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Abstract: In this paper, a model of visual place cells (PCs) based on precise neurobiological data is presented. The 
robustness of the model in real indoor and outdoor environments is tested. Results show that the interplay 
between neurobiological modelling and robotic experiments can promote the understanding of the neural 
structures and the achievement of robust robot navigation algorithms. Short Term Memory (STM), soft 
competition and sparse coding are important for both landmark identification and computation of PC activities. 
The extension of the paradigm to outdoor environments has confirmed the robustness of the vision-based model 
and pointed to improvements in order to further foster its performance. 
Keywords: Vision, hippocampus, localization, indoor and outdoor landmark-based navigation, neural network.  

 
1. Introduction  
 
Ethological studies of animal navigation show that a wide 
variety of sensory modalities can be used by the animals 
to navigate and to self localize. Among them, vision 
allows a very precise, robust and non intrusive way to 
navigate. Visual information can be used for taxon 
navigation (returning to a particular landmark) or to 
recognize a place from distant landmarks [Gould, 1986]. 
The different models of the biological vision-based 
navigation use the azimuth of the landmarks [Cartwright 
and Collett, 1983; Lambrinos 2000], more rarely, their 
identity or a conjunction of the two [Arleo and Gerstner, 
2000; Bachelder and Waxman, 1994; Gaussier et al, 1995; 
Gaussier et al, 2000].  
The discovery of place cells (PCs) in the rat hippocampus 
and also in primates has emphasized the encoding of 
spatial information and its use for navigation by 
mammalian brain [O’Keefe and Nadel, 1978; Squire, 
1992]. In a first model, proposed in 1994, we showed how 
the learning of a few sensory-motor associations around a 
goal location was sufficient for a robot-like agent to 
exhibit a robust homing behavior [Gaussier and Zrehen, 
1994] when the environment is simple (i.e. open field 
navigation with no need to plan a detour). A central 
hypothesis of our most recent model considers some 
aspects of hippocampal functions as devoted to the 
detection and fast learning of transitions between 
multimodal events [Gaussier et al, 2002; Banquet et al, 
2005]. Hence, static PCs should exist prior the 
hippocampus. Model and experiments show robust PCs 

can be built by simple merging the what and where 
information coming from the visual system. We propose 
the merging could be performed as early as the 
parahippocampal region (in the perirhinal and 
parahippocampus cortex: PrPh). The place recognition 
could be performed in the entorhinal cortex (EC), the 
main source of input to the hippocampus and the dentate 
gyrus (DG), a substructure of the hippocampal system. In 
this view, hippocampus proper (CA1/CA3) could be 
devoted to the learning of transitions between places and 
more generally context learning. A cognitive map 
computes a latent learning of the spatial topology of the 
environment [Tolman, 1948] and can be used to plan a 
sequence of actions to reach an arbitrary goal [Cuperlier 
et al, 2005]. In this paper, we will analyse the parameters 
controlling the robustness of PCs in real environments. 
We will show that going back and forth between robotics 
and neurobiological modelling can help both to obtain a 
more robust and faster place recognition for robotics 
applications and explain why short term memory (STM) 
and soft competition mechanisms are so important for the 
brain functioning. 
 
2. Model Description 
 
This section describes a model of the prehippocampal 
PCs tested on different robotic platforms (Koala K-Team, 
Labo3 AAI, Pionner 3 AT ActivMedia), evolving in open 
indoor and outdoor environments. A spatial constellation 
of online learned landmarks (i.e. a set of triplets landmark-
azimuth-elevation) defines a position in the environment 
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and is learned by a PC. Fig. 1 summarizes the processing 
chain. 
 

 
Fig. 1. Block diagram of the architecture. 
 
Our architecture is composed of a visual system that 
focuses on points of interest and extracts local views, a 
merging layer (PrPh) that compresses what (Pr: 
recognition of the current local view) and where (Ph ,Ph : 
azimuth and elevation) information, and a place 
recognition layer (EC-DG).  
 
2.1. Landmark extraction and recognition 

The first layer of the architecture is a visual system 
autonomously extracting landmarks from a panoramic 
image re-built from a set of classical image [Gaussier et al, 
1997; Lepretre et al, 2000]. An omni-directional CCD 
camera using a conic mirror (Vstone VS-C42N-TR) has 
been recently introduced to speed up the experimentation 
[Giovannangeli et al., 2005]. This camera allows the one-
shot capture of 360° panoramic images. To eliminate 
problems induced by luminance variability, the gradient 
image is the only visual input of the system (a 750×120 
pixels image extracted from the 640×480 pixels panoramic 
image which is originally circular). The gradient image is 
then convolved with a DoG (Difference of Gaussian) filter 
to detect curvature points at a low resolution (a set of 
robust focus points). Finally, a log-polar transform of a 
small circular image centered on each focus point (which 
will be called a local view, somewhat different from the 
concept of local view in hippocampal neurophysiology) is 
computed in order to improve the pattern recognition 
when small rotations, and scale variations of the 
landmarks occur [Schwartz, 1980]. Fig. 2 illustrates the 
landmark extraction mechanism. 
The recognition level Lk(t) of the current local view by the 
kth neuron of Pr (i.e. the recognition level of the kth 
landmark) is merely computed as a distance between the 
exact prototype of the kth learned local view and the 
current local view:  

 
with XI and YI the number of columns and rows of the 

local views, with  the weight of the connection 
between the pixel i,j of the local view and the kth 
landmark (i.e. the kth neuron of Pr), with Iij(t) the value of 
the ijth point of the current local view, and with 

 an activation function that increases 
the dynamics of the responses. 

 
Fig. 2: Illustration of landmark extraction mechanism: the 
gradient of a panoramic image is convolved with a DoG filter. 
The local maxima of the filtered image correspond to points of 
interest (robust focus points) which the system focuses on, to 
extract local views in log-polar coordinates corresponding to 
landmarks. The system also provides the bearing of the focus 
points by means of a magnetic compass. The first column 
represents the identity of the four most activated landmark 
neurons and the second column their activity level. 
 

The learning of a local view as a landmark by a new 
recruited neuron k of Pr occurs in one-shot according to 
the following learning rule (the weight is initially null):  

 
The synapses of a Pr neuron adapt during the one-shot 
learning (at the recruitment, when ), and do 
not change anymore. 

In addition to a what information: the recognition of a 
XI×YI pixels image in log-polar coordinates, the simulated 
visual system provides a where information: the azimuth 
(Ph ) and the elevation (Ph ) of the focus point (absolute 
direction obtained with a compass or any simulation of a 
vestibular system, such as a gyroscope or inertial 
systems). Each neuron of Ph  and Ph  (i.e. the neural 
group giving the azimuth and the elevation of the current 
local view) has a preferred direction and its firing rate is 
given by a strictly monotonous function decreasing from 
1 to 0 with the angular distance between the preferred 
direction and the direction (θ(t),φ(t)) (azimuth and 
elevation) of the current extracted local view. Each 
neuron expresses how near the landmark is from its 
preferred direction.  

The activity of Ph  and Ph  neurons is given by the 
following equation:  

 

 
with  and  the number of neurons in Ph  and 
Ph , and where  computes a lateral diffusion 
around the neuron which preferred direction is θ(t) (i.e. 
the direction of the current extracted landmark).  is here 
a parameter that defines the extent of the lateral diffusion. 
We propose here a simple linear diffusion but other 
diffusions function are possible:  
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with [x]+=x if x≥0 and 0 otherwise. 

Since the visual system provides the position and the 
identity of the landmarks, the landmark constellation of 
the current place can be built. 
 
2.2 Landmark constellation building  
What and where informations are merged in a product 
space by means of a neural third-order tensor of 

 neurons (with  the number of 
neuron in the group Pr), in which each neuron is linked 
to a single landmark-azimuth-elevation triplet (i.e. a 
third-order tensor of pi-sigma units that stands in the 
model for the PrPh connectivity, see [Rumelhart and 
Zipser, 1985] for more classical sigma-pi units). A STM 
(short term memory) enables to remember the merging of 
previous inputs. At the beginning of the sequential 
exploration of a panorama, the STM of PrPh is reset (all 
the neurons are set to 0).  
For each extracted local view at time t, the update of the 
activity of the what and where tensor M(t) (PrPh set of 
neuron) is given as the tensorial product of its inputs if 
the result is greater than the previous activity: 

 (1) 

with L (resp. θ and φ) the vectorial representation of Pr 
(resp. Ph  and Ph ), with the  operator computing a 
tensorial product, and with r(t) a binary tensor in which 
each neuron fires at the beginning of a visual exploration. 
The max operator between two tensors computes the 
tensor having for element the largest element of the two 
tensors. The reset of the memory of a PrPh neuron  
occurs when rk(t) fires. A biologically plausible equation 
of the computation of a max operator could be: 
max(a,b)=a+[b-a]+. In the following, mk(t) is the kth element 
of the tensor M. The use of the max operator is primordial 
since the recognition of a given landmark can occur 
several times during the same visual exploration (due to a 
mistake in the visual recognition for example). Moreover, 
a soft competition can be performed at the level of the 
landmarks recognition between neurons of Pr, allowing 
several interpretations of each extracted local view. Thus, 
the max operator has the property to select the most 
pertinent extracted local view since the last reset (as 
regard to the product between the recognition level of the 
local view and its spatial localisation). In the following 
sections, we will highlight the interest of a more 
sophisticated reset signal to deal with the difficulties of 
the focalisation system to reliably focus on learned 
landmarks, and the interest of a soft competition at level 
of the landmark recognition. 
 
2.3 Landmark constellation building 
The learning of a location triggers the learning of all the 
extracted landmarks based on the current panoramic 
image, inducing the build up of new triplets in the PrPh 

structure that provides a new constellation. We suppose 
neurons in EC-DG (i.e. the PCs) learn and recognize the 
activity of several PrPh units (a what and where 
constellation) as a pattern coding for an invariant 
representation of a location.  

The activity of a PC results from the computation of the 
distance between the constellation learned by this PC and 
the current constellation. Thus, the activity Pk(t) of the kth 
PC can be expressed as follow:  

 
where  expresses the fact that the triplet 
i (i.e. the ith neuron of PrPh) whose activity is mi(t) has 
been used to encode the PC k. The number of triplets used 
by the kth PC is given by  with 

, and with NPrPh the number of neurons in the 
what and where tensor (PrPh). The one-shot learning rule 
of a PC k is computed as follow (the weight is initially 
null): 

 
with Hy(x)=1 if x≥y and 0 otherwise (the Heaviside 
function). The synapses of a PC adapt during the one-
shot learning (at the recruitment, when ), and 
do not change anymore (  otherwise). More 
precisely, the value  is affected to a synaptic weight if the 
input PrPh neurons are maximally activated (when their 
value is 1).  
Fig. 3 proposes an experiment in which 5×5 PCs were 
learned at precise locations in a working room  and tested 
in each learned and surrounded location. A remarkable 
property of the system relies in its built-in generalization 
capability: a PC coding for the location  A responds when 
the robot is precisely in A but also to a lesser degree in the 
neighborhood of  A, creating a continuous and large place 
field around A. The learning of several locations creates 
overlapping place fields and also leads to the paving of 
the space by applying a global competition. A predictable 
mathematical consequence of the what and where merging 
is the following: the shape of the place field is homothetic 
with the size of the environment [Gaussier et al, 2002] (i.e 
the shape adapts to the geometry of the environment). 
The prediction is verified in the experiment of the fig. 11 
(large outdoor environment). On fig. 11, we can see that 
in an outdoor environment, the place field are really 
larger than in an indoor environment. In fig. 11 for 
instance, the place fields have a useful diameter of about 
25 meters, which is almost the size of the environment. 
These results are coherent with the PC-like neurons 
recorded in the medial entorhinal cortices (in the 
intermediate area between the dorsal and the ventral EC) 
of a freely moving rat [Quirk et al, 92; Sharp, 99; Franck et 
al, 2000]. The system has proved to be sufficient in 
structured indoor environment [Gaussier et al, 1997] and 
has exhibited a strong robustness to environmental 
disturbances [Gaussier et al, 2000] when coupled with a 
PerAc architecture of sensori-motor navigation [Gaussier 
et al, 1995] based on location-action associations.  
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Fig. 3: At the top, activities of neurons recorded in the entorhinal 
cortices of a freely moving rat in two geometrically different 
enclosures. At the bottom, activities of 5×5 simulated neurons 
recorded in a working room over about 5×6 meters (wide activity 
field decreasing with the distance to the learned location).    
 

In the following, we will show that, surprisingly, the 
improvement of our system for dynamical indoor and 
outdoor environments leads to propose a more plausible 
model. 

 
3. Information Compression 
 

The use of a third-order tensor to encode what and where 
information is efficient but uses too many resources, and 
is not biologically plausible. The ratio between the 
number of active neurons in the PrPh tensor and the 
number of neurons that are really used by EC-DG is 

globally  where  is the 
average number of different positions under which a  
landmark can be seen (the standard deviation of this 
number is σn). For a good precision,  and  has to 
be high enough (for instance 90 neurons coding for 360° 
in azimuth, 15 neurons coding for 60° in elevation). 
Thanks to generalization, the same landmark does not 
need to get a new code for neighboring positions. So  
can be small: for example 18 different positions of a given 
landmark seem to be a reasonable value: 6 different 
azimuthal directions (angular sector of 60°) and 3 
different elevations (low, average, and high). In this case, 
the ratio between neurons used in EC and active neurons 

was  . 
For the purpose of information compression, it is not 
necessary for the what and where tensor to have so many 
neurons. The maximum number of different positions in 
the visual field where a landmark can be learned 
(correlated to , for example ) and the number of 
PrPh neurons linked to one landmark (i.e. to one neuron 
in Pr) could be the same. But if the connectivity remains 

unchanged, the azimuthal precision is lost. So, in order to 
avoid a lost of place field precision induced by spatial 
discretization, each neuron of the third-order tensor PrPh 
can be linked to a subset of the neurons of Ph  and Ph  
(not only a single input neuron). In this way, the same 
landmark will not be encoded on different spatial 
positions unless these positions are significantly different. 
This property is directly derived from the neighborhood 
connectivity illustrated by fig. 4. 

 

 
Fig. 4: Merging connectivity of PrPh. Each neuron is linked to 
one landmark neuron and a neighborhood of azimuth neurons. 
A single connection from this neighborhood is set to 1.The same 
connectivity exists at level of Ph . 
 
Finally, a precise azimuth (resp. elevation) can be 
encoded by a single unitary connection between a PrPh 
neuron and a Ph  neuron (resp. a Ph  neuron). Thus, our 
merging tensor has a smaller number of neurons, 
whereas the spatial precision remains the same (90 
neurons coding for 360° in azimuth, 15 neurons coding 
for 60° in elevation). Moreover, there is no active neuron 
in PrPh that has not been used by EC.  
More precisely, all the connection weights are initially set 
to 0 downstream the PrPh tensor. The mechanism is the 
same: the learning of a location triggers the learning of all 
the extracted landmarks based on the current panoramic 
image, inducing the build up of new triplets in the PrPh 
structure defining a new constellation. The learning (or 
the perfect recognition) of a landmark now triggers the 
learning of a new triplet landmark-azimuth-elevation (i.e. 
the recruitment of a Pr neuron triggers the recruitment of 
a PrPh neuron). It is linked to the new recruited neuron in 
Pr and to the neurons in Ph  and Ph  which preferred 
direction is the current landmark direction. Since a single 
neuron of each input group Pr, Ph  and Ph  is maximally 
activated (its value is 1), the recruited PrPh neuron has a 
single non null (unitary) afferent synapse from each 
group (defining a triplet landmark-azimuth-elevation). 
Hence, the learning rule of a PrPh neuron j can be 
summarized as follow (the weight is initially null):  
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(idem with Ph  and Ph  instead of Pr, and θ and φ 

instead of L). In this equation,  (resp. 

 and ) is the weigth of the 
connection between the kth neuron of Ph  (resp. the kth 
neuron of Pr and Ph ) and the jth PrPh neuron. Hence the 
activity of each triplet is computed as follow: 

 
 

with  

 
 
 

As only one connection from Ph  (resp. one connection 
from Ph ) has been learned, spatial precision is 
preserved. The compression of the information has been 
possible by providing a learning capability to the neurons 
in PrPh. Finally, unused connections are pruned after the 
learning, to further foster the performance (unused links 
downstream recruited neurons are destroyed). 
This architecture, illustrated in fig. 5 is absolutely 
equivalent to the full third-order tensor (where the 
number of neurons was equal to the product of the 
dimensions of the three input groups). The interest of this 
architecture is to be faster, to use less memory, and at the 
same time to be more biologically plausible. The 
compression could be further enhanced: [Banquet et al, 
2005] foresee that PrPh neurons could be linked to several  
perfectly distinguishable triplets of neurons landmark-
azimuth-elevation from Pr, Ph  and Ph  (landmarks 
should be visually different and encoded in spatially 
uncorrelated place cells). Surprisingly, a more plausible 
model led us to a more efficient and faster system as well 
as trying to optimize the system has promoted the 
biological plausibility of the architecture. 

 
Figure 5: The optimized architecture: PrPh is a compact set of 
neuron defining a place code. Each PrPh neuron defines a triplet 
landmark-azimuth-elevation by means of a single unitary 
connection from each group. 
 
4. Interest of Soft Competition 
In this section, the interest of a more biologically 
plausible competition mechanism instead of a classical 
WTA (Winner Takes All) will be studied to deal with 
visual ambiguities as well as to enhance the built-in 
generalisation capability of the place recognition (wider 
place fields and place fields overlap).  

A first approach to recognize a place is to suppose each 
local view corresponds to a single landmark. When the 
robot is moving from a place  PA  to a place PB, a given 
landmark L can be perceived as two distinct visual 
patterns (L1 or L2). Hence, in PA, the landmark L should be 
recognized by the neuron L1 and by L2  in PB (see Fig. 6). 
As shown on fig. 7, the same problem can happen even if 
the landmarks are on the same plane. Fig. 7 shows two 
landmarks N and M located on the wall of a building, 
learned respectively as L1 and L2 in place PA, and as L3 
and L4 in PB. PAPB is 5 meters long. At the intermediate 
place PC between PA and PB, the recognition level of each 
learned local view is computed. We can see L1 and L3 (or 
L2 and L4) have almost the same activity level and that a 
strict competition induces a random choice of the winner, 
disadvantaging one of the two PCs.  
 

 
Fig. 6:   Learning using the same physical landmark seen from 
two different points of view. The same focus point is the center 
of L1 in PA, and L2 in PB. During navigation, two interpretations 
of the same physical landmark can compete and bias place 
recognition.  

  
Fig. 7:   Learning and recognition of the same physical landmark 
by several neurons.  The  physical landmarks M and N have been 
learned, for two proximal locations (the two northern crosses of 
fig. 10, 5m distant), as different visual patterns (upper figures). 
Hence, in the intermediate location (place C, lower figure), the 
landmarks have two valid interpretations. In location C, the 
activity level of "L2 and L4" for the landmark N and the activity 
level of " L1 and L3" for the landmark M are not displayed since 
they are much lower than the valid interpretations of M and N 
(lower than 0.82).   
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As the PC activity results from the product between the 
recognition level of what and where information (see eq. 2), 
allowing a single winner for the what information is 
equivalent to impose a maximal spatial error for all the 
other interpretations, even if they can be more or less 
valid. Choosing a single interpretation is also equivalent 
to consider that the landmarks corresponding to all the 
other interpretations are not present or not visible. 
Furthermore, the distance between learned prototypes 
shrinks with the increase in the number of encoded 
landmarks. Therefore, errors induced by a strict 
competition become more frequent (classical problem of 
clustering). It seems difficult and not really necessary to 
assign a single label to each local view. Trying to avoid 
the inherent ambiguity of the sensory information seems 
to be a mistake. Only the global behavior of the system 
matters [Gaussier et al, 2004; Maillard et al, 2005]. Instead 
of trying to perform an impossible choice, allowing 
multiple interpretations of the same view seems to bring 
a lot of advantages if the decision making (here finding 
the more proximal place or deciding of the current 
movement), is able to manage this kind of ambiguity in 
the code.  
A solution could come from fixing a recognition 
threshold (RT), under which the neurons would not 
discharge. But it could also be difficult to optimize this 
parameter. Moreover, the more the system encodes 
landmarks, the higher the number of neurons whose 
activity is over this RT will be (so most of these activities 
will correspond to noise). Another simple solution could 
consist in fixing a maximum number of interpretations 
over a safety RT. All interpretations under this RT will be 
considered as wrong. If the system focuses on a novel 
local view, the RT should be able to inhibit a large 
number of neurons. In order to improve the dynamics of 
the landmark neurons output, the activity between RT 
and 1 can be linearly rescaled between 0 and 1. This is 
performed by the activation function . However, 
the distance between learned prototypes will decrease 
each time a new landmark is encoded.  

 
Fig. 8: Room used for the experiments of the fig. 9. Crosses 
represent the learned positions. 

So, the maximal number of valid interpretations has to be 
positively correlated with the number of encoded 

landmarks. The ratio , with W the maximal number of 
winning interpretations and NL the number of encoded 
landmarks, must be higher than a given confidence 
threshold according to the landmark encoding method. 
Fig. 9 shows for instance the place fields induced by a 
strict competition, versus a soft competition. During this 
supervised indoor experiment, five aligned places were 
learned (see fig. 8). Then, the robot went over the line and 
PCs activity was computed at each position. 
Generalization expressed by place field extent and 
overlap is largely increased by using a soft competition. 
Using a strict competition prevents place fields from 
overlapping (see fig. 9). The sparse coding induced by 
soft competition allows place fields extension far from the 
center of the learned place, without reducing the 
precision in its center, as can be seen in biological EC 
place cells.  
Moreover, Pr being thought to discriminate familiarity 
[Bogacz and Brown, 2003], a contextual computation 
would help to eliminate some interpretations that could 
not be valid in the current context computed in Pr itself. 
This result shows another facet of the interest of sparse 
coding in biological systems, instead of simple WTA. We 
also focused on the problem of the visual ambiguity that 
has to be treated since the number of learned locations (as 
well as the number of learned landmarks) will increase 
throughout the life of the robot.   

 
Fig. 9: Place fields induced by a strict or a soft competition 
(indoor env.). PC activities are computed every 2 cm over a line 
of 4.8 m long (see fig. 8). Places have been learned every 60 cm. 
Left figure shows place fields induced by a strict competition. 
Right figure shows place fields induced by a soft competition. A 
strict competition at the level of the landmark recognition does 
not allow a good generalization and place field overlap. 

5. STM in PrPh for Outdoor Environment  

The functioning of the STM in PrPh can also be criticized. 
Indeed, in outdoor experiments, the number of visual 
cues and the probability to focus on the pertinent features 
points was much lower than in indoor environments. As 
a result, the outdoor experiments led to highly unstable 
place fields. Variability was so high that even at the 
position of a learned place, the PC activity could be very 
low (left curves of fig. 11: the same experiment as the fig. 
9 was undertaken in a larger outdoor environment, see 
fig. 10). However, it appears that averaging activity 
curves or interpolating the local maximum would induce 
better results and help to fix the focalisation instability 
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problem. Indeed, the analysis of the neural network 
during performance showed that the unstable place fields 
resulted from a highly variable number of learned local 
views the system focused on at each step. Because the 
images were too complex, the attention control system 
was unable to reliably focus on learned landmarks (low 
probability to retrieve them and therefore to recognize 
them). The question was then: could it be possible to store 
for a while integrated sensorial information (here the 
occurrences of the triplets), in order to increase the 
probality of using this information at each step? 
 

Fig. 10:   Plan of the environment used for the experiment of the 
fig. 11. Crosses represent the learned positions. 
 
Obviously, mammals need not to see, step after step, 
every visual cue in their environment, to be able to 
navigate. Seeing only a few relevant cues, from time to 
time, seems enough to navigate without ambiguity. The 
existence of an extended STM at the level of the PrPh 
tensor would allow to remember what was seen in the 
previous iterations (psychological concept of working 
memory), and could explain why mammals do not need 
to verify step after step the position of each landmark. 
STM in the what and where tensor was previously used to 
store the occurrences of extracted what and where 
information during the exploration of the visual inputs. 
But the tensor was reset before the analysis of each new 
panorama. However, there is no need to reset so often the 
information of each triplet landmark-azimuth-elevation 
since the occurrence of a sensorial information should 
remain valid for a while after its integration (suppression 
of the global reset).  
Hence, PrPh STM was increased in order to deal with the 
sparse or the incomplete exploration of the visual 
environment. We propose here for the reset signal rk(t) of 
the eq. 4 the following rule:  
 

 with  

 
 

 
This reset signal depends on each triplet landmark-
azimuth-elevation, and occurs if the neuron has not been 
over-activated since a given number  of visual 
explorations. T(t) is a binary signal indicating the 

beginning of a visual exploration of a new panorama. T(t) 
was previously used as the reset signal.  
By means of this extended working memory, the place 
fields become more robust and allow a good 
generalization, even in outdoor environment (right 
curves of fig. 11).  

  
Fig. 11: Place fields without (left) and with (right) extended STM 
(outdoor env.). PC activities are computed every 10 cm over a 
line of 25 m long (see fig. 10). Places have been learned every 5 
m. Soft competition is used at the level of the landmark 
recognition. Left figure shows unstable place fields. Right figure 
illustrates the interest of a STM. In outdoor environment, the 
useful diameter of the place fields is about 25 m. 

6. Occlusion and displacement of landmarks 

According to eq. 2, PC activity is a measure of the 
recognition of the whole learned constellation. Yet, three 
landmarks are mathematically sufficient to identify a 
position in the environment. Previous experiments have 
put forward the robustness of the place recognition to 
environmental disturbances that equally penalize all the 
PCs. Landmark displacements and occlusions, inducing 
the removal of a given number of learned landmarks, 
were supposed to equally penalize all the place fields. 
Experiments with a distorted omni-directional camera 
lead us to revise this assumption. Since the spatial 
distribution of the landmark in the different constellation 
can be non-uniform, an occlusion of the visual field can 
hide a variable number of pertinent landmarks for each 
cell. A more robust computation of PC activities must be 
introduced. As no assumption can be made about the 
number of pertinent landmarks in the current landmark-
azimuth-elevation constellation, distance should not take 
into account all the learned points of the place code but 
rather a given ratio. This ratio must be high enough so 
that the computation could average the noise induced by 
each recognized local view (valid interpretation or not). 
This ratio must also be low enough to make place fields 
robust to the occlusions of a given number of learned 
landmarks. Practically, averaging the most active input 
terms of the sum in eq. 2 should be sufficient. PC 
activities are now given by the following equation:  
 

 
 is the ratio of pertinent landmarks necessary for the 

PC computation (25 % of the landmarks in the following 
experiment because 50 % of the visual field can be 
occluded), and  computing the mth maximum in 

. 
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In the proposed experiment of figure 12, the robot learns 
5 aligned places and goes along the line formed by the 
places (in the same environment as in the previous 
outdoor experiments). During learning, a whole 
panoramic image is used. In order to evaluate the 
performance of the place recognition algorithm using this 
new equation, a half panoramic image is occluded after 
the robot has reached the intermediate position. 
Computation of the PC with the STM previously detailed 
(see eq. 4) enables the place fields to be robust to severe 
occlusions of the visual field and to landmark 
displacements. In case of such environmental 
disturbances, the previous computation of the PCs 
activity induced the place fields to collapse whereas eq. 5 
enables the place field to maintain a reliable activity as 
long as the  % of triplet belonging to the constellation 
of a place cell are visible. In a spiking neuron model, it 
would be equivalent to consider that  place cells respond 
as soon as the first incoming spikes.  
Modelling a visual place recognition mechanism that 
deals with landmark occlusions or displacements is a 
hard challenge. Much of the robotics algorithms only 
work under the assumption that the world is static at 
least during learning. Even if incremental SLAM 
(Simultaneous Localization And Mapping) methods are 
able to be used in real time, they are also penalized as 
soon as environmental changes occur. The system 
defined here is able to be run under the assumption that 
only a small part of the visual environment is pertinent, 
the other part being considered as unreliable. Such a 
property should also enable place fields to extent from a 
room to another room separated by an open door. This 
kind of robustness is also primordial in real environment 
where people are likely to hide a part of the visual field of 
the robot. Re-learning strategies are also accessible since 
the system is able to recognize a location that 
progressively changes (for example, if some objects are 
successively added to, or removed from the  
 

  
Fig. 12: Place fields (outdoor env.) with a visual occlusion of half 
the panorama from the intermediate position to the and. PC 
activities are computed every 10 cm over a line of 25 m long (see 
fig. 10). Places have been learned every 5 m. Soft competition at 
the level of the landmark recognition, and STM previously 
introduced are used. Left figure shows collapsed place fields as 
soon as the visual field is occluded. Right figure illustrates the 
interest of a computation that take into account the possibility of 
landmark occlusion: By specifying a ratio of landmarks that has 
to be extracted (here,  = 25 %), the PC activities do not collapse 
as long as this ratio of landmark can be integrated. 

environment). Recent works have shown the interest for a 
robot to progressively adapt to its environment in order 
to navigate for a very long period in the same real and 
dynamic environment [Biber and Duckett, 2005]. Our 
model of pre-hippocampal PC allows a homing behavior 
and generalization of the sensory-motor learning over a 
very important distance (see fig 1). Moreover, our PCs do 
not correspond to the features of PCs found in the 
hippocampus proper (CA1/CA3 region), but rather to the 
characteristics of entorhinal or subicular PC [Quirk et al, 
92; Sharp, 99; Franck et al, 2000]. Our results confirm that 
simple navigation tasks could be performed by broad 
prehippocampal PCs, and that hippocampal PCs could be 
built from a strong competition between these cells (in 
our model, CA3/CA1 neurons predict transitions between 
the current place and the next possible places). 

 
7. Conclusion 
In this paper, it was shown that the interaction between 
robotics and neurobiology leads to introduce more 
biological plausibility in our model, to increase the 
performance and the robustness of the system, and to 
explain the importance of STM and soft competition in 
brain functioning. Experiments of sensori-motor 
navigation, using the PCs architecture proposed here, 
have also been successfully achieved in indoor 
environment. Fig. 13 summarizes the sensori-motor 
mechanism based on associations between places and 
movement around a goal. Generated trajectories as well 
as the theoretical attraction basin are superimposed on 
fig. 14. The system has been intensively evaluated in 
indoor environment, and exhibits a really strong 
robustness to dynamical aspects of the real environment 
(moving people, luminance changing, landmark removal 
and addition, obstacle avoidance...). Outdoor experiments 
have also highlight the interest of a more sophisticated 
attentional system, that would help identifying and 
retrieving more robust landmarks.  
In future models, other visual cues such as distance 
deduced from parallax effects, color and textures 
information, will be taken into account for a better 
characterization of the landmarks. 
 

 
Fig. 13: Principle of the sensory-motor homing behaviour in 
indoor environment. The robot learns a given number of 
locations around a goal and associates the movement to execute 
in order to come back to the goal. 
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In future works, navigation experiments should be 
undertaken in large outdoor environments (more than 1 
km.).  
Our results also suggest that, even in outdoor 
environment, no Cartesian map information is necessary 
for a robust navigation. However, as visual information is 
sometime limited, iodiothetic information could help to 
disambiguate the recognition of complex dynamic 
environments, and allothetic information could help 
maintaining a coherent idiothetic space representation 
[Arleo and Gerstner, 2000; Redish and Touretzky, 1997]. 
But we claim, as opposed to other models of hippocampal 
function [McNaughton et al, 1996], that visual 
information is preponderant. Outdoor and indoor 
navigation has always been studied separetely by most of 
the robotician [DeSouza and Kak, 2002]. 

SLAM methods offer efficient systems for closed indoor 
and structured environment [Thrun, 2002] and 
impressive robustness when coupled with vision-based 
localisation that enables to deal with the correspondence 
problem [Andreasson et al, 2005], but these technics 
would encounter accuracy problems when confronted to 
less structured outdoor environments. Outdoor 
navigation is a more broad problem covering rough 
terrain exploration [Chatilla, 1995], GPS based navigation 
(DARPA Challenge), cartesian elevation map for safe 
navigation in rough terrain, safe unmanned vehicle 
guidance in urban environment [Royer et al, 2005], road 
or path following. All these applications are really 
different from the concern of indoor navigation. For a 
long time, the field of biomimetic navigation has been 
considered as marginal from the robotic view point, but 
offers a relevant issue to reconcile outdoor and indoor 
navigation as illustrated by our work and a few others 
[Prasser et al, 2005].  

Since the different biomimetics modelizations are 
segregated by the cognitive complexity of the task and 
not by the field of application [Franz and Mallot, 2000],  

 
Fig. 14: Real trajectories of homing in indoor environment. 8 
places (black circles) are learnt at 1 m from the goal (size of the 
square of the floor). The theoretical place fields are superposed 
with the plan and the trajectories. The behavior of the robot is 
coherent with the theoretical attraction basin. 

this field of the robotics on one hand provides an 
essential evaluation platform for neurobiological and 
psychological model and on the other hand offers a 
different yet pertinent approach to robotic system design. 
Videos are available on:  
http://www.etis.ensea.fr/~neurocyber/Videos/homing/index.html 
 

Appendix 

Pano. is the size of the panoramic image. Deriche is the 
classical parameter A of a Deriche gradient computation 
used in the experiments. Dog. σ1, Dog σ2 and  Dog size 
define the DoG filtering window used to extract the focus 
points. Radius is the radius in pixels of the extent of the 
log-polar transformation (radius of the circles on fig. 2). 
Nb. Int. is the number of allowed interpretations in the 
computation process between the landmark neurons. The 
other parameters are defined in the paper. 

 
Param. Fig. 9 Fig. 11 Fig. 12 

Pano. 1500×240 px 1500×240 px 750×120 px 
Deriche 0.8 0.8 1. 
DoG: σ1 3 px 3 px 1 px 
DoG: σ2 4 px 4 px 2 px 
DoG: size 15 px 15 px 5 px 
XI×YI 32×32 px 32×32 px 16×16 px 
Radius 40 px 40 px 20 px 
Nb. Int. 4 4 4 

1 0.33 0.33 0.2 
2 ∞ ∞ 1 

G  Linear linear Gaussian 
δ : STM 0 4 4 

 1 1 0.25 

Tab. 1: Parameter used in the experiment of fig. 9, 11, and 
12.  
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