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The sense of touch is considered as an essential feature for robots in order to improve the quality of their physical and social
interactions. For instance, tactile devices have to be fast enough to interact in real time, robust against noise to process
rough sensory information as well as adaptive to represent the structure and topography of a tactile sensor itself – i.e. the
shape of the sensor surface and its dynamic resolution. In this paper, we conducted experiments with a self-organizing
map neural network that adapts to the structure of a tactile sheet and spatial resolution of the input tactile device; this
adaptation is faster and more robust against noise than image reconstruction techniques based on electrical impedance
tomography. Other advantages of this bio-inspired reconstruction algorithm are its simple mathematical formulation and
the ability to self-calibrate its topographical organization without any a priori information about the input dynamics. Our
results show that the spatial patterns of simple and multiple contact points can be acquired and localized with enough
speed and precision for pattern recognition tasks during physical contact.

Keywords: tactile sensor; artificial skin; piezo-resistive material; electrical impedance tomography; neural networks;
self-organizing maps

1. Introduction
One great function of the brain is its ability to adapt dynam-
ically to any structural changes observed in the incoming
sensory signals. For instance, considering tactile perception,
the brain represents the body in a plastic manner, constantly
readjusting the body image based on its incoming sensory
information: e.g. in situations of abrupt changes occurring
during tactile illusions, or when one limb is missing, or when
the brain is injured, it has been observed the more or less
rapid re-adaptation of the somatosensory neurons to the new
spatial configuration of the body.[1–3] These results show
the importance of learning within the lifespan.

Having robots capable of developing such tactile
capabilities with the extra possibility of an adaptive body
image would provide them with human-like features of
self-calibration (by learning the physical extents of the
body), of robustness and adaptability (when dealing with
unexpected changes in tasks or in the environment). For
instance, many robotic researchers use tactile devices to
calibrate the body physical limits [4,5] in order to detect
the contact area when grasping and manipulating objects,
[6–8] or to estimate the robot spatial location in order to
avoid self-contact or collisions with the environment, or to
induce the compliance control based on the robot external
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tactile feedback.[9] But in these tasks, the tactile perception
is tailored to the robotic device and it is difficult to make
its structure plastic enough with respect to the changes in
the task or in the body. In tactile devices, the information
is processed mainly by means of static parametrical models
which are configured once during the initialization setup,
and which require the computation of non-linear equations
for every time cycle. Despite these problems, they are often
more accurate in terms of precision than machine learning
algorithms, although they are weaker estimators in pres-
ence of external noise or external perturbations and changes
(e.g. modification of the sensor properties). In comparison,
machine learning algorithms are capable of overcoming the
problem of changes in sensory inputs when the body evolves
in time. We can cite the work of Bongard and colleagues,
for example, who use evolutionary algorithms to adapt the
motor control to the new body image.[10]

In the context of haptic devices, various types of sen-
sors have been proposed to transform tactile information
into electrical signals,[11–13] but not all of them are good
for dynamic adaptation when the structure of the sensory
information changes. Most of the proposed techniques use
an array of isolated unitary devices, piezo-resistive or piezo-
capacitive, that covers a surface with small receptive
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2 G. Pugach et al.

fields.[14–16] The advantage of using grids is to have
a look-up table of isolated tactile points with the same
precision for each unit that can be mounted quite easily on a
specified surface, but in order to have an appreciable spatial
resolution, it is necessary to cover the surface with very
small devices, like MEMS.[17] One practical disadvantage
is that as the number of units grows within the structure, the
design of the electronic circuits becomes more complex.
This implies that it is necessary to connect the units with
a large number of wires and also to multiplex them, which
can result in bigger power consumption and possible heat
problems that can perturb the device measurement accuracy.

The opposite strategy is to consider a uniform mate-
rial whose physical properties can be used to process the
information; a design principle known as a morphological
or physical computation.[18] This material can be seen as a
tactile sheet similar to an artificial skin that can transform a
density distribution of pressure forces into an ohmic density
distribution in the electrical field. The advantage of the
second method over the former is that it involves covering
large areas of a robot surface various in shape with a flexible
and stretchable material similar to the human skin fitting the
curves of the robot surfaces with a good ratio between the
electronics mounted and the surface size. Its main disad-
vantages come from (i) its processing time using classical
methods which require computing the whole electrical field
on a robot surface with the help of parametric equations,
which can be quite time-consuming, and (ii) the dynamic
resolution of the sensor, which may have a poor resolution
in comparison to unitary devices.

Although taxel-based sensors can distribute the contact
over many taxels and have large receptive fields due to
a compliant skin that they are covered, tactile sheets can
instead balance the difficult tradeoff between surface/
precision/cost/speed in comparison to unit-based devices.
Thus, we can categorize devices in three cases: taxel-based
sensors with narrow receptive field that use no morpho-
logical computation; taxel-based sensors with wider recep-
tive fields, which use morphological computation combined
with the grid layout [19]; and tactile sensors, where the
sensing is purely due to deformation of the sensor surface.

Despite the drawbacks of tactile sheets in comparison
with single tactile units, we propose to use the advantages
of machine learning techniques to tackle their recurrent
problems. We propose to model in robots touch perception
similar to humans by means of a tactile surface like an
artificial skin from which we build up an artificial neu-
ral network (ANN). ANNs are capable of learning in a
self-organized manner the electrical activity on the tactile
surface in real time by adapting (1) their neural organiza-
tion to the spatial topology of the sensory inputs and (2)
their neural activity to the precision range of the sensors.
Although some of these properties can be retrieved by clas-
sical parametrical methods, ANNs are more adaptable to
learning the device topology and can compute tactile

outputs more rapidly and sometimes more precise. Some
ANNs (e.g. like self-organizing maps (SOMs)) can even
follow the topographic organization of sensory areas with a
higher spatial resolution to represent finely some receptive
fields.[20] Machine learning algorithms have been used in
grid-like devices with perceptrons and support vector ma-
chines have been employed in surface-based tactile devices.
[21] But to our knowledge, it is the first time that neural
networks are employed in surface-based tactile devices for
learning the spatial topography. Meanwhile, there have been
some studies using SOMs with taxel-based sensors [22,23]
but only to categorize objects or types of interactive touch,
not the spatial topography of the sensory device and the
weight information of object on it.

In our experiments, we compare the neural network
method with classical parametric solving methods and show
that neural networks provide greater robustness and greater
adaptability to spatial localization, as well as faster
responses to estimate the resistance distribution on the tissue
surface. In case of surfaces of different shapes – square,
circular, or asymmetric – SOMs can learn easily the spatial
topology of the tactile device. Once the topology is learned,
the neurons compute the relation between the pressure sen-
sitivity and the spatial location at the contact point, which
permits to detect multi-touches activity, and also discrimi-
nate one object shape on its surface (a triangle, a square or
a circle).

The paper is organized as follows. The second section
describes the generalized parametric method known as elec-
trical impedance tomography (EIT) to estimate the pressure
density distribution on the material surface. The third sec-
tion describes the pressure sensitivity and spatial resolution
of the material. The fourth section explains our approach
based on neural networks (self-organizing maps) to learn
the pressure density distribution. Section five represents the
experimental setup and findings (1) in learning different
tactile surface shapes: a square, a circle and (2) in detecting
objects with different geometrical shapes on the surface:
a cube, a cylinder, a prism, and an oblong object and (3)
in estimating the weights and quantity of objects on the
surface: up to three objects from 20 up to 100 g. We show
that SOMs are able to replicate the properties of classical
imaging reconstruction methods and go beyond. Finally, in
the sixth section, we draw the conclusion and outline our
future investigations.

2. Electrical impedance tomography
In order to estimate the conductivity and permittivity dis-
tribution in an electrically conductive material, one popular
technique is the EIT. This non-invasive technique is par-
ticularly used in medical imaging to measure the voltage
change on the skin surface around the chest with a small
current applied at the electrodes. EIT aims at reconstructing
a tomographic image of the conductivity distribution within
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Advanced Robotics 3

an object from electrical stimulations by injecting currents
and measurements at electrodes placed on the surface of the
investigated object. The advantage of this technique over
more traditional imaging modalities (CT, MRI, PET, ECT)
is that it is considered safer by merits of the small currents
injected and more affordable by merits of the simplicity of
its design, which can be constructed at low cost and in a
very portable size.[24,25]

If the material’s conductivity has the property to vary
locally, the EIT method can be used to sense touch pression
and its spatial location. Kato et al. [26], Yao et Soleimani
[27] realized a fabric sensors and Nagakubo et al. [28] and
Alirezaei et al. [29,30], Tawil et al. [31] realized a skin-
like device for robots based on this principle; by injecting
currents and measuring voltages from electrodes connected
on the borders of a conductive fabric, they reconstructed the
local resistivity changes response from any pressure applied
to the material. Nagakubo and Alirezaei concentrated on
the development the flexibility and stretch tactile sensor
for an integration in robotics as an artificial skin which
can be implemented over complex 3D surfaces and also
highly stretching areas. Tawil et al. [31] placed emphasis
on classification of the modality of different types of touch
on an experimental EIT-based skin for human–robot inter-
action.

2.1. EIT acquisition using the neighboring method
One popular technique for EIT reconstruction is the neigh-
boring method.[32] Its principle is as follows: an electrical
current is injected to neighboring electrodes and voltage is
measured from other pairs of electrodes. Once all the pairs
have been scanned, it is possible to estimate the impedance
between the equipotential lines by inverse methods.

We explain the idea of this method for a cylindrical vol-
ume conductor with 16 electrodes placed symmetrically
on its surface as displayed in Figure 1. The first step is
to inject the current between electrodes 1 and 2, which
induces an increase in the current density in this particular
portion of the material; in other portions, the current density
decreases rapidly with respect to the distance between the
two electrodes.

To estimate the impedance between the equipotential
lines that intersect the two electrodes, the voltage difference
is measured 13 times between the other pairs of electrodes
(i.e. between electrodes 3–4, then 4–5, then 5–6, etc.). Once
the cycle is finished, the next step is to inject the current
from the next pair of electrodes 2–3, and to measure again
the 13 potential differences till the end of the sequence,
which means 16 times for the current injected between
electrodes 4–5, 5–6, 6–7, etc. We obtain then the voltage
matrix of dimension 13 × 16 = 208 cells corresponding
to 13 measurements of the voltage drop for each current
injection between the 16 pairs.

2.2. Inverse model for EIT reconstruction
Once the voltage matrix is obtained, we can compute the
resistance distribution with the Newton’s method for exam-
ple. This method minimizes the error between the potential
difference Vi obtained by forward modeling and the Vm
measured from the conductive sensor. The forward model
(∇ · σ∇φ = 0) is obtained from the Maxwell’s equation,
where σ is the conductivity distribution, φ is the electrical
potential, and from a finite element method (FEM) model
of the sensors’ body (see [33] for more details):

Vi = F(γi , q) (1)

where γi is the actual resistance distribution and q is the
current stimulation pattern.

The effect on the boundary voltages for a small change
in the resistivity of the FEM elements is represented by a
Jacobian matrix Ji , from which we can calculate the actual
resistance distribution γi .An iterative process, starting from
an initial resistance distribution, converges towards the real
resistance distribution. Equations for one step of the method
correspond to:

min
{
||Vm − Vi ||2 + α2||Rγi ||2

}
(2)

where
γi+1 = γi + δγi (3)

and

δγi = (J T
i Ji + α2 RT R)−1 J T

i (Vm − Vi ). (4)

The term Ji = ∂Vi
∂γi is the gradient of the forward model,

with respect to the resistance distribution. The introduced
term α2||Rγ ||2 is a regularization term to stabilize the re-
sponse. The parameter α describes the regularity of the
calculated resistance distribution. The hyper-parameter α

describes the smoothness of the calculated resistance distri-
bution and R is a regularization matrix. We have used the
Laplace type prior for R,[34] but many other prior matrices
could also be used. The regularization parameter α has been
selected empirically to be 10−3, providing the best possible
result.

The mathematical aspect of the EIT reconstruction is an
ill-posed non-linear inverse problem. The main drawback
is that the reconstructed image is not necessarily a unique
and stable solution, but the small changes in the data (e.g.
electrical noise) can cause large changes, or ruin the entire
estimation results. This ill-posed problem can to be solved
by regularization.[35] In Section 4, we propose to analyze
a neural method for solving the inverse model and how it
can help to avoid the problem described above.

3. Material properties of the tactile polymer
3.1. Piezo-resistive sensitivity
The piezo-resistive material used in our experiments is the
Velostat film (3M). It is made of opaque, volume-conductive,

D
ow

nl
oa

de
d 

by
 [U

ni
ve

rs
ité

 d
e 

Ce
rg

y]
 a

t 0
7:

29
 1

6 
O

ct
ob

er
 2

01
5 



4 G. Pugach et al.

Figure 1. Neighboring method of data collection for EIT showed for a volume conductor and 16 symmetrically spaced electrodes. The
voltage is measured 13 times for 16 different injection current, which correspond to the input matrix U of 13 × 16 = 208 elements.

(a) conductive weight (b) non-conductive weight

Figure 2. Comparison of the piezo-resistive properties of the conductive material to conductive and non-conductive objects; resp. (a) and
(b) for the same weight 100 g. On the top chart, the pressure value in Pa at the contact point and the ohmic value of the resistive material.
On the bottom chart: Phase plot of the dependence of the material resistance on the pressure. The conductive pressure point shows no
hysteresis with respect to the non-conductive pressure point. The ohmic variations also reveal more amplitude for the conductive pressure
point (several hundreds of ohms) than the non-conductive one (several dozens of ohms).

carbon-impregnated polyolefin, whose resistance decreases
when pressured; its volume resistivity is around 500 ' cm.
Figure 2 shows the response of a small rectangular con-
ductive layer of dimension 80 × 35 mm connected to four
electrodes, with one pair for current injection, and the other
for voltage measurement. The experiments were performed
with conductive and non-conductive objects in Figure 2(a)
and (b) for the same weight 100 g applied. Moreover, the
surface of the contact area is circular with a diameter of
25 mm.

Following data collection for different values of the
weight (i.e. 100, 300, 500, 800 g), Figure 3 shows the
relation between the pressure on the sensor surface and the
resistance variation. We established this relation for both
conductive and non-conductive objects. The contact with

the conductive objects provokes a significant variation of
the resistance (Rcond in comparison to initial value (i.e.
from 1.2 to 4 k' for the chosen pressure range). The non-
conductive objects induce a lower variation of the resistance
(Rnon-cond to the sensor surface (i.e. from 50 to 150 ' for
the chosen pressure range).

The conductive material varies weakly its resistance value
in case of non-conductive objects, but the type of change of
resistance is the same as when you press with the conductive
objects. Its resistance changes slightly in reaction to differ-
ent pressure values and no clear discrimination is possible.
Therefore, we can assume that the Velostat film works in
a quasi-linear regime with the capability to discriminate
the pressure applied by conductive objects. For the case of
non-conductive objects, the conductive polymer possesses
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Advanced Robotics 5

Figure 3. Comparison of the variational resistance (R of the
conductive material in its contact point for conductive and non-
conductive objects of various weights; resp. the continuous and
dashed lines. The results are similar to those in Figure 2, so the
fabric is more sensitive to conductive objects put on its surface
than non-conductive ones, for which the ohmic variation (R is
smaller but still can be detected.

a high hysteresis which does not make it the most suitable
material to use, since its resistance does not return correctly
to its initial value after pressing on it.[36] Finally, one con-
ductive layer (for example conductive aluminum laminated
fabric) was added between a non-conductive object and
rubber, and the same type of the characteristics (Figure 3)
as in the interaction with a conductive object was obtained.

3.1.1. Pressure estimation vs. spatial distance to electrodes
Our previous experiment was conducted on a small rectan-
gular conductive fabric (80 × 35 mm) to measure the rela-
tionship between the surface resistance of the conductive
fabric and the pressure at the contact point. The purpose
of the current experiment is to measure the variation in
resistance of the conductive fabric with respect to spatial
positions. We conducted our experiment on a larger surface,
a disc of diameter 200 mm. Sixteen electrodes were placed
uniformly on its circumference and a constant DC current
(200 µA) was iteratively injected into electrode pairs, while
potential differences were measured for each current injec-
tion. The chosen measurement strategy is again the EIT’s
neighboring method and due to the larger surface of the
conductive fabric, the current flow is lower in the central
region than in the periphery.

To facilitate visualization, several measurements were
taken for five weight values (2.3, 6.3, 20.3, 52.3 and 102.3 g),
all of which had the same circular contact area of diameter
16,25 mm, in order not to influence the electrical field. The
change in resistance was measured in nine positions spaced
uniformly by 20 mm. All the measurements started from the
same initial position, the disc center.

−100 −80 −60 −40 −20 0 20 40 60 80 100
0

1000

2000

3000

4000

5000

6000

7000

8000

Distance from the center of the fabric (mm)

∆R
 (O

hm
)

← 2.3g

← 6.3g

← 20.3g

← 52.3g

← 102.3g

Figure 4. Comparison of the variational resistance (R of the
conductive material with respect to spatial distance from the center
for conductive and non-conductive objects of various weights. For
large surface above 10 cm radius, there is a non-linear relationship
between the object position on the tactile sensor, its actual weight,
and the variational resistance (R of the conductive material,
which give an overall imprecision up to several centimeters in
the location of the contact point on the tactile surface.

Figure 4 shows the variation of resistance as a function
of spatial position for five weight values. Each variation of
the tactile resistance value (R is averaged from 208 values
measured. Indeed, for each current injection, 13 measures
of electrical potential between pairs of electrodes are made
and so for a total of 16 current injections (13 × 16 = 208
measurements). The observed resistance changes (R have
a convex parabolic profile for each weight value. In addition,
the variation of the resistance is greater in the vicinity of
the electrodes at the center of the fabric. For example, for
the weight of 102.3 g, the amplitude variation of the fabric
resistance at its boundary is about seven times higher than
at the center. The further we are away from the center, the
higher the fabric sensitivity increases because the flow of
the injected current is higher in the periphery than in the
center. The fabric sensitivity in the center can be improved
by placing an electrode in the center as proposed in the
works [37,38]. A problem arises from these observations;
for different weights, the change in resistance can be the
same depending on the position of the contact point. Thus,
it may be non-trivial to find the value of a weight from the
single measurement of (R.

3.1.2. Spatial resolution
We assessed the sensitivity of the touch sensor for different
spatial positions in the previous experiment. This time, we
study the spatial resolution of artificial skin under the same
experimental conditions. The purpose is to check experi-
mentally how precise is the detection of ohmic variation
with respect to a displacement of the order of only few
millimeters. For this purpose, a weight of 102.3 g is used,
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6 G. Pugach et al.

(a)

(b)

Figure 5. Time series of the ohmic variation (R of the conductive material with respect to spatial displacement (in mm) of a weight of
100g forward and backward; resp. (a) and (b).

which is moved back and forth from the center to the perime-
ter with a displacement about 2.5 mm per measurement. In
comparison to the results obtained in Figure 4, it is seen
that the sensitivity varies depending on the position of the
contact point. In order to facilitate the visualization of (R,
the weight is placed on the fabric before data acquisition,
thus establishing the reference value. Then, the weight is
moved manually twice by 2.5 mm.

Figure 5(a) and (b) show the results of moving the weight
in both directions. In these plots, the peak variations in-
dicate the transitional phases when we move the weight.
In Figure 5(a), the ohmic change between two positions,
the distance between which is 2.5 mm, is of the order of
a hundred ohms and the artificial skin finely detects this
change. Similarly, Figure 5(b) shows ohmic variations of
the order of several ohms when the displacement is from
the center of the circular tactile fabric to the edge. The
results of these experiments indicate that a 2.5 mm dis-
placement is detected by the tactile sensor regardless of
the 102.3 g weight position and there is no hysteresis ef-
fect.

3.1.3. Pressure resolution
Pressure resolution corresponds to the lowest weight which
can be detected by the artificial skin. Figure 4 shows the
variation of resistance for a displacement of five different
weights along the sensor surface. For the lightest weight
(2.3 g, which corresponds to 1 cent euro coin), we can ob-
serve a non-zero (R, especially at the center of the touch
sensor ((R ≈ 51.6 '), which is the least sensitive area
indicated by the value 0 in abscissa. To extend these obser-
vations, we plot the ohmic variations at the center of the
artificial skin for five different weights, see Figure 6. As
shown in the figure, the profile of the curves is logarithmic,
but still linearly proportional with respect to the weights.

4. Proposed method
4.1. State-of-art in neural network technique for image
reconstruction
ANNs are well-known optimization methods, highly par-
allel, and distributed with a significant level of learning
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Advanced Robotics 7

Figure 6. Relation of the variational resistance (R of the
conductive material with respect to Pressure (Pa) and the weight
of objects (same contact point).

capability. They have several advantages over classical sig-
nal processing methods, such as non-linear regression, rapid
adaptability to the input space, and fault tolerance to noisy
inputs. In our previous research, different types of NN were
used to solve the inverse problem in EIT, such as Bayesian
neural networks [39] or radial basis function neural net-
works (RBFNN).[40–42] Adler and Guardo [43] presented
a reconstruction algorithm using neural network techniques,
which computed a linear approximation of the inverse prob-
lem directly from finite element simulations of the forward
problem. NN adapted to the geometry of the medium and
to the signal-to-noise ratio used during network training.

Table 1 compiles the different tasks where NN were used
for image reconstruction on the basis of the EIT method.

4.2. Self-organizing maps
SOMs, especially Kohonen maps, are a powerful mecha-
nism for analyzing and visualizing multidimensional
data.[44,45] SOMs are an unsupervised learning method
that is applied successfully to various tasks. In image
processing, for example, SOMs are used for image com-
pression, feature extraction, segmentation (pixel-based or
feature-based), object recognition (pixel-based,
feature-based), as well as image understanding.[46] In com-
parison to the supervised neural networks presented in the
previous section, SOMs are a model-free technique, which
does not require knowledge about the structure of the input
space (e.g. a finite element model of the tactile surface).
Another advantage is that they are also bio-inspired methods
mimicking the topographical organization of the brain to
represent the sensory signals.[2,47] One disadvantage is
that they can produce a generalization error higher than for
the model-based techniques if the input database is not well
defined.

4.2.1. Structure of SOMs
SOMs consist of elements called ‘nodes’ or neurons con-
nected topologically, see Figure 7. Each node i ∈ N , with
N the dimension of the neural network, is connected to the
input vector j ∈ M , with M the dimension of the input
vector, and to the vector of weights wi j with i, j ∈ N × M
and each node has a local influence on their direct neighbors.

Learning takes place iteratively as follows.At each cycle,
the distance di between all weights and the input vector is
computed; see Equation (5). The neuron with the smallest
distance is called the winning neuron. Its weights and those
of its direct neighbors are modified to reduce the distance
to the input vector; see Equation (6), and their output is
computed as the inverse of the distance; see Equation (7).
The position of the neurons on a two-dimensional grid de-
termines the Kohonen map topology.

4.2.2. The learning algorithm of a SOM
During the training stage, a distance d (usually an Euclidian
or L1 distance) between the input vector x and the neurons’
weights w are associated to each output neuron y as in
Equation (7):

di =

√√√√√
M∑

j=1

(x j − wi j )2 (5)

where x j is the j-th component of the input vector x and
M is the dimension of the input vector x ; di the distance
associated to i-th neuron within a population of N neurons.
The smaller d is, the closer is the receptive field of the
neuron to that input vector.

The output neuron with the smallest distance
d∗

i = argmin(di ) is written i∗ and is then considered as the
winner neuron. Its weights are updated following Equation
(6) as well as the neurons within a certain neighborhood
radius hci∗ [48]:

wi j (t + 1) = wi j (t) + εhci (x j (t) − wi j (t)) (6)

where ε is the learning rate for iteration time t . The Koho-
nen rule changes the weights of the winner neuron and of
its neighbors,[49,50] which get closer to the input vector
and cause decrease in the distance to it. As a result, the
Kohonen network learns to classify topologically similar
vectors. The output value yi of the neuron i is the inverse
of the distance di measured in Equation (5):

yi = 1
1 + di

(7)

5. Imaging reconstruction with Kohonen neural net-
works
5.1. Experimental setup
Figure 7 represents a schematic diagram of the overall ex-
perimental setup for reconstructing the spatial location of
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8 G. Pugach et al.

Table 1. A review of neural network approach to image reconstruction in EIT.

Explorers Technic || Electrodes || Methods Detection success NN || Learning

Pandey and Clausen
(2011) [42]

EIT || 16 || opposite
method

1.5% limit errors RBFNN is constructed and trained by
orthogonal least square (OLS) algorithm

Nejatali and Ciric
(1997) [61]

EIT || 16 2.6–14.7% BPNN (back-propagation) and Forward
problem solving module

Stasiak et al. (2007) [62] EIT || 28 3–8% relative errors MLP
Wang et al. (2009) [63] EIT || 32 1.64–2.94% RBFNN trained by PSO optimization

algorithm
6.7% classification errors Multilayer perceptron (MLP) neural

network
8.7% relative errors in void
fraction

MLP ESC

Lampinen et al. (1999)
[39]

EIT 5.9% classification errors Bayesian MLP

8.1% relative errors in void
fraction
3.4% relative errors in void
fraction

Bayesian MLP, direct void fraction

4.7% classification errors MLP ESC
16.2% errorsin void fraction (NNTB3 def)

Vehtari and Lampinen
(2000) [64]

EIT 4.5% classification errors MLP ESC (decent def)

15.7% error in void fraction
3.8% classification errors Bayesian MLP
6.0% error in void fraction

Peng and Mo (2003)
[65]

EIT || 32 || neighboring
method

10−4 mean squared error (MSE)
of networks

Multilevel BP neural network
(MBPNN) (three levels)

Minhas and Reddy
(2005) [40]

EIT || 16 8% limit error Four different RBFNNs, corresponding
to four different classifiers, was trained
by applying OLSA

Adler and Guardo
(1994) [43]

EIT || 16 0.49-1.38% ADALINE network (adaptive linear
element)

Ghasemazar and Vahdat
(2007) [66]

EIT 1.4×10−5–6.2×10−5 MSE of
networks

Several multilayer perceptron (MLP)

Miller et al. (1992) [67] EIT 5% Back-projection network
Ratajewicz-
Mikolajczak et al.
(1998) [68]

EIT || 16 3–8% relative errors ANN learning using cascade correlation
learning algorithm (CASCOR)

Takeuchi and Kosugi
(1994) [69]

EIT || 18 || opposite
method

Error induced by noise appeared
about 20%

Fletcher–Reeves conjugate gradient
method for BP learning

5.6–12% void fraction errors Single-layer feed-forward NN was
trained using gradient descent

Teague et al. (2001) [70] EIT
6.15–11.2% void fraction errors Double-layer feed-forward NN was

trained using resilient back-propagation

Figure 7. Schematic diagram to estimate the resistivity distribution on the tactile sheet by a Kohonen map based on the EIT method. The
input current I is injected at 16 different locations, which give the voltage matrix U , the input of the Kohonen map of 32 × 32 units.
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Advanced Robotics 9

Figure 8. Convergence rate of the Kohonen network during the
learning stage based on the mean value of the weights and for
different learning steps ε = 0.01, 0.005, and 0.001. Although the
convergence rate is faster for the bigger ε, the networks that slowly
adapt to the input matrices are also more finely tuned, as it can be
seen in the evolution of the entropy value over the weights, which
is also a measure of information or complexity within the network.

the conductive weights by a Kohonen map from the distribu-
tion of the resistance density. A small constant DC current
of 200 µA is applied to the surface (input vector size of
16 bins), the voltages are measured using the neighboring
method of EIT (output vector size of 16 × 13 bins) and a
Kohonen map of 32×32 neurons is used to solve the inverse
problem of EIT; the electronic hardware is detailed in [36].

The Kohonen network is part of the simulated annealing
algorithms which require an exploration/exploitation period
to converge. The learning stage is therefore done in two
phases, the ordering phase and the tuning phase that control
respectively the network plasticity and stability. This is
applied here by selecting the number of examples fed to
the neurons and the population of neuron to be fed. On
the one hand, during the ordering phase, the training set
is initialized with a given quantity of the data-set and the
radius of the neighborhood begins with an initial distance
value that decreases to the unit value. This first mechanism
allows the weights of neurons to self-organize in the input
space consistent with their positions. On the other hand,
during the tuning phase, the remaining samples of the data-
set are used to update the weights of the winner neuron
only. This second mechanism allows the weights to change
relatively even in the input space while maintaining the
topology found in the ordering phase.

Simultaneously, we make the learning rate ε to decrease
during the learning period from 0.01 to 0.001. The neigh-
borhood function hci , a Gaussian function, goes from high
values of neighborhood weights (strong local influence) to
low values of neighborhood weights (weak local influence).
The average values of the weights of the Kohonen network
during the learning period and for different learning rate are
depicted in Figure 8.

Figure 8 (top chart) allows us to see properly the evolution
of the average weight of the neural network for three ε

values (0.01, 0.005, and 0.001). Indeed, it appears that the
mean value of the weight tends to stabilize at an average
weight of 0.1479. Furthermore, no overshoot of the final
value is found. Therefore, the curves obtained can remind
the step response of a low-pass filter of the first-order. This
is why, in Figure 8 (bottom chart) the tangents at the origin
are drawn leading to construction of time constants τ1, τ2
and τ3. The results obtained for each time constant are the
following: τ1 = 4.2 s, τ2 = 7.7 s and τ3 = 19.6 s. In fact, the
average network weights stabilizes around a duration of 5τ .

5.2. Experimental results
The spatial location of the object and the resistance density
distribution were reconstructed with the Kohonen neural
network learnt in the previous section. Figure 9 shows the
test results of the neural network with 32×32 neurons in the
output layer when an object of 100 g is moved continuously
on the tactile surface. The location of higher neural activity
corresponds to the cluster receptive field where the weight
is set. The neurons receptive field is large as it encloses
many neurons within the field, the cluster moves smoothly
and linearly with respect to the spatial displacement of the
weight on the tactile sensor. The reconstruction time is about
20 ms at each iteration.

5.3. Experiment 2 – EIT vs. neural networks
Figure 10 represents the spatial location of the object (weight
of 100 g) and the resistance density distribution was recon-
structed with the MATLAB toolbox EIDORS (electrical
impedance and diffused optical reconstruction software).[51]
This software implements three tools for the mesh genera-
tion, the forward problem and the inverse problem.[52] The
reconstruction time with EIDORS takes 260 ms to complete
each matrix of tension measurements, which is 10 times
longer than for the SOM method (20 ms).

Initially, we have estimated the no-load resistance dis-
tribution of the conductive fabric and we have used it as a
reference for calibration. This approach allows to measure
the relative change in the resistance distribution compared
to the reference state and it is known as difference imaging
or dynamic imaging.[34] It consists on the estimation of
time-varying changes in resistance between two particular
points. If we suppose that the variation in the impedance is
low, a linearized algorithm can be used to solve the problem
in only one step, which will be close to real-time operations.
Thus, there is no iterative computation involved and the real
resistance distribution need not be computed. This type of
image reconstruction in EIT is considered more robust to
noise and to electrode positioning errors compared to static
imaging.

D
ow

nl
oa

de
d 

by
 [U

ni
ve

rs
ité

 d
e 

Ce
rg

y]
 a

t 0
7:

29
 1

6 
O

ct
ob

er
 2

01
5 



10 G. Pugach et al.

(a) step 1 (b) step 2

(c) step 3 (d) step 4

Figure 9. Position of the object (weight = 100 g) on the conductive material and the SOM reconstruction (network size 32 × 32 neurons)

(a) step 1 (b) step 2

(c) step 3 (d) step 4

Figure 10. Two-dimensional image reconstruction using EIDORS of a FEM model with 1024 elements. The hyper-parameter α

(regularization weight) is set to 10−3. Blue and reds areas are the areas with higher and lower resistivity, respectively.

We present in Figure 11(a) and (b) the relative position
error of an object (100 g) on the conductive material for
the classical reconstruction approach (Matlab toolbox EI-
DORS) and for the neural network image reconstruction
approach (the Kohonen Map). Other metric measures were
proposed in [25], such as ‘point localization’.

One can see that the relative error does not exceed 1.5%
for these two approaches and the largest error occurs at the
center of the conductive material for both. This is due to the
decreased sensitivity of the skin as a function of the distance
from the electrodes. Along the edges of the conductive fab-
ric of the Kohonen network, we can determine the position
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Advanced Robotics 11

(a) EIDORS (b) Kohonen map (c) Probability density

Figure 11. Relative error (in %) of the determination of the position of the object on the conductive material: (a) classical approach
reconstruction (Matlab toolbox EIDORS); (b) neural network image reconstruction (Kohonen Map 32 × 32 neurons). (c) probability
density of the relative error on the surface of the tactile sensor.

of the object with a greater accuracy by the classical method
(within the area of up to 5 cm from the edges the error
is below 0.5%). On the edges, the error decreases to less
than 1 mm. When the Kohonen network increases in size
(13 × 16, 32 × 32, 64 × 64), the maximum relative error is
reduced. Nevertheless, the maximum localization error on
the artificial skin is less than 1.5% at the center position,
which means that the software EIDORS and NN have a
high accuracy with approximately a distance error of 7 mm.
Analysis of the error probability density (see Figure 11(c)
shows that the classical method using EIDORS produces an
relative error that is always distributed uniformly, whereas
the proposed method with Kohonen map produces more
common errors for values less than 0.25% and less in range
up to 1.5%.

5.4. Experiment 3 with neural networks
5.4.1. Touch and multitouch
In this experiment, we investigate the ability of our neural
architecture to discriminate the spatial location of multi-
ple contact points, up to three with various weights, see
Figure 12. Our circular tactile sensor is represented again
with a Kohonen network of 1024 neurons (32 by 32 neurons).
We display in Figure 12(a) the experimental setup for a
weight of 100 g with the corresponding neural activity of
the Kohonen map, where the location zone can be clearly
identified by the high activity level above 0.8. The neural
map activity for two weights held on the tactile surface is
shown in Figure 12(b), for which two clusters are found.
The activity level of the second cluster, which corresponds
to the second object added, is slightly lower than the activity
of the first one as it has a smaller weight of 50 g. The
overall neural activity is also reduced as having two objects
instead of one which diminishes the voltage value. The
activity values of neural clusters are around 0.6 in the two
areas. Finally, we add a third object of 20 g on the surface

and the Kohonen network is capable to identify its spatial
location with a third cluster of lower intensity with respect
to the others of about 0.48; see Figure 12(c). Although any
new object held on the surface increases the total pressure
on it and decreases proportionally the sensor’s impedance,
the neural network is able to adapt to this change and to
be robust to multi-touch. Thus, for the first object with a
constant weight of 100 g, its location is computed for a
neural activity up to 0.8, then for the second object up to
0.6, and for the third object up to 0.55.

5.4.2. With different material shapes
We verified in the previous experiment that the Kohonen
map self-organized effectively to preserve the topology of
the input structure for the spatial location of objects on
the conductive surface. This is another advantage of the
Kohonen map over parametric methods, which can adapt
dynamically to the topology of the incoming structure. The
spatial location of a contact point cannot be determined
using the parametric methods if the shape of the tactile
surface is unknown or modified, the same is true for the
neural networks that do not have any topology like RBF or
multilayer perceptrons.

Figure 13 shows the topology of two reconstructed Koho-
nen map using the Fruchterman–Reingold layout algorithm
[53] from a square tactile surface and a round tactile surface,
respectively (a) and (b). This algorithm is a visualization
technique used in graph theory and in neural networks for
analyzing a network’s topology. Although very caricatural,
the FR algorithm has been used for molecular placement
simulations and can serve here to determine the topology
of the Kohonen map. It is based on the physical modeling
of a springs-masses network with repulsive and attractive
forces. The forces are computed from a distance between
the neurons weights, for which neighboring neurons with
similar weights see their dynamics tightened by attractive
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12 G. Pugach et al.

(a) Single contact point (weigth of 100g).

(b) Two contact points (weigths of 100g and 50g).

(c) Three contact points (weigths of 100g, 50g and 20g).

Figure 12. Neural activity of the Kohonen map for multi-touch task for one, two or three weights of 100, 50 and 20 g; resp (a), (b) and
(c). The neurons are able to estimate correctly and simultaneously the objects of different location and weights.

forces. We use the jet color layout discretized to 1024
colors associated with each neuron of the Kohonen maps
with respect to their index.

As one can see from the graphs, the nodes attempt to
reconstruct the topology of the tactile surface with a round-
like shape in (a) and a square-like map in (b), respecting the
non-linearities of the corners.

5.4.3. With different objects
One extension from detecting multiple contact points on
the tactile surface is to identify spatially ordered contact
points as it is in the visual pattern recognition of objects.
Four archetypal shapes are used to test the effectiveness of
the SOM to perceive the actual stimulated profile from the
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Advanced Robotics 13

(a) Round-shaped surface (b) Square-shaped surface

Figure 13. Topological reconstruction from the Kohonen neurons’synaptic weights using the graphical display based on the Fruchterman–
Reingold algorithm for two different type of conductive surface, a round in (a) and a square in (b).

(a) a prism (b) a cube

(c) a parallelipedic shape (d) an unfilled cylinder

Figure 14. Activity-level of the Kohonen neurons in presence of various shapes and above a certain threshold.

neural activity on the active sensor area: a triangular prism
(three sharp angles), a cube (four blunt angles), a ruler (two
blunt angles) and a cylinder. Figure 14 shows the activity
of the Kohonen neurons for four different shapes with the
topology found by the Fruchterman–Reingold layout algo-
rithm in Figure 13(a), red color reflects the neuron activity
above a certain threshold (the same for the four shapes).

As one can see, it is possible to discriminate to some
extent the object shape from the neural activity, although
the spatial resolution is not fully respected and the topol-
ogy slightly distorted. The sharp angles of objects permit
to discriminate each object more easily and to find their
orientation. These properties – to discriminate objects and
find their orientation are not trivial as the Kohonen map

D
ow

nl
oa

de
d 

by
 [U

ni
ve

rs
ité

 d
e 

Ce
rg

y]
 a

t 0
7:

29
 1

6 
O

ct
ob

er
 2

01
5 



14 G. Pugach et al.

has learnt from individual tactile points; for instance, it is
not clear if it is possible to reduce the shape of objects to
a linear combination of individual points: we do not know
whether or not the electrical field of one complex shape
object can be easily reduced to the electrical field of multiple
points. This method shows therefore its limits and the need
to acquire other types of signals (visual, proprioceptive,
or other mechanoreceptors) to discriminate better object
shapes.

6. Conclusion
The sense of touch is an important feature to provide in
robots in order to represent their body and to interact with
the environment. It requires to discover the configuration
of their sensors and to learn the structure of sensorimotor
information. Moreover, this feature should be adaptive so
that changes can be overcome as well: (i) in the sensor
configuration, (ii) in the number of contact points, (iii) in
the pressure range or (iv) with the presence of noise.

In this paper, we present a bio-inspired solution for recon-
structing the topology of a tactile device and for sensing the
external contact points on it. Neural networks can permit to
avoid for the experimenter to identify himself the sensor
properties and to configure the important parameters of
the reconstruction method that can be different from the
datasheet specification and during its use due to the ma-
terial deterioration and damage. In comparison to classical
methods, neural networks can generalize from a large range
of sensory inputs off-the-shelf without an a priori on the
sensor structure. Our motivation is to develop in the long
run a whole-body artificial skin for humanoid robots with
features emulating the human tactile perception, such as
providing the spatial location of the physical contact point
within the robot coordinate frame. To our knowledge, we
are the first to use neural networks for EIT image recon-
struction of tactile devices in the robotic domain and to use
unsupervised techniques for EIT image reconstruction in
the literature. We did not compare our approach with other
ANNs because advantages and drawbacks of each family
of ANN are already well documented.[54]

The Kohonen network that we used has the advantages to
model the topographic organization in the somatopic area
in the cortex similar to what is done in [47]. Its functioning
is based on a metric distance between the input vector and
the neuron’s weights, which assumes that the sensory inputs
do have a topology and that a tiny displacement of a contact
point on the material surface will have an effect on the
neurons’ activity, and will be translated proportionally in
terms of neural distance to each neuron’s receptive field.
This characteristic endows the Kohonen map to be tolerant
to noise and to emulate well multi-touch contact points and
objects of different shapes. Moreover, the Kohonen map
showed advantages over the classical reconstruction meth-
ods in terms of performance (good resolution accuracy)

with the possibility to sense tactile inputs in real time (in
average 20 ms vs. 262 ms for EIDORS using the difference
imaging of EIT). Although, it has been reported that the
difference EIT image reconstruction technique can be very
fast and can achieve 40–50 Hz,[55] the computational cost
or complexity of EIT reconstruction techniques has been
shown to be a drawback when the matrix size augments.[56]
The computational complexity of EIT methods requires
to inverse one matrix of dimension n, which costs com-
putationally at least O(n2 × m), where m is the number
of finite elements of the FEM, which means that as the
matrix augments –, the size of the tactile sheet and the
number of electrodes, – the computational time for im-
age reconstruction will increase asymptotically. Instead, the
computational cost of neural networks of m neurons and for
the same input matrix of dimension n is O(n ×m), because
the network output depends on the computation of all the
neurons within the neural network. In neural networks, the
dimension m is often chosen inferior to n, for generalization
purpose, but in our tests, we chose m = 1024 for both
algorithms in order to compare them. This means that the
computational time for output approximation is increasing
linearly with the size of the neural network. Furthermore,
we suggest that the computation done by the NN is similar
to the filtering process known as super-resolution in image
processing to enhance the spatial resolution and used re-
cently with tactile devices [19] using Bayesian techniques.
NN interpolate several EIT samples acquired during the
learning period to enhance the spatial resolution of the tac-
tile device.

Nonetheless, SOMs are part of the model-free and unsu-
pervised techniques, which are known to be less efficient
than the supervised learning methods because the model
of the desired state is given in advance and exploited to
minimize the error. Thus, we expect that multi-layer per-
ceptrons, deep networks, radial basis function, or support-
vector machines to name a few will give better performances
in terms of convergence rate and accuracy than the Kohonen
map that we have employed. For these reasons, we believe
that supervised neural networks can provide in the future
interesting and efficient solutions in terms of speed and error
approximation to the EIT image reconstruction problem.

SOMs have instead as advantages to learn online the
topology of the input space (the geometry of the tactile
sheet) without any a priori knowledge. Furthermore, they
are easy to interpret and more plausible biologically. For
instance, each neuron of the SOM map models a mechanore-
ceptor (e.g. the low-pass filter Merkel type) and each neuron
learns its own position in the tactile sheet as well as its
own spatial resolution. The precision acquired depends on
the learning (or developmental) stage done, which is not
the case for unit-based devices, that have only a static and
uniform spatial distribution. Actually, we are working on
the modeling of different types of mechanoreceptors using
our method.
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Advanced Robotics 15

Moreover, and as similar to the experience done in
Section 5.4.3 with the Kohonen map, we did the blind
test to recognize the shape of objects on the surface of
one arm’s skin, and we could not easily discriminate the
different shapes by just pressing the object on it. This is
in accordance with research studies showing that the other
senses -vision, proprioception, and audition- and the com-
bination of the mechanoreceptors altogether contribute to
tactile perception.[57,58] Therefore, the aim of our future
research will be to investigate the integration of other senses
like vision or proprioception towards the perception of one’s
own body and modeling of the sense of ownership in a
humanoid robot based on the tactile sense.[59,60]
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