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Learning and motivational couplings promote smarter
behaviors of an animat in an unknown world
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Abstract

This paper reports on statistical results of an animat behavior in an unknown environment using a cognitive map. We study
the coupling effect between the motivation for eating and the one for drinking. Some smart behaviors are not caused by a
sophisticated “intelligent” algorithm, but only through coupling of the motivations. Adding a learning rule on the links of
the cognitive map allows to reinforce particular paths, and to forget others. This also leads to reinforce the same “smart”
behaviors. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The cognitive map approach to planning is not new
[2,5,11,19,28,37–40]. However, adding a learning
procedure on the links of the cognitive map enables
to reinforce particular paths, and to forget others,
allowing for an adaptation to a changing perception of
the environment, as it is gradually discovered by the
animat.

As far as planning is concerned, most models use
graphs giving how to go from one place to the other
[2,5,11,15,19,20,24,28,30,37,38,40]. The differences
between them lay in the construction of this graph, the
way it is used in order to find the shortest path, how it
works when the environment changes or when there
are different simultaneous goals to be achieved. Other
works use rule-based algorithms (hierarchical classi-
fication [17]) or “potential fields” [3], or even classi-
cal A∗ algorithms. The classical functional approach
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relies on the a priori definition of desired behaviors
[13] or on a complete world modeling [41]. These
classical programming techniques may allow to pro-
duce navigation models exhibiting behaviors similar
to ours. To sum up, the navigation problem coupled
with a planning mechanism may be solved by dedi-
cated efficient techniques. We want to stress here that
the navigation/planning part of our system is only a
piece of a more complex system which should be able
to recognize objects [26], to imitate [1,29], and finally
to communicate. So, from the beginning, we have to
integrate the fact that our final goal is more than “just”
navigating and planning. In particular, we stress that it
is important to take into account the dynamical aspects
of internal and external couplings. These dynamical
aspects are explored here as the coupling between
the animat’s motivations (eat, drink, rest, etc.), and
their interaction with the environment. So, we will
study how this coupling affects the animats behav-
ior. In the following, we first present the experiment,
then our model and the results achieved. Finally, we
conclude.
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2. Experiment

In our experiments, the animat is “living” in an
unknown environment with obstacles, “food” and
“water” sources and a “nest” to rest. The animat
is switching between two behaviors: exploring the
environment and planning. The animat has three con-
tradictory motivations: eating, drinking and resting.
Each of these motivations is linked with a satisfaction
level decreasing over time, and increasing when on
the proper supply source. When the level is below
some threshold, the animat triggers the planning
behavior for reaching the needed source.

Most experiments have been carried out in a maze
environment. This enables us to control the kind of
paths used by the animat by varying the size of the
arms of the maze. A corridor is 7 animat’s width wide.
The animat needs approximately 50,000 steps for
exploring the whole maze.

The animat only gets two informations. A visual
input gives the existence of a particular landmark. A
compass gives the azimuth of these landmarks rela-
tively to the magnetic north (top of the environment in
the computer simulation). Hence, a particular location
is defined by the set of (landmark, azimuth). There
is no Cartesian map of the environment, nor use of a
square paving as in some other planning algorithms
(Q-learning for instance).

In the right arm of the T-maze, we place a food
source. In the left one, there are both food and water.
In the bottom of the vertical arm, there is a nest,
where the animat rests. It is the initial starting location.
The need for going to rest increases twice as fast as
the ones for drinking or eating.

3. Model

The cognitive map is inspired by works on the pos-
sible use of “Place Cells” of the rat [31]. Place Cells
are particular neurons of the CA3 region of the rat’s
hippocampus. These neurons are typical for a partic-
ular location in the environment (they only fire when
the rat comes to the corresponding location). Hence,
the various places of a room for instance are coded
by Place Cells becoming active when the rat comes
into its response field. Some recent works of spatial
navigation include the simulation of some biologically

plausible neuronal structures, and in particular the use
of “Place Cells” as they may exist in the hippocampus
[6,7,12,16,22,35,36,40].

In the beginning, the animat has no knowledge about
the visual forms it can encounter, except that there are
some landmarks. The set of landmarks (together with
their azimuth) the animat can see at a given moment
determines a “known” location. This location is coded
in a particular neuron on a probabilistic topological
map (PTM). We call this neuron a Place Cell. Ini-
tially, the weights of the connections in this map are
randomly generated, so any neuron can win. When a
new configuration is coded on a given Place Cell, the
weights of its neighbors are updated with a probabil-
ity depending on the Euclidean distance between the
weight vector of the winner and that of each neighbor.
That allows for a neuron “near” the winner to be able
to react to a situation similar to the newly learned situ-
ation. A configuration is considered as “new” when the
activation of the winner comes under a given threshold.
The new set of (landmark, azimuth) is then learned on
a new Place Cell. In that way, the exploration of the
environment leads to the creation and connection of a
various number of Place Cells. Eq. (1) gives the ac-
tivity of place cellPi out of a given set of (landmark,
azimuth).

ActPi
= 1−

∑Ni

k=1Vi,k · f (|Θi,k − θk|, vk)

πNi

, (1)

whereNi is the number of visible landmarks when the
robot is at the learned placei (or cell Pi). Θi, k repre-
sents the learned value of the azimuth of landmarkk
from the learned placei. θk is the value of the same
landmark azimuth for thecurrent robot location. All
angles are expressed in radians and measured from an
absolute direction (the north for instance, given by a
compass).|Θi,k−θk| is computed moduloπ , Vi , k and
vk are set to 1 when the landmarkk is seen from the
learned locationi and from the current robot location,
respectively (0 otherwise). When the system exhibits
landmark recognition problems, we can haveVi,k = 1
andvk = 0 (landmark learned but not recognized).f is
a nonlinear function solving these landmark visibility
problems:

f (θ, vk) =
{

θ if vk = 1,

π if vk = 0.



M. Quoy et al. / Robotics and Autonomous Systems 38 (2002) 149–156 151

The error associated with one landmark azimuth
is maximum when the landmark cannot be found
(f (θ, 0) = π). Before learning, all neurons’ synaptic
weights are set to a random value, so the neurons
response is very low. When learning is triggered (for
instance when the goal is discovered), the most acti-
vated neuron is selected to learn that place(Θi,k ←
θk). Next, according to Eq. (1) the activation of that
neuron will grow and tend to be maximum(Act = 1)

when the robot moves in the direction of the learned
location (the azimuthsθk associated with the current
location are close to the storedΘi, k). By using a
simple gradient technique, it is theoretically possible
to reach the goal wherever the starting point of the
robot is [34].

So, the exploration of the environment leads to the
building of a various number of Place Cells. At this
time, there is no cognitive map, but only a collection of
Place Cells. We have shown that it is already sufficient
for reaching a particular goal when each Place Cell is
associated with a movement to perform [23]. When
thinking of a real robot, the first problem is to reduce
the information flow coming from the CCD camera.
It may be done by a parallelizing visual information
processing [21,32]. But the main reduction is due to
the fact that a particular behavior will not be associ-
ated with a whole scene, but only with the combina-
tion of local snapshots taken around particular points
(landmarks) [14,25]. Thus, a view will be reduced to
a set of snapshots. These snapshots are taken around

Fig. 1. The animat in a T-maze whose left arm is 1.6 longer than the right one.

points of high contrast change. We could also take
other techniques such as comparing panoramic views
by computing their displacement field [18].

For more complex tasks, when several goals have to
be achieved or when the system has to learn to navigate
in a complex visual environment (the different goals
do not belong to the same visual environment), the
choice of the route to follow cannot only rely on simple
sensory-motor associations. We tackle this problem by
using a cognitive map. The map is built by linking
together two Place Cells reached successively. This
builds a graph which roughly represents the topology
of the environment in Fig. 1.

This map alone is not enough for planning. It has
to be associated with a motivational system so that the
most interesting places (food and water sources) can be
linked with the appropriate motivation. The activity of
a neuron is now modulated by the motivation activity,
so that we have:

PotPi
= Acti ×Motivi , (2)

where Motivi is the motivation arriving at neuroni.
Now, when a particular need has to be fulfilled,

the associated motivation triggers the activation of the
appropriate neuron in the cognitive map. The diffusion
of this activity along the graph until the actual location
of the animat defines the route to follow for reaching
the goal [10,11,15]. The neural diffusion we use is
equivalent to the Bellman–Ford algorithm [8,34]. The
activity of each neuron of the graph is the maximum
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Fig. 2. Global sketch of the architecture. An animat in a simulated environment (on the left) and the corresponding landmark/azimuth
fusion, place cell map and cognitive map. The cognitive map is projected on the environment in order to see where the place cells have
been learned, and that are the links between them.

of its neighbors times the connection weight. So the
activity of a neuron at a “distance” ofN links from
the activate goal isWN , if all weights have the same
valueW. Taking the maximum enables to select one of
the goals and suppresses local minima problems [24].

The kind of map built (Fig. 2) this way is fixed in
the sense that the connection between the neurons may
not change. Hence, for instance, when the environment
changes (a door opens, somebody is walking, etc.) the
map may not be used anymore. So it is necessary to be
able to modify the links and/or to create/delete neurons
when appropriate. For the time being, we have only
investigated the first possibility. So, we have defined
a hebbian learning rule reinforcing the links between
neurons often activated successively and decreasing
them if the link is not used. Note that this rule is not a
“one shot learning”. The links have to be used several
times before significantly increasing or decreasing. So
when a change occurs in the environment, it may take
some time before the new map is updated.

Let Wi , j be the weight associated with the fact that
from placePi it is possible to reach directly placePj ,
its learning rule is the following:

dWi,j

dt
=−λWi,j

+
(

1+ dR

dt

)
(1−Wi,j )PotPi

PotPj
. (3)

PotPj
is the activity of place cellPj . It is 0 if the

animat is not at locationPj and non-zero and positive

otherwise (the exact value depends on the recogni-
tion of landmarks and may be also modulated by
some motivation). Increase of weightsWi , j occurs
when PotPi

and PotPj
are non-zero. Since the animat

cannot be at both locations simultaneously, we have
to maintain the activity of place cellPi until Pj is
reached. This is performed by a time integration of
the PotPi

values represented in the equation byPotPi
.

PotPi
decreases with time and can be used as a raw

measure of the distance betweeni and j. λ is a very
low positive value. It allows to forget unused links
(PotPi

= 0 and PotPj
= 0). The term dR/dt corre-

sponds to the variation of an external reinforcement
signal (negative or positive) that appears when the
animat enters or leaves a “difficult” or “dangerous”
area. They model places where the ground may be of
a different texture or containing very small obstacles.

4. Results

We are studying the way the animat behaves as the
size of the left arm increases. In the beginning of each
experiment, we choose the ratio “left arm/right arm”.
The animat starts from its nest, which is located at
the bottom of the vertical bar of the T-maze (Fig. 1).
There are two phases in the experiment:

• the “discovery” phase, in which the animats has to
discover the three sources; it then can choose either
the left or the right food source when it is hungry;
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• after its paths are stabilized (after 50 “meals”), we
record the animat choices for the next 100 “meals”.

Each experiment is run during 50,000 steps, and
has been tested 30 times. We give below the average
choice rate for the left food source as the left arm
length increases.

Whatever the size of the left arm, the animat has
to go in it because it contains the only water source.
However, it may eat either in the left or in the right
arm. The basic expected behavior is to go to eat in
the nearest food source when the eating motivation is
triggered. As the animat is more often in its nest, it
will go to the food source which is nearer to the nest.
So as the left arm size increases, the right food source
will be preferred.

A “smarter” behavior would be to go to eat near
the place where the water source is. Indeed, this could
save energy because if the animat gets thirsty while
traveling to the food source, it would be also on the
way to the water source. Note that there is no rule in
our system able to foresee such a behavior.

On a symmetrical maze, we observed that, after
some time, the animat almost always chooses to eat
in the left arm. This is due to thecoupling after
some time of the eating and drinking motivations.
This coupling occurs as soon as the animat eats just
after (or before) drinking, so that the two levels are
approximately the same.

The effect of this coupling is reported in a first
experiment. We compare the animat behavior when
(de-)activating the coupling between food and water
needs. This is achieved by “forcing” it to drink each
time it eats, so that it is never thirsty when it is hungry
again.

We make the left arm grow from 1.0 to 1.8 times
the initial size. The results are graphically represented
in Fig. 3.

As can be seen on the results, coupling leads to an
increased preference for the left food source. However,
we chose to only reduce, and not fully suppress, this
coupling since the need for water still happens from
time to time. If the need for water was completely
suppressed, the left arm selection rate would decrease
from 50 to 0% as the size of the left arm increases.
So this kind of smart behavior may be achieved by
the sole coupling between internal needs and the envi-
ronment.

Fig. 3. Influence of coupling and learning on the left arm selec-
tion rate. The top curve (triangles) is with coupling and learning.
The intermediate curve (diamonds) is with coupling and with-
out learning, and the bottom curve (squares) is without coupling
and learning. Enabling coupling leads to choose more often the
left arm. Allowing learning still increases the choice of the left
arm.

Now, we activate the learning rule on the links
of the cognitive map. This rule increases the weight
between two Place Cells activated successively. So,
the more used the path, the higher the link. Con-
versely, a path less often used will see its link value
decrease. As a consequence, when a motivation is ac-
tivated, the source, which is nearer in terms of number
of links from the actual position, is not necessarily the
one providing the highest activity. So the animat may
choose to go to a place which is farther away in terms
of Euclidean distance, but closer in terms of cognitive
map representation. So there is a remapping of the
perception of the environment depending on the ex-
perience of the animat. In particular, paths often used
will be reinforced, so that they will be perceived as
“shorter”.

So, as shown in the following experiments (Fig. 3),
the consequence of the learning rule is to keep choos-
ing the left arm for eating, thus still following the
“smart” behavior.
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5. Conclusion and perspectives

The planning mechanism alone is not enough to
account for smart behaviors. Their emergence, in our
experiment, is first due to the coupling between the
different motivational variables. This emphasizes the
need for taking into account the internal dynamics
of the animat and its coupling with the environment.
Adding a learning rule on the planning map contributes
to reinforce this behavior.

The learning rule we have described may be used in
the more general context of a changing environment.
Indeed, when the environment changes, new place
cells are learned corresponding to the new landmark
configuration. Their attraction basin extends over the
previously created ones. In the extreme case, a place
cell learned in the old environment may not fire at all
in the new one. Since the place cell is not activated, it
is as if it does not exist. So it will neither be linked to
other place cells anymore, nor will the links be rein-
forced. However, if the old environment is presented
again, the old place cells fire again, so that their links
are valid again. So several different “layers” of cog-
nitive maps can appear in the same physical neural
network structure [33]. They may be linked together
through some place cells, and may be activated suc-
cessively when the environment they are coding is
presented again. However, recent neurobiological
findings rather support the evidence of maps stored
for a short time at the hippocampal level which are
transferred in the cortex areas for long time storage
[9,27]. When the animal is brought back in the orig-
inal environment, the same cognitive map appears, as
if it were “uploaded” from the cortical areas.

Fig. 4. Deadlock behavior. On the left, the animat is at position 1 heading for position 2 which corresponds to the most active neighbor.
Once at 2, the animat goes to 3. However, while traveling to 3, the animat goes through the area where place cell 1 fires (figure on the
left). Hence, the animat goes back to position 1 and begins to circle in a deadlock situation.

The animat has to keep trying for some time before
building a new efficient planning map. So, even if it
may be a good solution to use a very low passive
decay (λ parameter) to store several different maps
(memory effect), this also slows down the process of
finding new pathways, when one may not be used
anymore. Indeed, the hebbian learning rule we have
chosen needs some time before significantly changing
the weights. Hence, in order to react faster to a change
in the environment, it would be necessary to introduce
an active decay mechanism decreasing unused links.

This navigation model does not take into account a
path integration mechanism. This mechanism allows
an animal to find the direct path to a particular location
even if this movement has not been experienced before
(shortcut). Our mechanism only allows to reinforce
known paths and is not able to try a direct way to the
goal if it is not an already existing path.

It is found that a deadlock situation occurs when
a place field of a neuron further from the goal over-
laps the trajectory to the goal (Fig. 4). Thus when
the animat goes into this place field, it recognizes
a location farther away from the goal (though topo-
logically nearer on the planning map) and goes back
from where it came. When it leaves the place field,
it goes back towards the goal again. It follows the
same trajectory as previously, and so eventually ends
in the same overlapping place field. We are now back
to the previous situation where the animat recognizes
a location which is (for him) farther away from the
goal. So, we have now a deadlock situation. Creating
a new place cell in this situation does not resolve the
problem since it would only be linked with place cell
1 (see Fig. 4). Thus, for the moment when a deadlock
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situation is detected, the animat switches to a random
walk for some time before resuming the planning
behavior. It should be noted that this kind of dead-
lock behavior mainly occurs because some links are
missing: i.e. the cognitive map is not explored com-
pletely. For instance, a link between neuron 1 and 3
in Fig. 4 would lead to a correct planning behavior.
Path integration could also be used for going directly
from neuron 1 to neuron 3.

Finally, we have only considered in this work Place
Cells in the classical approach: coding for a particular
location in the environment. In the robotics experi-
ments we have also carried out, we use these neurons
for codingtransitions between locations. This enables
to associate such a neuron with the movement per-
formed and given by a path integration mechanism
[4]. So, path integration and transition coding are
the two next improvements to the present simulation
platform.
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