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Abstract

In this paper,we proposea hovelneural architecturenamedPerAcwhichis a systemetiavay to
decomposthe control of an autonomousobot in perceptionand action flows. Wefirst present
an applicationof the PerAcarchitectureto the simulationof a vision systenwith a movingeye.
Thenwe proposea secondapplicationwherethe robot learnsto return from any starting place

to a previously discovered and learned position without any a priori symbolic representation.
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1 Introduction

Realization of neuratontrolarchitectureshatallow anautonomousobotto behaveasa rat or simpler
asanantis a greatchallengein Artificial Intelligence.Trying to createanimals-likerobotsis basedon
old cyberneticsconceptsof self stability and homeostasyBut this kind of animal robotscan only be
vegetative To bereally autonomousthey haveto be ableto choosebetweendifferentbehaviorsandto
accesdo a certainform of freedom[McFarland94].Designingsuchmachinegequiresto be interested
in cognitivescienceandmorepreciselyin neurobiology ethologyand psychology Indeed,neurobiology
providesinformationaboutwhat the atomicelementsof anintelligent systemcanbe,i.e., a modelof a
formal neuron[Rumelhart86]or of a cortical column [Burnod89]. It also puts forward the needof
having physiological data about the bramchitecturgVan Essen83]On anotheievel, psychologyand
ethology are useful because of their description of brain functiondllitieisman88jandtheir measures
of quantitativebrain performancesSucha frame is very importantto point the directionsin which
engineersnustadvancen orderto build machineghat oversteptheir actuallimitations. As a matterof
fact, mostof today’srobotscomputetheir actionsfrom their perceivedinput by usingmodelsof their
environmentand are not able to imagineother modelswhenthey getin an unforeseersituation. They
give pretty goodresultswhentheir environments adaptedo their work but they arealmostblind in a
naturalworld: Too much datato analyzesaturatethe analysiscapabilitiesof their “ logical” brain.
Moreover, in the industrial domain too, each new model of arm manipulator neechtalélizedbefore
planningto useit to manipulateobjects.Would it not be moreinterestingto havethemonly learntheir
task?

In this paper,we will presentan autonomousmobile robot namedPrometheughat can learnto
returnto an interestingplace(its goal) in an unknownenvironmentThe N.N. structureof Prometheus
“ brain” is based on the idea that Prometheus is intended to be in interaction with its environnirent like



the enactivismparadigm[Maturana87],[Stewart91].Contraryto an expertagentthat knows how to

reply to an arbitrary question about navigation problems or objects manipulation for instance,
Prometheuss just somethingthat learnsto agreewith its environmentandits internal motivations.lIt

hasno global or completerepresentatiomf its world. What is storedin its “ memory” is only what
needsto be learnedto act correctlyin a particularsituation. Shouldthe universecollapse,the robot
memory would have no more meaning.

In the first part, we will exposevision problemsthat appearin the task of recognizingmarksin a
sceneandthekind of informationthat Prometheugxtracts Next the visual informationwill be usedto
guidetherobotin thedirectionof its goal. Theseapplicationconstraintdeadusto searchor asregular
and simple as possibleN.N. structures.They are broughttogetherin the PerAc (Perception-Action)
architectureand concept(fig. 1) which is inspiredby works by Albus[Albus91], Burnod [Burnod89],
Brooks [Brooks 86], Carpenter and Grossberg [Carpenter87] and Edelman [Edelman87].
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Figure 1: The concept of PerAc architecture to control autonomous robots and one PerAc unit bloc in bold.

PerAcis a systematicneural structurethat allows on-line learning. It involvestwo datastreams
associatedrespectivelyto perceptionand actionsin each part of the robot controller. From each
perceived input, we suppoge canextractreflex informationto controldirectly the robotactionlike in
the behavioristparadigm.But thereis also a mechanisnto recognizethe input patternthat can take
control of therobotactionandavoidthe reflex pathway.Both mechanismsanbe controlledby a small
numberof internal motivationsthat influencethe neuralactivity andthe weight modificationlaws. For
instancea pain signalcanprovokean increaseof the randomactivity of the neuronswhich allows the
robotto quickly escapeeflex solutionsandto explorethe whole action possibilities.In sucha phase,
therobotseemso bereally stressedike aratin a skinnerbox whenelectricshocksare usedto force it
to discoverandto learna particularbehavior.In the sameway, pleasurancreaseghe robot vigilance
and allows it to learn what seemsto have beenthe causeof the pleasuresignal [Gaussier94a],
[Gaussier94b].

Prometheus’ ‘brain” is made of two PerAc unit blocks whidtinctionexactlyin the samemanner.
The first one performsthe visual sceneanalysiswhereasthe secondone is concernedwith target
retrieval.In eachPerAcblock, motor and perceptiveflows are processe@dndrecombinedhroughfour
groupsof neuronsrepresentingnput and output of eachflow. We will show that the problem of
learningto recognizeobjectsor scenesandnextto returnto a previouslydiscoverednterestinglocation
canbe achievedwith only two PerAcblockspush-pullyconnectedo eachother.We will emphasizehe
importanceof the choiceof a coherentneuralcodethat can be appliedto codethe Prometheuseye
saccadesind the direction of PrometheusnovementsAt last, we will concludeby showinghow this
architecture can be generalized to other tasks.

2 A Neural codeto control autonomousrobots

Well known studies in psychologuggestshatanimalsareableto useobjectsin their environment
to locatethemselvesTheseobjectsarenamedandmarks For instance Morris [Morris75] proposecdan
experimenin which a ratis trainedto swimin a tank towardaninvisible platform. Fixed markson the



walls of the tank are visible from any point in the tank, and they constitutethe only information
availableto the rat for its localization.Otherexperimentsdby [O’Keefe 89] showthat a rat canfind a
goal in a maze by using landmarks such as usual objects (a light, a marker pen, a towel ...).
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Figure 2: example of a landmarks configuration that the robot can use in a localization task

Moreover, both theseexperimentsshowthat hippocampugplays a major role in this work. They
have found that particular cells in the rat hippocampusrespondmaximally when the rat is at a
particular position and that their activity decreasess the rat is displaced.lt seemsalso that this
responsealoesnot dependof the rat orientationin its environmentThat meansthe rat mustbe ableto
translateall its visual informationin orderto presenthemall the time in the sameorientation.Ilt must
use somethinglike a switching mechanismhat can be modelizedby sigma-Plunits [Rumelhart86],
[Koch85]. The samemechanisncould also explain the capability to recognizean object whateverits
orientationis. It has beenshown that the visual recognitiontime dependsof the angular variation
betweenthe learnedobject and the presentobject [Farrah88].So, we can imagine such a switching
mechanisnthatwould rotateobjectsto simplify their recognitionandanotheronethat would be usefull
to build a scene representation that does not depend on the eye or head poshmredeserto code
the movementcommandof the robot andits eyein polar coordinatesEachneuroncorrespondgo a
particular movementrientation.For instancethe ocularsaccadearerepresentedsvectorsassociated
to a grid of neuronsthat represents32 orientationsand 32 intensity of possible movements.The
direction of the robot movementsis also expressedn the same coordinates.That simplifies the
connecticproblemsof linking severalneuronsgroups. Indeed, the retinal image directly provides
information to activate an eye saccadic movement in the retinal coordinate and fwosskithe goal
tracking by the robot itself. The quantizationprecisionis not really important becausethe use of
probabilisticneuronsallows to make movementswith a precisionthat dependonly on the sampling
time. For example,jf therobotcanonly moveforward or 90° left or right, it canmovein the direction
of 25°if theleft-neuronis activatedrandomlytwice morethanthe straight-ahead-neuroithe precision
of sucha probabilistcontrol canbe very efficient andseemgo explainhumanandanimalmanipulation
precision[Georgopoulos89]Simplereflexescan be easily constructedo control the ocular movement
in thedirectionof “ something’ in theretinalimageandin the samemannerto force the robotto move
in that direction (fig. 3).
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Figure 3: representation of a reflex link in the motor flow of the PerAc architecture



Now, we haveto find how to recognizdandmarksandto extractangularpositionfrom a landmark
to another one to build the first part of the robot control.



3 Visual scenerecognition

Prometheusvisual systemtriesto solvethis problemby emulatinga movingeye.lts own taskis to
learn severalobjectsand to recognizethemin a scene wherethey can be scaled,rotated,deformed,
occludedor noisy. Thefirst importantfeatureof Prometheushatallowsit to solvethis problemis that
it has a limitedvision of the scenelt cannotseeall the objectsat once.lt needg¢o moveit eyefrom one
objectto the other. This limitation requiresto havea sequentiafunctioning which simplifies learning
andrecognition.Indeed the taskto locate" where” is the objectis now independantdf thoseconcerned
with deciding” what” the objectis. Sucha mechanismis consistenwith neurobiologicaldataabout
temporal and parietal areasin the brain which are involved in those specific tasks [Burnod89],
[Gilbert83].
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Figure 4 : General architecture of the vision system

Prometheus’ ‘brain” has severatortical areasassociatedo the primaryvisualareasto thevisual
recognition,to the motor control of the ocularsaccadeandto the associatiorof visualinformationand
motor information (fig. 4) [Gaussier92a][Gaussier92b].We distinguish two connectedlevels of
processing. The first one is involved in low level processingntigissivelyparallel.It extractscontours
of the image [Grossberg85]which are diffused to obtain local maxima that correspondto the
characteristigpoints that draw the robot attention[Seibert89],[Watt83]. The secondone processesa
statespacetransformatiornof the input picture,i.e., a log-polar transformationSchwartz80]which is
tolerant to rotations and changes of scale but very sensitive to shifts in positions. i¢éstmvhy we
prefer the robot’s eye to focus its attentionon a corner than on the gravity centerof objects.For
instancewith the secondsolution,if the objectis occluded the positionvariationof the objectgravity
centeris terrible and makesrecognitionimpossible.With the first solution, if the robot focuseson
angular zone, it risks only to losdeav focuspointson all thefocuspointsusedto recognizethe object.
The sequentiabbjectexplorationis thena goodtrick to provideredundancyand movemeninformation
to help the recognition.To sum up, two datastreamsare presentin Prometheussision system:one
perceptivewhich identifies the contour image aroundthe focus point, and one motor which guides
ocular saccadesBoth interacton eachother. The schedulingmemory of the local recognitionsand
actionscanexplainattentionalprocesseshatleadusto first exploreone possibility before* thinking "
to the next one.

The local visual interpretationis performedthrough a mechanismthat simulatesthe mental
rotations.A motormapis usedto controlthe eyemovement®r the focusof the attentionin association
with the visual recognition.Both visual and motor dataare joined in a kind of “ frontal area” where
temporalintegrationis usedto recognizesequencesl hey definea sub-symbolianentalrepresentation
of the studiedobject.Recognitionof an objectconsistan usingthe samescanpathduring learningand
during the utilization phaselt somewhereémitateshumanbehaviorin front of an“ unknown” object
with the simulationof ocular saccadeg§Norton71] and with a similar recognitiontime to recognize
objects which have been rotated a lot [Farrah88].



Due to thoseconsiderationsPrometheusVision systemdoesnot needany complex hierarchical
structureto recognizeobjects.Moreover,the objectconceptin Prometheuss not linked to the needto
analyzea closedregionin theimage.An objectcanbe composef severalisolatedpieces.So a scene
with all or a part of its mostrelevantobjectscanbe consideredas a single object. Its recognitionwill
dependbn the robot'scapabilityto recallthe scanpathusedduring learningto go from onefocus point
belongingto one pieceof objectto the nextone.We havechoseno useanglesbetweenedgesasfocus
points. From the contourimage,we usea sort of OFF-Centercell (fig. 5) that providesa maximum
responsevhenthereis a sharpcornerin the neighborhoodA competitionmechanisnidenticalto those
used to extract edges is used to find feature points at a particular resolution.

Figure5: a) Thefilter usedto find corners:it is the differenceof gaussiamrmask:a OFF-Centercell. b) an
example of feature point extraction on contour image. Big black dots represent features points

In addition, Prometheugerceivesthe optical illusion depictedon fig. 6 if we considerthat the
perceptionof segmentlengths and line discontinuity is due to eye movementsfrom one segment

extremity to the other.

Figure 6: examplesof optical illusions explainedby boundarydiffusion (Muller Lyer's and Poggendorff's
illusions)

During training, the robogxtractsthe characteristigointsin the sceneandit performsaninvariant
transformationfrom eachof thesepoints. During the interpretation,the robot focusesits eye on a
characteristicpoint (a corner), it performs an invariant transformation(i.e., a polar logarithmic
transformationandthena mentalrotationto matchthe presentargetwith the learnedrepresentation.
To completeits interpretationor to removeany ambiguity, the robot focuseson the othercharacteristic
points usedduring learning accordingto learnedsaccadicmovements(fig. 7). Objectscan thus be
recognizedn a real sceneevenif they are partially occludedor rotatedor if thereis noise.At last, a
mechanisnof time integrationis introducedto simulatea shortterm memory.Thanksto it, Prometheus
will be able to interpret a particular area according to the previous interpretation.
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Figure 7: Functioning of Prometheus.Four neural groups are involvefig$yePrometheu$ocusests eye
on oneof the cube'svertices.The ocularsaccadet will performis dueto the combinedactivationof one
neuronin the local recognitiongroup and a neuronin the proposedeye movementgroup. The performed
saccade thus corresponds to the one learned when exploring this cube's vertex for the first time.

When a characteristigpoint has beenchosen,an inhibition mechanismpreventsthe robot from
choosingit all thetime. However,a problemremains.The pointsto inhibit arein {log(p),0} spaceand
whenthe robot changests focus points, it losesthe origin of the transformationSo, thereis a new
mappingin the statespacelf we performa simplefeedbackit is not the neuroncorrespondingo the
previous mapping which will be inhibite@onsequentlywe assumehatthe brainhasa mappingof the
pictureexpressedh rectangulacoordinatesThis spacemustbe like aninternal universeandwe also
needan inversepolar transformationFor details,see[Gaussier92b]The completearchitectureof the
vision part is shown on fi@. Eacharrowrepresents link betweertwo groupsof neuronsThe arrows
crossedby oneshortline represenbne-to-oneneuronlinks whereasthe arrows crossedby two short
lines represent one-to-all neurons links. Commonlyoptieeto-ondinks arereflex pathwaygfig. 3) and
are considered as unmodifiables as in classical Pavlovian conditionning.
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Figure8: The PerAcarchitecturefor visual sceneinterpretation Eachblock is a group of neuron.Thereis
topologypreservationn Local Vision, featurepointsand Eye Movementgroups.Local recognitionand Eye
movement are WTA.

The eyemovemenigroupis a topologicalmapwith a WTA (Winner TakesAll), with inputin the
perceptiveand motor flow: the position-of-feature-pointgroup proposesa movement,and the local
recognitiongroup is associatedo a given movement.This latter group has beeninplementedwith a
WTA but a Probabilistic TopologicalMap (PTM) [Gaussier94afould be usedadvantageouslyor
local recognition.Thereis a global recognitiongroup, which learnswith the help of a teacher,and
which works accordingto a counterpropagatiomlgorithm [Hecht-Nielsen87].However, it doesnot
belong to the studied unit block and it is not necessary to solve the complete robot task.
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Figure9: a) Learningof a key labeledasobject0. b) Observatiorof a complexscenescanpathof the eye
(ocular saccades) and interpretation of each zone pointed out

4 Target retrieval using landmarks

The local visual recognitionandthe information aboutthe ocular movementsan be joined to provide
information about ‘what” the landmarks are andwhere” they are from each other. Simple product or
logical AND neuronscanbe usedto mergethosedifferent informationtype in a map of neuronsthat
reactsonly if a particularlandmarkis recognizedat a particularplace (fig. 10). Moreover,this model

seems to be biologically plausible and to agree one part of the hippocampus architecture [McNauton89],
[Zipser85].A shortterm memoryrepresentedby recurrentpositive feedbacklinks is usedto obtaina
spatialimageof the positionof the differentlandmarksin the observedenvironmentirom the sequence

of input activation.Next, a simplediffusion mechanisnallowsto usethe topologicalinformationabout
ocularmovemento matcha learnedpanoramicpatternwith the presentoneevenif the anglesare not

exactly the same.
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Figure 10: Recombination of visual and motor flow as an input to the Place Fields Cells

At the beginningwe supposd’rometheusnovesrandomlylooking for somethingnterestingWhen
it finds “ food”, it first eatsone part of it thenit movesaroundit to learn the food direction from
particularlocationswhat is the movementneededto go in the food direction. Later, when the robot
wantsto find “ food”, it considergheinformationof the placefields associatedo the food andgoesin
the directionassociatedo the mostactivatedplacefields (competitivemechanism)Thus at eachtime
step,the distanceto the targetis reducedfig. 11) andit is boundedo returnto the learnedposition of
the food.
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Figure11: Local explorationaroundthe targetrepresentedby the large black circle. The agentrecordsat
certain points (representedby small circles) their relative position to the landmarks (representecdoy
squares) and the direction to the target.

The learning phaseis more complexbecauset is an unsupervisegnd an on-line processWhen
Prometheusats” food”, it triggersa reflex which allows to somehowcircle aroundthe food at a
certain distance,in order to visit evenly placedlocationsaroundit. At eachof thesewell chosen
locations,a placefield learnsthe relative position of the robot to the landmarks,and the direction
headingtowardsthe target(fig. 12). We proposehereto detail the neuralnetwork usedfor landmark-
basednavigation (fig.13). We focus mainly on designingthe simplestarchitecturefor the desired
behavior.As in the vision part, four neurongroupsare involved, all are TopologicalMaps. Two one-
dimensionalmaps are usedto representmovementdirections and one two-dimensionalPTM for
localization,i.e. placecells. Thereis an internalrepresentatiomf the world expressedn a referential
independento the robot’s orientationwith respecto its surroundingsAs a consequencdwo groups
are usedfor movementsbecauseone must correspondto movementdirectionswith respectto an
absolutedirection and be associatedo localization, while the other correspondso the movement
actually performed by the robot, which means that it takes the robot’s orientation into account.

a) b)
Figure12: a) Local explorationaroundthe targetrepresentetby the largeblack circle. The robotrecordsat
certain points (representedby small circles) their relative position to the landmarks (representecby
squaresiyndthe directionto the target. The numberscorrespondo the place-fieldnumberin its neuron
group. b) Different trajectories.The Place-cells(PC) are indexedby their order during exploration.The
Voronoitessellations representedy thethick lines, the landmarksby the rectanglesandthe targetby the
inner circle. The large circle representghe limit beyondwhich the targetis not perceived.Thin lines
represent trajectories from various starting-points.

Whena movementirectionis selectedthe robot makesone stepof given lengthin that direction.
The input to this network are the north direction, and the food and landmarkspositionsin the robot's
visual space We assumehat a compasss available.lt could be replacedby a vestibularsystemor a
gyroscopic mechanism that would produce low precigifsrmationaboutthe body orientation(a local
landmarkcould also be usedbut it would reducethe generalizationcapabilitiesof the robot to very

distant situations).
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Figure 13: The navigation neural network. SR isSkeneRecognitiongroup.lts inputis the Global Visual
Input groupwhich correspondso the LandmarksRecognitionassociatedo the Eye Movement.The Robot
Movementgroupis a WTA. Whenthe food is visible (Food Proposalgroup), the chosendirectionin RM

correspondgo the food position, becauseof high-valuedone-to-ondinks betweenRMP and RM groups.
TheRM’ groupis alsoa WTA andit correspondso the RobotMovementin the environmentWhen Goal
achievemenis activated It activatesthrow a high intensityreflex a particularneuronin RM’, causingthe
robotto turnin a givendirection, thusgiving rise to ellipsoid trajectories.The black rectanglesepresenta
shifting mechanisnusedeitherto providean invariantrepresentationf theinput, or to transforminvariant
representations into extracorporal ones. Pleasure is emitted when the fosigls. ib worksasa chemical
substance emitter, and increases learning throughout the whole network.

Justas for humansand most mammals,we assumethat the immediatevisual angleis limited.
Thereforefood is perceivedonly whenit is locatedin a given orientationaheadof the robot. The same
goesfor the landmarks but we assumeahat whena position must be recorded Prometheusotatesin
orderto seein all directions.This supposeshat whenexploringa scenejt can makeocularsaccades
and moveits headas well, thus spanningthe whole surroundingspace.The functioning of the neural
network is easierto understandby starting from the end, that is the one-dimensionaheural map
correspondindo the movementsWe usedtwo differentmaps,becauseahe “ exploration” reflex must
activatea “ turnleft by a certainangle” from the actualangularpositionof PrometheusOn the other
hand,learningof placecells andof associationsnustbe learnedin a fashionwhich is independentn
that position, thus producing an internal representatiorof the robot’s world. Indeeda place cell
representsa position in space,and not an orientationof the robot. Therefore,its activation should
depend only on Prometheus position, whichbtainedby usinga shifting mechanisnsimilar to the one
describedabout vision. In the samemanner,the first WTA should record directions of movement
independent of the robot’s direction.

Whenfood is in sight, a neuroncorrespondingdo its angularpositionrelativeto the robot’s facing
position is activated ithe FoodProposaMap. The shifting mechanismactivatesa neuronin the Robot
MovementProposaby addingan anglecorrespondindo the anglebetweenthe robot andthe north. If
there is pleasure at that moment, a place cell learns the invariant landmarks @ogitioaassociation
with the movemenin RM dueto thereflex link from RMP. The inverseshifting mechanisnis applied
to the outputof that group, by substractinghe sameangle. This activatesthe neuronin the effective
RM’" map which corresponds to the actual movement to be performed by Prometheus.

The achievement dherobotgoal (to eatfood) triggersa movementeflex thatremainsactivefor a
certainamountof time. The provokedtrajectoriesafter reachingfood thus take an ellipsoidal shape,
which endsafter a while. As soonasfood is in sight (given a limited visual angle)the position of the
landmarkds recordedThis supposeshatwhenpleasurds active,therobotmovesits “ head” in order
to see landmarks in all possible directions.

We have implementedthe neural network describedabove on a Kheperarobot. Due to the
tremendousomputingtime required,we simulatepart of the input. We assumethat the position of
landmarks is known, and we compute with wheel-odometrpak#ionof the robotandwhereit should
seethe landmarksandfood. Whenthis learningphaseis over, it becomegossibleto launchthe robot



from a place where it is not supposed to see the food, and it appears fromHatitldlwaystakesthe
right direction, whateverits starting point (fig. 12). The distancefrom the place fields' recorded
positionsfrom which the robot canbe launchedyrowswith the angularresolutionandwith the width of

the diffusionappliedto theinput. More realistictrajectoriescanbe obtainif the movementis performed
according to a probabilistic vote rather than a determinist WTA mechanism.

5 Conclusion

All theseexampleslead naturally to the questionof the definition of emergencecentralto the
constructivistparadigm[Maturana87]in which it represent&n alternativeto the classicalcognitivist
paradigm[Lakoff87]. At first sightit correspondso the applicationof the holistic principle -the whole
possessefeatureshat cannotbe foundin any of its subcomponentshut thereis no clearundiscussed
definition of emergenceNeverthelessywe have given severalexamplesof phenomenavhich exhibit
some kind of emergenceas the featuresof those systemscannot be explainedby any of their
components.

In learning with neural networks,we have two examplesof holistic phenomenaln the vision
application,the systemin which emergenceappearss the vision systemplus the imageitself. The
approachis basedon Gestalt Theory, accordingto which the image as a whole contains more
informationthanits parts.This includesall the possibleambiguitiesand opticalillusions which are not
presentin subcomponentsf the image. Moreover,the optical illusions are due to the vision system
performingits operationson the image.This is a good exampleof a structuralcoupling betweenthe
systemand its “ environment cherishedby [Maturana87].All theseexampleswhich by no means
pretendto proposea clear definition of emergenceat leastshowthatit is necessaryo setup global
solutions to cognitive problems. One cannot be content with studying only a function to be
approximatedpr the behaviorof a single processingelementsinceit cannotbe known a priori which
role or how important this elementshould be in the whole system.Moreover, by studying only
subcomponents, one loses the opportunity to use the important dynamics of the system [Gaussier94b].

Throughoutthis paper,we haveinsistedon the importanceof active perceptionWe have shown
that using action simplifies the interpretationof perception:eachactionis a choice and conditions
entirely the future of the robot. The greatestadvantageof this type of approachis that it makes
cognition sequential, therelayoidingthe possibldargeduplicationsandrelaxationmechanismeeeded
by massivelyparallel systemssuchas the connexionistsystemsproposedby Feldman[Feldman85Jor
by the PDP group [Rumelhart85].

Prometheusprovesthat a complete autonomousnavigation systemhas no need of an explicit
symbolicrepresentationhigh level capacitiesuseall the emergenphenomenalueto the lower levels.
Therobotlearnsto categorizéts externalworld accordingto whatis relevantto “ him” andnotto us.
The informationit storesdependsonly on its action capabilitiesand on its perceptionof the world's
complexity.Prometheus' brain” architecturas summarizedn fig. 14. The PerAcblocksof which it
is madeappearto be a kind of basic building block and a systematictool to combine motor and
perceptiveinformation. In addition,the PerAcarchitecturetakesinto accountthe dynamicalaspectof
the robot'sbehaviorand solvesrobot control problemsin which “ autonomy’ is neededindeed,Perac
architecture relies on the postulate that the recognition of any cie samplified if the systemcanact
on it. This justifies to cut any perceivedcue into two parts:a) a motor part which is the resultof a
hardwiredconventionalprocessingand b) a cognitive one which proposesto learn/recordimportant
situationa to allow a quicker adaptation of the system's response.
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Figure14: The global neuralnetworkfor visual scenerecognitionand navigation.It is madeof two PerAc
blocks, the first one for vision and the second for navigation.

Next, our model proposesan alternativeto the classicalschemeof hierachical classification
becausewe proposeto integratenot only static recognitioninformation but also motor information
providedby the input cue or/andthe local recognition.For instancen the recognitionproblemsor in
the classificationof high dimentiondata,a commonlyacceptedmethodfor avoiding to lose topology
information consists in classifying local features before taking the results as inputs to high€efFhatels.
constitutesa bottomup architecturewith a pyramidalshape:the higherthe level is, the lessthereare
nodesto codethe more abstractinformation [Linsker86], [Fukushima82](fig. 15). From this point of
view, the PerAc conceptallows to reducesignificantly the numberof levels from the real world to
“ sufficiently” abstractevels. For instancejn the vision systemwe haveonly two levels:1) low-level
processing and 2) global object recognition.
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figure 15: a) classical pyramidal structure for hierarchical classification. b) PerAc structure (less levels)

To realizethe samekind of task,FukushimgFukushima82heedsa numberof layersthatdirectly
depend®n the invarianceexpectedn its imageanalysis.In PerAc,the reductionof task complexityis
dueto thea priori knowledgewe introduceaboutthe natureof the inputimageandaboutthe relevance
of the focuspoint. But thata priori informationhasnothingto do with the one neededby methodsof
recognition by modelization. As a matter of fact, here the information can be explained by the
ontogenesi®f the systemand by the fact that we supposehat input havetheir own topology andthat
simple competitive/cooperativenechanismsan always be usedto locate important featuresin any
perceiveccue.Moreover,our modelagreeghe motortheoryof speechrecognitionwhich postulatesve
recognizespeechsignalsby trying to imitate the heardsound.The informationusedfor the recognition
is in that casethe sequencef articulationsneededo imitate the sound.It is obviously more variable
than the original sound and it must take into account the mechanical limittiomsphonatorysystem
aswell as of our knowledgeaboutthe possiblesuccessiorof actionsthat could producesintelligible
words and sentences.

Clearly, the PerAc or any other neural architectureis nothing without a good model for all the
neural groups involved. This is the reasonwhy we believe it is really important to progress
simultaneouslyin the designof interestingneuralgroups,in our casean on-line learningtopological
map, andn the architecturgo usethem.See[Zrehen94]in this sameconferenceThis researctprocess
shouldlead to define an explicit parallel langageto “ program” animal robots with adaptationand
autonomy capabilities.

Futurework will be concernedwith finding waysto optimize the architectureparametersand to
extendthat kind of networksto more complextasks,alwaysrelying on the constructedevel to obtain



the next. A specialstresswill be put on introducinggoal generatiorand resolution[Burnod89]andto
improve the cheaplfmbic systent’ we use for modeling internal motivatiodmdeed,it is the elementn
the robot's artificial ‘brain” that influence most the overall behavior.
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