. During 1084

muscle activation learning, only one visuomotor category is 1085

active so only one postural attractor is active. The exploration 1086

is partly due to the noise on the motor command and also to 1087

the oscillations of the arm (when the stiffness is still low). 1088

During learning, the muscle activations are changed so that 1089

the resulting attractor is effectively shifted toward the desired 1090

position. Thus, this process can be seen as a low-level use of 1091

the Yuragi principle. 1092
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Fig. 13 Visual target reaching with a visuomotor controller using the
“Yuragi” principle. The feedback is based on the target distance in the
visual space. A known attractor can match the target (a, b) or the target
can be between learned attractors (c, d). a, c Trajectories of the robot
arm end effector in the visual space. The black circles correspond to the
learned attractors and the black cross is the visual target to be reached.
The stars are the starting positions for each trial. b, d Evolution of the
distance between the arm end effector and the target in the visual space
(number of pixels). Dark gray dashed line shows the average distance

to the attractors. The light gray line shows the threshold under which
the target is reached. a Trajectories while reaching a learned attrac-
tor, two attractors activated, two trials with different starting positions.
b Corresponding evolution of the target distance. c Trajectories while
reaching a not previously learned position, four attractors activated, six
trials with different starting positions. d Corresponding evolution of the
target distance. In both cases, the arm end effector reaches the target,
although, when it is not a learned position, the reaching can be quite
long due to random exploration

The Yuragi principle can also be used in DM-PerAc when1093

all the visuomotor categories are available. The movement1094

dynamics is influenced by all the attractors associated with1095

these categories and activated by visual and proprioceptive1096

information. In that case, the Yuragi principle allows for1097

improving the accuracy of the movements. In Fig. 13, we1098

tested the reaching of a visual position using the Yuragi prin-1099

ciple (de Rengervé et al. 2010). The robot arm end effector1100

reaches the visual target both when it is near the visual posi-1101

tion of a learned attractor (Fig. 13a, b) and when it is between1102

the learned attractors (Fig. 13c, d). While performing tasks,1103

the robot can use the Yuragi principle to reach targets which1104

were not explicitly learned as attractors. When necessary, a1105

new attractor could be recruited to learn how to reach a target1106

that would otherwise be far to reach. The performance of the1107

visuomotor controller could be improved for particular cases1108

without recruiting many useless attractors.1109

7 Conclusion-discussion1110

Our previous works enabled the explanation of trajectory1111

learning (PerAc model Gaussier and Zrehen 1995) and imi-1112

tative behaviors (Andry et al. 2004). Even though these differ-1113

ent works have in common the sensorimotor learning prin-1114

ciple, their properties could not directly be combined due1115

to motor control issues. We propose the Dynamic Muscle1116

PerAc (DM-PerAc) model to control a robot arm with mul-1117

tiple DOF (Sect. 4). It combines the principles of the PerAc1118

model with a simple model of agonist/antagonist muscles1119

where the muscle activations determine the movements of1120

the robotic arm. The low-level motor control is equivalent1121

to impedance control. The DM-PerAc model can incremen-1122

tally learn online the visuomotor control of the robot arm.1123

During a motor babbling process, proprioceptive and visual 1124

categories are recruited and associated together (kinematic 1125

model) depending on co-activation. The DM-PerAc model 1126

then learns the postural attractors associated with the visuo- 1127

motor categories to define the visuomotor control. Trajecto- 1128

ries can also be coded by combining state/action couples such 1129

as in the PerAc model (Sect. 6.1). The states are associated 1130

with asymmetric muscle activations to generate movements 1131

in particular directions. In Sect. 6.2, we showed that imitative 1132

behaviors can be obtained with the DM-PerAc visuomotor 1133

controller. This controller can also be a basis for higher level 1134

encoding and imitation behaviors. 1135

Until now, we mainly tested the DM-PerAc model on a 1136

Katana robotic arm. However, the hardware of this robotic 1137

device is limited for impedance control. In particular, the 1138

servo controller of the Katana arm does not allow manag- 1139

ing external perturbations such as gravitational torque. In 1140

Sect. 5.2, we showed in a simple 1D arm simulation that the 1141

DM-PerAc model can accurately learn a postural attractor 1142

under a gravitational torque. However, the impedance con- 1143

trol was learned instead of performing an online adaptation 1144

to perturbations. In future work, the adaptation process will 1145

be added to the model. Also in future work, we will exploit 1146

the full potential of the DM-PerAc model to control move- 1147

ments of a hydraulic torso robot called TINO.6 This robot 1148

was developed with the aim of allowing physical interaction 1149

and compliance. Impedance control is fully compatible with 1150

this hardware. With the DM-PerAc model, the visuomotor 1151

controller of the robot TINO can be learned. In addition, 1152

6 The robot TINO was co-funded by the French projects INTERACT
and SESAME TINO, the Robotex and the CNRS. The robot only
recently arrived in the ETIS lab.
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the DM-PerAc model is also a good basis to study imitative1153

behaviors and interaction.1154

In this article, the motor control is based on a spring-based1155

model of muscles; however, we do not pretend that modifying1156

the stiffness of these spring-like muscles corresponds to an1157

accurate model of neuro-muscular control. The rest-length of1158

the muscles, motor reflexes, and other physiological proper-1159

ties are also important. Still, the aim of the DM-PerAc model1160

is to allow sensorimotor dynamics learning with the gener-1161

ated behaviors that can be either attractor postures or trajec-1162

tory following. Using muscle activations has the advantage1163

to make learning easier whatever the dynamics is (postural1164

attractor or trajectory).1165

The computational cost of the DM-PerAc visuomotor con-1166

troller can be reduced in different ways. The neurons corre-1167

sponding to categories (visual, proprioceptive, visuomotor)1168

not yet recruited can be ignored in the neural update process.1169

Also, the number of visual to visuomotor links (W V M ) may1170

be reduced by using some lists of links dynamically managed1171

according to the recognition of the visual and proprioceptive1172

categories. This solution would allow the use of far fewer1173

links than if considering the whole set of visual to visuomo-1174

tor links.1175

We gave solutions to learn attractor points as they are1176

used in the visuomotor controller for imitation behaviors.1177

The learning of trajectories or paths is not described in this1178

article. In the DM-PerAc model, postural attractors can be1179

used as via-points to encode trajectories and we used this kind1180

of solution in deferred imitation (de Rengervé et al. 2010).1181

However, a correct encoding of dynamic trajectories should1182

rely on state/action couples defining attraction basins, such as1183

in the PerAc model (Sect. 3). The advantage is that agonist1184

and antagonist muscles would not need to be active at the1185

same time. The stiffness and the energy consumption can be1186

reduced. In future work, we will study the activation patterns1187

generated by this trajectory encoding model. In particular,1188

we want to explore whether and how the state-action coding1189

may allow the tri-phasic pattern of movement observed in1190

humans (Sanes and Jennings 1984).1191

Although we proved that the DM-PerAc model enables1192

dynamical trajectory encoding, the learning of the adequate1193

state/action couples is still an ongoing issue. In the PerAc1194

model, the states and actions were associated by direct con-1195

ditioning. The orientation to follow (action) could be esti-1196

mated by integrating the followed orientation while moving.1197

The orientation to follow could also be demonstrated to a pas-1198

sive robot. In the DM-PerAc model (Fig. 14a), a direct con-1199

ditioning is possible, but a particular process is necessary to1200

extract the unconditional stimulus from a passive demonstra-1201

tion. Changes of proprioception cannot be directly converted1202

into muscle activations (for instance, the muscle activations1203

must change to perform the same movement manipulating1204

objects with different masses). The Yuragi idea (Sect. 6.3),1205

(a)

(b)

Fig. 14 a Possible solutions to learn muscle activations in the Dynamic
Muscle PerAc model. b Example of dynamic trajectory with postural
attractors and trajectory shaping constraints. Both components can be
coded similarly in the DM-PerAc architecture

adapted to the DM-PerAc model, can be a potential solution 1206

to this issue. We believe that the Yuragi idea could allow 1207

locally learning combinations of attractors defining not only 1208

postural attractors, but also particular speed vectors. Still, the 1209

remaining issues are what the adequate feedback is and how 1210

it can be learned from a demonstration. 1211

Finally, using the same encoding and the same kind of 1212

learning, the robot should be able to learn trajectories such as 1213

in Fig.14b mixing posture attractors and trajectory shaping. 1214
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Appendix: summary of the parameters and equations 1217

used in the Dynamic Muscle PerAc model 1218

The different parameters and equations presented in this arti- 1219

cle are respectively summarized in Tables 1 and 2. 1220

The proprioceptive (visual) categorization depends on the 1221

vigilance parameter λP (λV ) and the parameter β P (βV ) 1222

of the Gaussian similarity measure. High vigilance val- 1223

ues would imply that recruited categories overlap. We use 1224

λP = λV = 0.005 to avoid interferences between categories. 1225

The values of the Gaussian parameters are very low so the 1226

categories are selective enough. During the learning step, dif- 1227

ferent values are used to increase progressively the number 1228

of learned categories (β P = 0.002 then β P = 0.001, and 1229

βV = 2 · 10−4 then βV = 5 · 10−5). During the tests, vision 1230

must drive the movements, thus the proprioceptive categories 1231
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Table 1 DM-PerAc Model: parameter summary with values used in
experiments for the open parameters

A = [A1, . . . , A2N ] muscle activation (stiffness)

A+, A− : activation of agonist (+) and antagonist (+) muscles
for each joint (A = [A+, A−])

C : comparison of desired and current movements, determines
the need to correct muscle activations, modulates the increase
of WA

mi

Ĉ : prediction of C for a given visuomotor category i in RV M

G : stiffness factor, counterbalancing the bounded muscle
activations A (ex: G = 60)

K : stiffness

i , im , ir : indexes of proprioceptive category, winning
proprioceptive category, and next recruited proprioceptive
category

I : moment of inertia (ex: I = 1)

j : index of joint

k, km , kr : indexes of visual category, winning visual category,
and next recruited visual category

l : visual coordinates

L : attractor learning signal

m : index of muscle

MD , M : desired muscle shortening, current muscle shortening

n : exponent, used in the update of the visuomotor categories
(ex: n = 100)

N : number of joints

RP , RV ,RV M : normalized activities of SP , SV and SV M

P = [P1 . . . P2N ] = [P+P−] proprioceptive input

P+, P− : agonist and antagonist proprioceptive input
[θ+

1 θ+
2 . . . ], [θ−

1 θ−
2 . . . ]

SP , SV : recognition activities of proprioceptive and visual
categories respectively

SV M : visuomotor category, merging visual and proprioceptive
signals

t , t − ∆t : current time step, previous time step

thD : threshold on target distance to estimate desired
movement (ex: thD = 0.01)

thL : threshold on L under which current attractor learning is
stopped (ex: thL = 10−5)

V : visual input (coordinates in visual field)

WP
im , WV

kl : learning weights to proprioceptive (SP ) or visual

(SV ) categories

WC
mi : learning weights to Ĉ

WA
mi : learning weights to A

WV M
ik : learning weights to RV M

αA : decay factor of muscle activation learning (WA
mi ) (ex:

αA = 10−4)

β P , βV : variance parameter of the Gaussian kernels of
proprioceptive P or visual V categories.

εA : learning factor of muscle activation (A) learning (ex:
ϵA = 10−3)

εC : learning factor of the predictor of C (ex: εC = 0.2)

Table 1 continued

ϵP , ϵV : learning factor of proprioceptive P or visual V
categorizations.

γ L : forgetting factor of the attractor learning signal L (ex:
γ L = 0.95)

λP , λV : vigilance of proprioceptive categorization P or visual
categorization V . (ex: λP = λV = 0.05)

σ j : damping (ex: σ j = 11)

θ j , θ̇ j , θ̈ j : rotation angle of a joint, velocity, acceleration

θ+
j , θ−

j : positive angular value measured in the agonist or
antagonist reference (see Fig. 2)

θ j,max , θ j,min : maximal and minimal angular value of a joint

θ j,eq : equilibrium point resulting from muscle activations

τ j , τe : rotational torque, external torque

General tools

Heaviside function: H (x) = 1 if x > 0, 0 otherwise

Kronecker symbol: δi j = 1 if i = j , 0 otherwise

[x]+ = x if x > 0, 0 otherwise

Table 2 DM-PerAc Model: equation summary

Motor control based on commands of stiffness of
agonist/antagonist muscles around the joints ja

τ j = A+
j · θ+

j − σ+
j · θ̇+

j − (A−
j · θ−

j − σ−
j · θ̇−

j )

Which is simplified from additional constraints (6) as:

θ̈ j =
K j

I j
· (θ j,eq − θ j ) −

σ j

I j
· θ̇ j with K j =

A+
j + A−

j and θ j,eq =
A+

j

A+
j +A−

j

Update and learning of the proprioceptive and visual
categories

Proprioceptive categories (index i) based on the muscle
proprioception P = [θ+

1 , θ+
2 . . . , θ−

1 , θ−
2 , . . . ] (index m):

S P
i = exp

(

−
∑

m (Pm−W P
im )2

2β P

)

∆W P
ir m = εP · (Pm − W P

ir m) with εP = H (λP − maxi (S P
i ))

Visual categories (index k):

RV
k =

SV
k

∑

SV with SV
k = exp

(

−
∑

l (Vl −W V
kl )

2

2βV

)

∆W V
kr l = εV · (Vl − W V

kr l ) with εV = H (λV − maxk(SV
k ))

Visuomotor association learning

∆W V M
ik = εV M · S P

i · ( f (S P
i ) · f (RV

k ) − W V M
ik )

with f (Xl ) = 1 if Xl = maxl (Xl ) and 0 otherwise

Visuomotor categories update
⎧

⎪

⎨

⎪

⎩

RV M
i =

SV M
i

∑

SV M with SV M
i = R P

i ·
∑

k(g(W V M
ik ) · RV

k )

and g(W V M
ik ) = 1 if

(

W V M
ik

maxk (W V M
ik )

)n

> 0.5 and 0 otherwise

Postural attractor learning

Supervision signal based on incorrect movements:
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

Cm = H (M D
m − Mm) where

M D
m = H (Pm − P̂m − thD) and

Mm(t) = H (Pm(t − ∆t) − Pm(t))

P̂m =
∑

i W P̂
mi · RV M

i with

W P̂
mir

= εP · (Pm − Wmir ) (on recruitment of a new RV M
ir

)
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