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ABSTRACT

In this paper!, we address the architecture design of
linear filters for the blind adaptive restoration of sev-
eral sources from convolutive mixtures. First, we show
the drawbacks of fixed architectures involving additive
decorrelation constraints and a source extraction crite-
rion. We introduce a self-organizing architecture based
on the dynamical stability properties of neural network
lateral inhibition rules. This exploratory search of an
optimal design helped our understanding of the diffi-
culties raised by using the correlation information. It
opens directions for further improvements.

Keywords: Blind MIMO deconvolution, Self-organization,

Neural competition, Adaptive deconvolution.

1. INTRODUCTION

The problem of blind source deconvolution is to recover
the independent source signals from linear and convo-
lutive mixtures (i.e., in time and space) without the
knowledge of the mixing matricial transfer function.
This problem is motivated by many potential applica-
tions. For instance, in the cocktail party task, several
voices are received by several microphones after convo-
lution by the room impulse response from each speaker
location to each microphone. It is then desirable to re-
store each speech signal adaptively since the speakers
can be slowly moving and without prior knowledge of
the transfer function. Among other applications is the
restoration of multiple signals transmitted in a multi-
path environement [15].

The problem of convolutive mixtures can not be re-
duced to the simpler instantaneous problem for which
a lot of recent research has been performed. However,
some criteria can be considered for both cases when
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each source to be restored is an independent and iden-
tically distributed sequence (i.i.d.). Tt is the case of
some criteria based on a non-linearity used for blind
equalization as well as for blind source extraction. In
particular, the Constant Modulus (CM) criterion first
proposed for blind equalization [5] has been widely used
for sources extraction from spatial mixtures and more
recently introduced for the deconvolution of MIMO
spatio-temporal mixtures [15]. There are indeed other
criteria based the fourth order moments that can be
used instead of CM, this is not the purpose of this
paper. Our concern is about the architecture that con-
trols the interaction between the filters trying to ex-
tract different signals. This problem is raised by the
fact that a blind criterion such as CM allows perfect
restoration of one arbitrary source, with an ar-
bitrary delay from convolutive mixtures. It requires
the mixtures to have sufficient spatio-temporal effective
diversity (see for instance [12]). The problem is there-
fore to control that each filter selects a different source.
To do so one can control the filters via parametrization,
using a deflation approach, see [2] in the case of sources
separation. A subtraction of already extracted sources
was also considered, in [16], for non adaptive process-
ing. However, since the CM criterion allows perfect
source extraction, it 1s sufficient to make sure that the
filters outputs are not correlated.

Different decorrelation rules were proposed to con-
trol how different filters can restore different sources. A
symmetrical decorrelation constraint was added to the
CM criterion in [12], [10] and others. Tt raised some
problems of undesired local minima and possible slow
convergence due to two filters preventing each other be-
cause of their symmetrical behaviour, to escape from a
given basin of attraction in which they both have been
initialized. To prevent from this kind of problem, a hi-
erarchical approach was proposed in [14] and proved to
be asymptotically satisfactory. It imposes a hierarchi-
cal order so that each filter filter imposes on the later



ones to be in different basins of attractions, therefore
solving the problem of preventing escape from a given
basin of attraction. However, the hierarchical order be-
ing given a priori is sometimes not the best in terms
of convergence speed, i.e., the second filter initialisa-
tion may be closer to a minimum from which it will be
discarded. In this paper, we challenge this question by
a self-organizing filters structure using dynamical sta-
bility properties exhibited by lateral inhibition mecha-
nisms in neural networks (see the dynamic field theory
for the control of motor behavior for instance [13]).

2. PROBLEM SETTING

Let us consider P source symbols (sg(n))r=1, p emit-
ted from different locations and observed at the out-
put of I spatially distributed sensors. At each instant,
these observations are collected in a L-variate vector
y(n) viewed as the sum of the P sources contributions

as in: R
=33 hp(m)se(n—m) (1)

k=1m=0

The transfer function hg(z) = Z}?q—o hy(m)z=™ mod-
elizes the transmission media between the location of
sk(n) and the sensors, for k = 1,.., P. Let us denote
H(z) = [hi(2),...,hp(2)], the MIMO transfer function
from the P sources to the L sensors.

In the absence of noise, the FIR linear deconvolu-
tion problem consists in finding P transfer functions
(8(=))ymt,..p such that G(z) = (gi(2),---,gr(2))
satisfies,

-y

G(Z)TH(Z) =

z7VP

up to some source permutation and scaling. vy, ..,vp
are integer delays that are in the range of achievable
delays for a given channel and equalizer length. In the
sequel, we denote N — 1 the different equalizers degree,
so that g,(z) = Zk o gp( )2~*. g, denotes the cor-
responding impulse response g, = (g,(0)7, ..., gy(N —
nmHr.

2.1. System invertibility

This is known to be possible ([9]) under the following
invertibility assumptions:

o P< L

e hy(z) degree Qi ; Rank H(z) = P,Vz ; Rank
He(2) = P,Vz,

G(z) degree N; N > ZkP:1 Q.

The question is how to do it blindly, i.e., without
knowledge of neither the input sequences or of the sys-
tem transfer function.

2.2. One source extraction

It is also known that a blind algorithm such as CM al-
gorithm (CMA) is able to adapt blindly the impulse re-
sponse g of a degree N —1 filter g(z) = Zk 0 g( )z,
so that it extracts one arbitrary source sequence (with
an arbitrary delay in the range of achievable delays)
from the mixtures. The CMA adaptation is given by
the following stochastic gradient descent equation:

=g —pz(n)(lz(m)” - 1)Y"(n)  (2)
CM A(n)

g(n+1)

where z(n) = (g"))TY(n) is the equalizer output and
Y(n) = (y(n),...,y(n— N+1) is the regression vector.

The extraction is shown to be perfect (i.e., suppres-
sion of the contributions of other sources) if the system
invertibility conditions are satisfied, see for instance
[12]. Other reasons to consider an approach based on
CMA are its robustness to additive noise, to an over-
estimation of the transfer function order and to a lack
of system invertibility, see [3] for the one source case.

The use of such an approach to extract several sources
requires to make sure that the same source 1s not se-
lected twice, even with different delays. The control of
the different delays makes the task much more complex
than in the instantaneous source separation case.

3. EXISTING APPROACHES

In this section, we present only existing approaches
based on a decorrelation constraint. It is important to
understand the lacks of such fixed architectures in order
to understand why we are looking for self-organizing
ones.

3.1. Symmetrical approach

Since source extraction is perfectly achievable, a nat-
ural idea is to add a decorrelation constraint between
all equalizers outputs at all possible delays to prevent
from selecting twice the same source. The intercor-
relation between the outputs z;(n) and z;(n) of two
filters, g; and g; (with zx(n) = g,in)TY(n)), is de-
noted by E[z;(n)z;(n—m)] = g R(m)g; with R(m) =
E[Y(n)Y(n —m)"]. The decorrelation constraint can

be expressed as ), Z%:_M(g;—R(m)gj)z where M

overestimates L(N+@), for instance one can take 2L N.



A stochastic algorithm can be deduced with the follow-
ing updating equation,

gt = omay(n

ﬂzz Z gk

I#k m=—

(m)g{" R (m)g"

Cp,i(n)

(3)
where C'M Ag(n) is the CMA updating term defined in
(2) for gr. R(m) is an estimation of R(m) updated at
each iteration with a forgetting factor.

Note that since the decorrelation term is not the
mean expected value of some expression, (3) is not the
stochastic gradient descent algorithm of the constraint
cost function. The analytical study of the performances
of such an algorithm 1s difficult. However, from sim-
ulations, we have noticed that in the case of an ini-
tialization in one basin of attraction for two filters (for
instance, in the worst possible case with the same ini-
tial setting), the two filters may push each other in and
out the basin of attraction for a very large number of
iteration because of their similar updating rule. The
hierarchical approach was proposed in order to prevent
from such a behaviour.

3.2. Hierarchical approach

In the hierarchical organized algorithm the decorrela-
tion term is taken into account only to constraint the
following (in the given order) filters. The resulting al-
gorithm was proposed in [14],

gt = cMay(n

— 12y Cal (4)

>k

The structure was shown to have the desired asymp-
totical mean behaviour when ps/p > 2p, where p, =
E[sp]/E[s7]? is the normalized fourth order moment of
the input source to be extracted.

If the filters initializations correspond to the order
of the given hierarchy, the algorithm is going to con-
verge very quickly. However, if the filter at the head of
the hierarchy is far from convergence and if its conver-
gence pushes over filters out of the basins of attraction
in which they were initialized, very slow convergence
may be induced.

4. SELF-ORGANIZING HIERARCHY

4.1. Aim

We want hierarchical order to adapt itself to the sys-
tem, so that if one filter is closer to convergence than
the others 1t will push the others outside of the basins

of attractions corresponding to extraction of the same
source. The resulting algorithm should of the form

gt = cMay(n

szgkl )Cki(n)  (5)

1k

where the scalar 6 ;(n) should be adapted in order to
match the optimal hierarchy and to suppress the decor-
relation terms when no longer required (i.e., each filter
is in the basin of attraction of a different source). This
is not necessary to ensure asymptotic convergence but
it would decrease the residual jitter when steady-state
is close to being reached. In practical (non-asymptotical)
situations, reducing the jitter is all the more crucial
than the number of input sources is large.

The self-organized competition is aimed to choose
a winner (principle of Winner Take All (WTA) mech-
anism [11]) the success of which can be measured by a
small CM error and decorrelation from the other filters
outputs. The instantaneous CM errors of all filter out-
puts, (|zx(n)]?=1)? with k € [1, P], could be considered
to set up a hierarchy. However, tests show that making
instantaneous decisions induces lots of instability since
the errors are jittering due to the stochastic character
of the algorithm. An integration in time of the com-
petition variables is therefore required to regulate the
competition between the filters. This integration needs
to be performed inside the competition, see [1]. Many
competition rules can be experimented. In the sequel,
we introduce this approach for our problem and exhibit
examples to prove the interest of such an approach.

4.2. Two sources case

For sake of simplicity, let us first consider the case of
two sources. In the case of Winner Take All (WTA)
with fixed inhibition weights, the competition is per-
formed using a measure of success of source restoration
denoted ¢y (n) (the simplest expression being a function
of the CMA error obtained from zx(n)), as in Figure 1.

@, competition b

Figure 1: Competition scheme

The neurons output ¢y (n) are competing using the
following equations:



o071 = (1= 1)+ 160, = s, 1)
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for k1 # k2. A and «y are respectively the forgetting
and acquiring factors of the integration of the success
measure. w is the anti-Hebbian term setting the fixed
inhibition. The neuron output ¢y (n) resulting from (6)
is forced into the interval [0, 1] using f. ¢z (n) tends to 1
as it 1s winning. The weighting factors for decorrelation
can be easily described by

O k() = (1= 61, (n)), k1 # ko (7)

Note that 0, , is no longer explicitly depending on
ks. This mechanism enhances the filter that has more
success over a time duration depending on the fixed
factors in (6). The study of such competition mecha-
nism [6, 7] shows that it stabilizes asymptotically on
one winner in static conditions when the instantaneous
successes are different enough from each other. This
requires indeed some conditions on the parameters A,
a1 and w depending on the input distributions.

The main difficulty in applying such a competition
mechanism to our deconvolution problem consists in
choosing the measure of success ¢y (n) for the deconvo-
lution task. It seems natural to use the CMA error the
minimization of which ensure restoration of one source.
One could think of choosing the inverse of the CMA er-
ror 1/(|zk(n)]? — 1)% for ¢x(n), but it is not bounded.
We considered ¢r(n) = f(1 — (Jzx(n)|?> = 1)?)/emaz)
where €,,,4,» 1s maximal error allowed. When one CMA
error is larger than epaq, ¢x(n) = 0 so that the asso-
ciate neuron output will decrease and will be less likely
to win. This is not a problem since we assume that
such error level is too large for a successful source de-
convolution. This is certainly not the optimal choice,
but only an exploratory one and the simplest linear
function of the CMA error.

Simulation: The following simulation setting con-
siders 2 sources and 3 sensors with the transfer function
satisfying the invertibility conditions given in Table T.
The sources are binary (£1) i.i.d. sequences, indepen-
dent from each other. For the WTA parameters, we
have selected €40 = 2, A = 0.025, a1 = 0.7, w = 0.6.
For the CMA p =0.01.

Table I : Impulse response of 2-sources / 3-sensors

system.
h,(0) | by(1) | By(2) || Ba(0) | ho(l) | ho(2)
0.0400 | 0.9359 | 0.3686 || 0.7575 | 0.4756 | 0.6541
0.7591 | 0.0907 | 0.2895 || 0.8320 | 0.9996 | 0.9651
0.5619 | 0.2927 | 0.7802 || 0.7853 | 0.1786 | 0.1635

The initialization of the two filters are center-spike vec-
tors corresponding to basins of attraction of the same
source (with the non-zero component at the respective
positions 3 and 10 for initilization (a) and swapped for
initialization (b)).

We compare the filters output for the hierarchical
algorithm (Figure 2) and the WTA algorithm (Fig-
ure 3).
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Figure 2: Hierarchical order:
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Figure 3: WTA: filters output

On this simulation, alike in many others we have
performed, the WTA seems to behave as an average
between the hierarchical algorithm best performances
(i.e., when the the given order is satisfactory) and worst
performances (i.e., when the the given order is not sat-
isfactory).

Figure 4 displays the global impulse responses of
the system averaged over the last 500 iterations. The
quadrant ¢, j represents the impulse response between
the source ¢ and the output j. We can that the sources
are well separated but that the second one is not very
well equalized (some small non-zero taps).

If we extend the WTA rule to the case of more than
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Figure 4: Hierarchical order: global impulse responses
with swapped initialisations

two sources, the inhibition term becomes —w Zk#ﬁ or(n).

Still, we get one winner for all filters. Such a processing
would require to wait for the decorrelation term to be
very small before another filter is allowed to select an-
other source. In the next paragraph, we let the WTA
inhibition factor w to adapt itself, by taking the decor-
relation into account, to allow several filters to win the
competition when they restore different sources.

4.3. Lateral-Inhibition rule

We follow the work of [4] to adapt the inhibition factor
in (6). This factor is adapted so to increase inhibi-
tion when the two filters outputs are correlated and
not successful. On the opposite, the inhibition from a
given source should stop if the filters outputs are un-
correlated (or sufficiently decorrelated). The updating
equation is given by: wy, g, (n + 1) =

(1 - /\z)wkth (n) + a2¢k1 (n)¢k2 (n)fs (COirrliﬁ (n))

(8)
for k1 # ko. As is a forgetting factor. The usual Heb-
bian term to learn the neurons correlation is given by
@adp, (n)or,(n). In (8), the Hebbian term is modu-
lated by the way the filters outputs are correlated de-
noted by fs(corrg, k,(n)). At this stage, the difficulty
concerns the way to take into account the measure of
the integrated correlation corry, x,(n). between zg, (n)
and zx,(n). corrg, g, (n) is adapted by (9) bellow. We
choose fs to be a binary function defined by fs(¢) =0
if ¢ is smaller than a given threshold 5, 1 otherwise.
Indeed, this choice is far from being optimal, and one
may think of adapting the threshold during the process.

The integrated correlation is simply adapted as,

corry, g, (n)

0Tk s (1) = (1= As)e0rri, o (m)ha =i 2 sy
(9)

with corry, g, (n)
ting factor.

= g,l—l(n)Ckth(n). A3 is the forget-

4.4. Simulations

The simulation setting is exactly the same as previ-
ously. wg, £,(0) = 1, A2 = 0.001, as = 1, ¢, = 0.2
Az = 0.01.
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Figure 5: Adaptive WTA: filters output

First note that we obtain the same simulation re-
sults independently of a permutation of the initial fil-
ters settings. When the decorrelation term is no longer
effective after 2000 iterations, both filters are updated
by CMA only. Figure 6 displays the global impulse
responses of the system averaged over the last 500 iter-
ations. Obvisously the two different sources have been
restored almost perfectly, the improvement is conse-
quent compared with the hierarchical algorithm in Fig-
ure 4. Nevertheless, the second filter output (lower
part of Figure 5) shows a quite large variance. We be-
lieve that this jitter around +1 1s due to the slow con-
vergence of the filter adaptation with spatio-temporal
diversity (ill conditioned covariance matrix of Y) in
tracking mode. Some filter taps with small coefficients
are lacking excitation to be tuned correctly. To over-
come this phenomenon, one may think of introducing a
forgetting factor (or leakage) in (2). An alternative so-
lution would be to switch to a decision directed mode.
Tt means that CM Ak (n) is replaced by an LMS type
of error with the desired value being replaced by a de-
cision taken from the filter output.

Finally in Figure 7, the neuron outputs are dis-
played. ¢; wins almost instantaneously, and remains
at 1. ¢ is first set to 0, being therefore subject the
decorrelation constraint from the first neuron. After
only 1000 iterations, the two filters outputs are decorre-
lated enough meaning that the second filter succeeded
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Figure 6: Adaptive WTA: global system impulse re-
sponses

in being in a new basin of attraction. This induces
a decrease of the inhibition weight, so that the sec-
ond neuron is also allowed to win. The filters adapta-
tions are then completly decoupled (CMA adaptation
only). This shows the relevance of adapting the inhibi-
tion weight.
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Figure 7: Adaptive WTA: measures of succes ¢q, ¢o

5. CONCLUSION

In this paper, we explore ways to improve the conver-
gence properties of MIMO convolutive mixtures decon-
volution approaches based on decorrelation constraints.
In the case of two sources a Winner Take All architec-
ture is applied and seems to be quite satisfactory.

The dynamical properties of the proposed WTA
mechanism are usefull to allow the adaptive filters to
specialize on different sources. These properties are
crucial when sources changes (or appear or deseppear)
during the experiment. The competition mechanism
allows to change winner very quickly if the winner is
not considered as being safe. The mechanism is also
robust to perturbations when a safe winner has been
found. When our system has succeed to restore cor-
retly 2 sources and that we change them it reactivates
in few iterations (10) the competition mechanism and
finds the new solution in the same time than the pre-
sented simulation (no differences in the figures).

The new approches should be even more outper-
forming in the case of more than two sources, espe-

cially if the CMA adaptation is switched to a decision
directed mode when possible. These feature and the
optimisation of the proposed design are yet to be ex-
plored.
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