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Abstract

We address the dynamical architecture design of linear
filters for the blind adaptive restoration of several sources
from convolutive mixtures. In [2], we presented a self-
organizing architecture based on the dynamical stability
properties of neural network lateral inhibition rules. In this
paper, we improve the proposed algorithm to suit more than
two sources and study its robustness to change of sources.
Keywords: Blind MIMO deconvolution, Self-
organization, Neural competition, Adaptive deconvolution.

1. Introduction

The problem of blind source deconvolution is to re-
cover the independent source signals from linear and con-
volutive mixtures without the knowledge of the mixing
matricial transfer function. This problem is motivated
by many potential applications such as biological analy-
sis (brain activity, EEG), voices separation (cocktail party,
visio-conference), or multi-user detection in telecommuni-
cations. In all these problems, several emitters sharing the
same bandwidth are received by several sensors after a spa-
tial and temporal mixing due to multipath propagation. The
received signals are then the sum of convolutivemixtures of
all sources where the transfer function from one source to
one sensor depends on the paths for propagation. It is there-
fore desirable to restore each signal adaptively and blindly
since the speakers can be slowly moving and the associated
transfer function can not be estimated by training.
The problem of convolutive mixtures can not be reduced

to the simpler instantaneous problem for which a lot of re-
cent research has been performed. However, some criteria,
such as the Constant Modulus (CM) criterion [3], can be
considered for both cases when each source to be restored is
an independent and identically distributed sequence (i.i.d.)
and the sources independent from each other. In [5], a glob-

ally convergent approach was proposed based on a hierar-
chical architecture to force each filter to restore a source that
the other filters are not selecting. Although the algorithm in
[5] gives the desired asymptotical results, it is not always
suited to the filters initialization for a given (unknown sys-
tem). In a recent contribution [2], we have proposed a self-
organizingfilters structure using dynamical stability proper-
ties exhibited by lateral inhibition mechanisms used in neu-
ral networks (see the dynamic field theory for the control
of motor behavior for instance [6]). The proposed structure
seems to be quite promising but was suited only in the case
of 2 sources. In this proposal, we extend our proposal by
explaining in depth the role of the lateral inhibitions and
show its interest in the case of changing sources.

2. Problem and simulation setting

2.1. Problem setting

Let us consider source symbols emit-
ted from different locations and observed at the out-
put of spatially distributed sensors. At each instant,
these observations are collected in a -variate vector
viewed as the sum of the sources contributions as in

. In the absence
of noise, the FIR linear deconvolution problem consists in
finding transfer filters such that

restores one source up
to some source permutation, delay and scaling.
The blind extraction of one arbitrary source (with an ar-

bitrary delay) using the CM algorithm (CMA) is possible
if the system invertibility conditions are satisfied (see for
instance [5]). The CMA updating expression is

The use of such an ap-
proach to extract several sources requires to make sure that
the same source is not selected twice, evenwith different de-
lays. This can be achieved using decorrelation constraints
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as in the hierarchical criterion proposed in [5] and in a more
refined way in the proposed approach.

2.2. Decorrelation approaches

All outputs decorrelation based algorithms (see [2] for a
more complete list of references) can be written as:

(1)

where is the gradient
of the correlation between the outputs and , with
estimate of from the data flow.
In the hierarchical approach [5], equals if

and a given constant otherwise.

2.3. Simulations

In the following we explain our approach through simu-
lation examples so that we need to set the simulations set-
ting at once. In the simulations, the filters outputs and the
global impulse responses are displayed1.

Table I : Impulse response of 2-sources / 3-sensors system.

0.0400 0.9359 0.3686 0.7575 0.4756 0.6541
0.7591 0.0907 0.2895 0.8320 0.9996 0.9651
0.5619 0.2927 0.7802 0.7853 0.1786 0.1635
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Figure 1. Hierarchical filters outputs with the
initialization: (a) , , (b)
swapped.

In Figure 1, we can see the hierarchical algorithm out-
puts when the channel is given by Table I when the filters

1The quadrant represents the impulse response between the source
and the output .

ans are initialized by center-spike vectors corresponding
to basins of attraction of the same source (with the non-zero
component at the respective positions 3 and 10 for initiliza-
tion (a) and swapped for initialization (b)). The correspond-
ing global impulse responses are plotted in Figure 2.
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Figure 2. Hierarchical filters global impulse
responses with the initialization: (a)

, , (b) swapped.

3. Self-organizing hierarchy

3.1. Principle

In the self-organized approach [2], the scalar are
adapted so to match the optimal hierarchy and to suppress
the decorrelation terms when no longer required. In the case
of more than two sources, we propose to use,

(2)

where measures the success of the th filter
to restore a source (not restored by others).
One may think of averaging in the values of

. Here is
the maximal error allowed to measure success and is
a decision device, it can be a sigmoı̈d. In that case, if

, then is the winner, so that we set
and . A soft-decision device can

be used with . When one
CMA error is larger than , so that the corre-
sponding will decrease and will be less likely to win.
This is not a problem since we assume that such an error
level is too large for a successful source deconvolution. In
Figure 3, we display the averaged successes (over 100 sam-
ples) in the case of the simulation setting and with
initialization (a). We can see that averaging followed by a



decision rule is not sufficient to decide of a winner before
which is the time required by the hierarchical

approach to ensure being in different basins of attraction in
the same setting.
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Figure 3. Evolution of and

Therefore, we propose to stabilize the decision proce-
dure in incorporating in the update of a feedback sig-
nal from the different neurons outputs at the previous itera-
tion:

(3)
and are respectively the forgetting and acquiring fac-

tors of the integration of the success measure. This compe-
tition rule (3) so called Winner Take All, is based on bio-
logical brain modeling and is represented in Figure 4, [4].

is called the neuron input and the neuron out-
put.
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Figure 4. Competition scheme

3.2. Lateral-Inhibition rule

For more than 2 sources, we need to adapt the (oth-
erwise only one winner is allowed) by taking the decorre-
lation into account. Then, several filters win when they re-
store different sources. We follow the work of [1] to adapt

so to increase inhibition when the two fil-
ters outputs are correlated and not successful. On the oppo-

site, the inhibition from a given source should stop if the fil-
ters outputs are uncorrelated (or sufficiently decorrelated).

(4)

for . is a forgetting factor. is a binary function
defined by if is smaller than a given threshold
, otherwise. The last term of (4), so-called anti-hebbian

term in neural networks, is meant to reinforce the decorre-
lation when the two outputs are correlated and to decrease
it otherwise. The integrated correlation is given by:

. is the forgetting fac-
tor.
Simulations
We compare the filters outputs and the global impulse

responses2 for the hierarchical algorithm and for the new
algorithm.
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Figure 5. (a) Self-organized filters output, (b)
measures of success full line, dotted
line

The simulation setting is , ,
, . First note that the self-

organized algorithm always behaves similarly to the hier-
archical best case. Moreover, with the self-organized hi-
erarchy, the decorrelation term is no longer effective, after
2000 iterations, both filters are updated by CMA only. Ob-
viously the two different sources have been restored almost
perfectly in mean. Nevertheless, the second filter output
(Figure 5 (a)) shows a quite large variance. To overcome
this phenomenon, one may think of introducing a forgetting

2The quadrant represents the impulse response between the source
and the output .



factor (or leakage), or of switching to a decision directed
mode.
Finally in Figure 5 (b), the neuron outputs are displayed.
wins almost instantaneously, and remains at 1. is

first set to 0, being therefore subject the decorrelation con-
straint from the first neuron. After only 1000 iterations, the
two filters outputs are decorrelated enough meaning that the
second filter succeeded in being in a new basin of attrac-
tion. This induces a decrease of the inhibition weight, so
that the second neuron is also allowed to win. The filters
adaptations are then completely decoupled (CMA adapta-
tion only). This shows the relevance of adapting the inhibi-
tion weight.

4. Robustness to sources changes

In this section we want to show on simulations the in-
terest of the new approach when the simulation setting
changes. This can happen when a source disappears or
when a new source appears. We consider the simulation
setting presented in Section 2 where one source disappears
at iteration 3200 and a new one appears at iteration 5300.
The new source corresponds to a binary ( ) source which
contribution to the 3 sensors is described by:

0.421 0.762 0.463
0.544 0.235 0.936
0.291 0.722 0.535
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Figure 6. Self-organized filters outputs.

In Figure 6, we observe that the new approach allows to
keep the extracted sources independently of the filter that
leads a hierarchy. If we call the source that remains all
along, it is extracted by the second filter independently of
the disappearence of the first source and the apparition of
the new source. In the case of the hierarchical approach, a
different scenario may take place: when the first source dis-
appears, the leading filter tries to extract the remaining

and pushes therefore the other filter to 0. The time for con-
vergence to the new setting is much increased and the hier-
archical approach can not compete with the new approach
that has already converged. Moreover, when a new source
appears, the filter extracting is not disturbed too much
(only its variance increases) even if the new source is more
powerful than . Again, this nice behaviour is not guaran-
teed with the hierarchical approach. In Figure 7, we can see
that the outputs of the hierarchical approach, with the two
initial settings. In particular, in Figure 7 (b), the hierarchy
is totally corrupted by the disappearance of one source.
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Figure 7. Hierarchical filters outputs with the
initialization: (a) , , (b)
swapped.

We can see, on Figure 8, that the measures of success are
not disturbed much by the different changes. On Figure 9,
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Figure 8. Self-organized approach: measures
of success full line, dotted line.

the control of the lateral inhibition term is dis-
played with the instantaneous correlation showing how this
term is able to enlight the important changes and decreases
very fast when the filters reach basins of attraction linked to
different sources. When is the only source to be active,



the high level of the inhibition pushes the first filter towards
0, which is a good starting point for the arrival of a new
source.
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Figure 9. Competion parameters: ’.’ instanta-
neous correlation, ’*’ .

5. Conclusion

We have motivated and proposed a new self-organinzing
approach for the blind deconvolution of spatio-temporal
MIMO mixtures. The need for lateral inhibition rules
for the dynamical organization of the filters hierarchy was
shown. The analysis of this approach is very complicated
because of the combined adaptations. Nevertheless, we can
observe, from the simulations, the robustness of the pro-
posed approach to abrupt changes in the mixtures composi-
tion.
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[1] P. Földiák, Adaptive network for optimal linear feature extrac-
tion, in Int. Joint Conf. on Neural Net., pp.401-405, 1989.

[2] I. Fijalkow, P. Gaussier, Self-organizing Blind MIMO Decon-
volution using Lateral-Inhibition, in Proc. ICA-99, France,
January 1999.

[3] D. Godard, Self-recovering equalization and carrier tracking
in two dimensional data communication systems, IEEE Trans.
on Com., 28:1867-1875, 1980.

[4] D.E. Rumhelhart, D. Zipser, Feature discovery by competitive
learning, Cognitive science, 9:75-112, 1985.

[5] A. Touzni, I. Fijalkow, J.R. Treichler, M.G. Larimore, A glob-
ally convergent approach for blind MIMO adaptive deconvo-
lution, submitted to IEEE Tr. on Signal Proc., May 1998.
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