A neuronal structure for learning by imitation
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Abstract. In this paper ! , we present a neural architecture for a mobile
robot in order to learn how to imitate a sequence of actions. We show
that the use of a representation of the information in a continuous and
dynamic way is necessary and the use of the neural fields can be a good
solution to control the dynamic of several degrees of freedom with a
single internal representation.

1 Introduction

Until now, our work has been mainly focused on the design of a neural net-
work architecture (named PerAc: Perception-Action) for the control of a visu-
ally guided autonomous robot. However, the PerAc architecture does not help
to solve problems which have an intrinsic high dimension. Therefore imitation of
already learned behaviors or subparts of a behavior not completely discovered is
certainly one way to allow a population of animals or robots to learn and to find
solutions by themselves. Learning by imitation is already used in a few projects
of Artificial Intelligence (see [2,3,5]). In our previous work [6], we proposed a
neural architecture for imitation based on visual information and we shown how
to use it to teach the robot to perform a particular sequence of movements (to
make a zigzag trajectory, a square ...). In this paper we try to put together 2
ideas: how a PerAc architecture can be used for learning by imitation and how
the properties of the neural fields can be used to improve the motor control.

2 Neural network for sequence imitation

For the imitation behavior, we start with the assumption that proto imitation
(not intentioned imitation) is triggered by a perception error (see [6] for de-
tails) and in Fig. 1 we present an overview of a general PerAc architecture using
this principle. The reflex path of PerAc works as a movement tracking mecha-
nism which consists in going towards any perceived movement. The second level
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of the architecture learns the temporal interval between the successive robot
orientations (i. e. a sequence of movements), and associates it to a particular
motivation.
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Fig.1. A general diagram of the PerAc architecture use for learning the temporal
aspects of a trajectory. CCD - CCD camera, M - Motivations, MI - Movement Input,
MO - Motor Output, TD - Time Derivator, TB - time battery, PO - Prediction Output

A frame-grabber is used to take a sequence of images. In one of our simplest
implementation, a “movement image” is the difference between 2 different time
integrated images of the above sequence. The perceived movement orientation
is computed from the “movement image”. The result is one-to-one “projected”
on a map of analog formal neurons, the Motor Input (MI) group in Fig. 1.
To avoid the perception errors in the tracking mechanism, we allow the robot
camera (robot head) to rotate. In this way, the head tries to pursuit the teacher
at any time by centering it in its visual field. The robot body turns only if the
teacher movement is observed under the same angle for a given time interval.
The independent rotation of the robot head and its body can be viewed as a
simple two degrees of freedom system. The functioning of the motor group (MO)
is quite simple. At each step, a WTA mechanism chooses the most activated
neuron, performs the rotation corresponding to this neuron and finishes with a
fixed translation. The MO group uses the same information representation as the
MI group. It receives the information from both reflex level and event prediction
level.

In order to learn a sequence, the student robot detects and learns the tran-
sitions in its own body orientation and to be able to reproduce them. The
movement rotations characterized by OFF-ON transitions (Time Derivative TD
group) of MO neurons are used as input information for a bank of spectral neu-
rons (TB in Fig. 1). Time filter batteries (TB) act as delay neurons endowed
with different time constants. As such, they perform a spectral decomposition
of the signal that will allow the neurons in the Prediction Output group (PO)
to store the transition patterns between two events in the sequence. Finally, the
PO group is linked with the MO group via one-to-all modifiable links.
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3 An neural dynamics of the motor system

The first limitation in our architecture is the poor stability of the tracking be-
havior. Even if the temporal integration allows a memory effect, any new input
stimulus can generate an immediate change of the head orientation (a classical
WTA decision). A second major limitation is the input discrimination. Two or
more movement zones can be interpreted as different targets or as the same
target due to perception error. In the present system, no interpretation of the
perceived movement is performed in order to avoid a misinterpretation. The mo-
tor group has to be a topological map of neurons using a dynamical integration
of the input information to avoid forgetting the previously tracked target. A
dynamical competition has also to be used to avoid intermittent switchings from
a given target to another.

We will use the simplified formulation of the neural field proposed and studied
by Amari [1].
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Without inputs, the homogeneous pattern of the neural field, f (z,t) = h, is
stable. The inputs of the system, I (z,t), represent the stimuli information which
excite the different regions of the neural field and 7 is the relaxation rate of the
system. w(z) is the interaction kernel in the neural field activation. These lateral
interactions (“excitatory” and “inhibitory”) are modeled by a DOG function.
Vp is the lateral interaction interval. g (f (z,t)) is the activity of the neuron
according to its potential f (z,t). We use a classic ramp function.

G. Schéner [7,4] has proposed to use the properties of the neural field for
motor control problems. The “read-out” mechanism consists in the use of the
derivate of the neural field activation to compute the motor command. The
orientation of the robot head, ¢,.s, relative to a fixed reference is used in the
system as a behavioral variable. The state of the system is expressed as a value
of this variable. The local maxima of the neural field are named attractors. If
the target orientation is ¢¢qr (see Fig. 2, a), it erects an attractor in the neural
field (see Fig. 2, b) and the robot rotation speed will be w = ¢ = F (¢rop). ¢
is a function of the current robot orientation, ¢,.. It sets the dynamics of our
robot.

Taken separately, each input erects an attractor in the neural field. The
Amari’s equation allows the cooperation for coherent inputs associated with
different goals (spatially separated targets). For closely spaced input information,
the dynamic has a single attractor corresponding to the average of the input
information. For a critical distance between inputs, a bifurcation point appears
and the previous attractor becomes a repellor and 2 new attractors emerge.
Depending on the initial state, the robot switches to one of the 2 new fixed points.
This mechanism of input competition / cooperation has an hysteresis properties
which avoids oscillations between the two possible behaviors. Another feature of
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Fig. 2. a) The robot and the target coordinates are represented in the same reference.
The reference orientation, ¢o is used to compute ¢rop and @iqr. b) The target position
erects an attractor at ¢¢qr. The “read-out” mechanism allows to compute the rotation
speed w using the derivate of the neural field activation.

the neural field is the memory. If the parameter h in Eq. (1) has a sufficiently
negative value then the neural field operates with a memory effect in which a peak
of an attractor has been maintained for a short time interval. A large positive
value of h determines a supra-threshold in the neural field activation. We use
the inputs of the actual system to drive a motor command using a neural field
without any modification. Replacing the MO group by a neural field is the sole
modification in the architecture (see Fig. 1). All above properties of the neural
field come into the general architecture, eliminating the input segmentation and
the stability problem of the initial architecture.

4 Experimental results and discussion

At first, we have implemented the tracking reflex using only one degree of free-
dom, i. e. the robot moves only its head. In order to demonstrate the capabilities
of neural field to control several degrees of freedom we take a simple example.
The robot follows a “teacher” and learns a sequence of movements ABC. The
sequence starts with the activation of the state A (orientation) corresponding
neuron. The input in the neural field generates an attractor at the the ¢4 ori-
entation (see Fig. 3).

At 7 moment, the ¢p neuron will be activated by the PO group. This ac-
tivation shifts the attractor to ¢p in the neural field. Using the “read-out”
mechanisms, we obtain 2 rates of orientation change (due to differences inertia):
one for the head orientation and another one for the robot body orientation. In
the top of the Fig. 3, we show the variation of head and body orientation as a
function of time. According to neural field dynamics, the change of the orien-
tation is continuous. For an external observer, the head orientation anticipates
the body orientation ( i.e. the inertia of the robot is learned too).
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Fig. 3. Top: the temporal variation of the head and of the body orientation. Bottom:
the neural field activation for an ABC sequence. The bar represents the predicted
movement.

This work is at its beginning. Its interest is in its use of the neural field con-
cept in a PerAc architecture. We show that we can learn the temporal sequence
of movements by imitation using a PerAc architecture. The tracking mechanism
in the reflex path of PerAc permits the temporal “segmentation” of the “teacher”
movements without learning to visualize what the teacher is doing or not. The
use of the neural field improves the stability of the proto imitation process and
permit the discrimination of moving objets in the visual perception field.
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