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Abstract 

In this paper, we propose a new neural architecture called PerAc witch is a systematic way to decompose the 
control of an autonomous robot in perception and action flows. The PerAc architecture is used for the simulation of 
a vision system with a moving eye and then for landmark-based navigation on a mobile robot to learn without any a 
priori symbolic representation. 
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1. Introduction 

Our  main goal is to show how biological data 
from neurobiology and behavioral ethology can 
help to imagine simple neural models that ex- 
plain complex behaviours commonly observed on 
animals in their environment.  From the engineer 's  
point of view, this approach leads to a lot of 
questions. If  the problem is for instance to allow 
a robot to get from one point to another  or more 
simply to return to an interesting position (our 
application) why not " just"  trying to find a good 
algorithm that solves that task? After  years of  
underest imation of the difficulties arising from 
such problems, classical Artificial Intelligence 
(AI) has evolved and now proposes technical so- 
lutions for those tasks [1,2] that are very different 
from the first motivation of imitating human in- 
telligence. These recent successes seems to be 
linked to the forsaking of the top-down approach,  
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in favour of more  bot tom-up architectures. For 
instance, multi agent systems rely on pre-emption 
mechanisms that solve conflicts when different 
modules lead to contradictory conclusions ([1], 
subsumption [3,4]). What  allows those systems to 
run correctly is not always the soundness of their 
theoretical background but the engineers '  prag- 
matism who succeed step by step to solve the 
problems arising from the connection of low level 
processing (such as robot calibration, image seg- 
mentation,  matching techniques . . . .  ) with their 
high level counterpart  (focus of attention, object 
recognition, path planning . . . ) .  The symbol 
grounding problem [5] can sometimes be solved 
for well defined applications but the price to pay 
is the use of a lot of black boxes that contain an 
ad hoc and hidden expertise of the engineers for 
each problem encountered.  All the expertise de- 
veloped in robotics has brought  a lot of special- 
ized algorithms but the difficulty to link low and 
high levels remains in most cases. The main rea- 
son is that the structures and their associated 
functions are not always separated where they 
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should. But this is not surprising since there is no 
general theory for deciding what is the correct 
division of the world - -  in the hypothesis that 
such a concept has any value - -  see Ref. [6]. In 
the present theoretical desert concerning that 
problem, one may further notice that several dif- 
ferent entities can be built to match the same 
architecture (Fig. 1). Moreover, there is no essen- 
tial restriction on the type of language used for 
programming them: it can be either a knowledge 
based system written in any computer language, 
or a neural language, such as the one we will 
present in this paper. 

This difficulty to link functional entities justi- 
fies the will to return to atomic code elements 
that cannot be divided into more simple func- 
tions. A formal neuron (Fig. 2) is a good candi- 
date if it processes only local information and 
does not use hidden variables. Its interest is that 
it can perform a lot of different operations neces- 
sary for "intelligent behaviour": elementary logi- 
cal operations, basic pattern recognition, decision 
taking, space transformation (rotations, projec- 
tions) [7] (for the model of the cortical column as 
an atomic element, see [8]). One can group such 
elements (hereafter  designated as neurons) into 
functional boxes even if the same neuron can 
belong to several functional boxes. The links be- 
tween boxes are, thus, the set of links between all 
the neurons of the two boxes. They can be of any 
type: binary, positive, real-valued or discrete-val- 

rl 

Fig. 2. A model of  formal neuron. 
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ued. Thus, there is no more internal variables in 
a box made of neurons. Even if at the beginning 
the system is designed to take the information 
from the output neurons of a functional box and 
to use them as input for another functional box, 
neurons can learn links with hidden neurons be- 
longing to another box. They will only take into 
account information according to their learning 
rules and so they will be able to modify the 
functionality of each box. If no input /output  
correlation appears between input and output 
neurons, then the link will remain weak. On the 
contrary, if a strong correlation appears, the com- 
putation is simplified by this kind of short cut in 
the normal "cognition" process. The possibility to 
have links between any neurons in the different 
functional boxes allows to redefine the system's 
structure. Obviously, each possible link must be 
present from the beginning or must be created by 
a circuit between physically connected neurons. 

Box 1 

Box  2 

~ Box 3 

J v V 

Bol Box  Box3  

a) 

function 

. . . . .  architecture or code b) 

Fig. 1. The situation a) represents  a top-down splitting of a problem in functional boxes. If during the functioning it appears that 
the box 3 needs  internal information of box 2 there will be a problem. A neural  implementat ion b) allows a splitting at the neuronal  
level and can solve the laroblem. 
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The lack of links between blocks will induce the 
same problems than people with brain lesions 
that cannot succeed in solving complete class of 
problems related to their disease (aphasy). 

In our work, we put forward general principles 
for designing large but comprehensible N.N. that 
can play the role of a brain for a robot exhibiting 
complex behaviours and could be an interesting 
way to program new generations of parallel com- 
puters [9]. In particular, we will show that these 
biologically inspired systems are interesting from 
the computer science point of view. The exact 
same neural architecture will be used for complex 
visual scene recognition, and for landmark based 
navigation. We will also try to introduce the basis 
of a neural language and formalism. Such a 
framework is very important to point out the 
directions in which engineers must advance in 
order to build machines that overcome their cur- 
rent limitations. Most of current robots compute 
their actions from their perceived input by using 
models of their environment and are not able to 
imagine other models when they find themselves 
in unforeseen situations. They give pretty good 
results when their environment is adapted to 
their work but they are almost blind in a natural 
world. Too much data to analyze saturate the 
analysis capabilities of their "logical" brain. In 
the industrial domain too, each new model of 
arm manipulator needs to be modeled before it 
can be used to manipulate objects. Having them 
only learn their task like animals would certainly 
be a great achievement [10,11]. 

In this paper, we will present an autonomous 
mobile robot called Prometheus that can learn to 
return to an interesting place (its goal) in an 
unknown environment. The N.N. structure of 
Prometheus' "brain" is based on the idea that 
Prometheus is intended to be in interaction with 
its environment, in accordance with the enactivist 
- -  or constructivist - -  paradigm [19-21]. Unlike 
an expert agent who knows how to reply to an 
arbitrary question about navigation problems or 
object manipulation, Prometheus is just an agent 
that learns to agree with its environment and its 
internal motivations. It has no global or complete 
representation of its world. It "keeps in memory" 
only what it has learned to act correctly in a 
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Fig. 3. The  concep t  of P e r A c  a rch i t ec tu re  to cont ro l  au- 

t o n o m o u s  robots .  

particular situation. Should the universe collapse, 
the robot's memory would have no more mean- 
ing. For instance, a cognitive map involved in 
high level goal seeking or an object representa- 
tion will be simulated in Prometheus with only 
few neurons in competition (representing a well 
chosen set of different places). This approach 
leads to a "from action to perception" scheme 
[22]. The concept of active perception will be 
applied at different levels in the paper to exploit 
the dynamics of the robot's interactions with the 
environment (to simplify the robot's task). 

In the first part of the paper, we will present a 
neural architecture named PerAc (Perception- 
Action) (Fig. 3) which is inspired by studies by 
Albus [23], Brooks [3], Burnod [8], Carpenter and 
Grossberg [18], Edelman [24], and Hecht-Nielsen 
[25]. In a second part, we will show how the 
PerAc architecture can be used in the task of 
recognizing marks in a visual scene. Thus, we will 
describe the way the visual information can be 
used by another PerAc block to learn to return to 
a particular place. We will show that the problem 
of learning to recognize objects or scenes and to 
return to a previously discovered interesting loca- 
tion can be achieved with only two PerAc blocks 
push-pully connected. We will emphasize the im- 
portance of the choice of a coherent neural code 
that can be applied to code Prometheus' eye 
saccades and the direction of Prometheus move- 
ments. Finally, we will conclude by showing how 
this architecture can be generalized to other tasks. 

2. Basis  o f  the PerAc model  (Perception-Action)  

Introspective reasoning gives rise to the intu- 
ition that the analysis of particular images is 
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easier to perform when we can build complex 
abstract data structure that represent the raw 
data. Indeed, if a system succeeds in extracting 
from an image "fundamental"  information such 
as the presence of something with two legs, a 
body, two arms and a head, then its intelligent 
part will be able to deduce it is a man! This sort 
of representation is very interesting because it 
tries to be invariant for any kind of transforma- 
tion of the original image [26]. Comparison be- 
tween images becomes a graph matching problem 
but unfortunately, the problem of extracting in- 
formation from raw data has been evaded. Ani- 
mals have adopted quite different but neverthe- 
less efficient solutions. They seem to use a "rea-  
soning" procedure based more on image and 
memory. Indeed, a wide variety of insects but also 
mammals use directly snapshot information that 
they correlate with learned snapshot to take their 
decision. Moreover, the individual development 
of animals and humans seems to be based on 
relatively simple reflexes and conditioning mech- 
anisms [27]. Previously conditioned or discovered 
behaviours become new reflexes on which new 
behaviours can settle. Thus, the neural codes 
associated to either low level (like obstacle avoid- 
ance) or more complex tasks (like navigation) 
must be compatible. The same goes for the asso- 
ciation between different tasks of the same level. 
For instance, recognition of an object must be 
coded in such a way that it can help navigation. 

2.1. Biological bases of  the PerAc model 

The ant is an interesting example of what a 
simple agent can succeed in doing in a social 
organization [28]. When studying collective be- 
haviour, it is considered as a simple stochastic 
automaton. Nevertheless, the analysis of the be- 
haviour of a single individual helps to understand 
some basic mechanisms that an animal must have 
in order to recognize an object or a place. For 
instance, the ant only uses direct visual informa- 
tion stored as a snapshot to retrieve a learned 
position. An experience illustrating that consists 
in placing a stick with two black rings around it 
just at the opening of the anthill [29] (Fig. 4). 
When the ants are accustomed to this object, if 

a) b) 
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Nest position 
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Fig. 4. (a) the ant learns the position of its anthill according to 
the visual aspect of a piece of wood. (b) the piece of wood is 
replaced by an object two times taller, the ant does not 
succeed in finding the nest, because it just tries to match the 
two perceived images [29]. 

the object is switched for an object twice as high, 
the ants will search the opening of the anthill just 
at the position that yields the same angular im- 
age. Thus, we can suppose that ants only try to 
find a perceived image that matches the stored 
snapshot. They just use a correlation method. A 
lot of works in psychology suggests that animals 
are able to use landmarks in their environment to 
locate themselves [30]. 

Snapshot recognition supposes the ability to 
locate correctly the matching mask on the current 
visual image. Obviously, Fourier transformation 
or other Gabor filters can provide position invari- 
ance for recognition but if several objects are 
present in the scene, overlapping problems ap- 
pear in the parameter  space and it becomes diffi- 
cult to separate the signatures of the different 
objects. So high resolution recognition methods 
must also be used in the general case. The strat- 
egy apparently adopted by all the superior verte- 
brates consists in separating the recognition of an 
object (the W H A T problem) from finding its po- 
sition (the W H E R E  problem). The temporal re- 
gions of the cerebral cortex are involved in the 
"what"  pathway whereas the parietal regions try 
to find where the objects to analyze are [8,31,32]. 
The parietal system can then be regarded as an 
acting strategy to focus the attention of the sys- 
tem on a particular zone of the perceptive field. 
In conclusion, landmark based navigation or vi- 
sual scene recognition are problems that can be 
divided in two subproblems: to recognize some- 
thing in the perceptual flow and to learn to 
associate this recognition to a particular action 
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primarily proposed by a reflex acting flow. The 
concept of the Perception-Action system is now 
established. In the following section, we will see 
how to implement it simply as a neural network. 

2.2. The PerAc (Perception-Action) block 

The PerAc (Perception-Action) is a systematic 
neural structure that allows on-line learning of 
sensory-motor associations. It involves two data 
streams associated respectively to perception and 
action in each part  of the robot controller (Fig. 
5). From each perceived input, we suppose we 
can extract reflex information to control directly 
the robot action. There  is also a mechanism for 
recognizing the sensory input patterns that can 
take control of the robot 's  actions and avoid the 
reflex pathway. 

The neural boxes are competitive networks 
(Winner-Take-All or WTA). In such groups, only 
the neuron with maximal activation has a non-null 
activity after the competit ion is performed.  They 
are used to code either the input vectors or the 
effector commands, as well as the "h idden"  
groups that can play the role of a memory. If  V is 
an n-dimensional vector representing the activity 
of  n neurons belonging to the same neural group 

then we define the result of the competit ion 
between those n neurons as the vector V' of 
their activity after the competit ion process (to 
find the component  of higher activity). 

V ' =  Max+V,~  Vi,  i ~ [O,n], 

{ ~  i f V / = M a x V j a n d V / > 0  
V/' = j = 1 , n  

otherwise 

The Reflex pathway: The action flow 
Both the perceptual  and the motor  informa- 

tion are coded in egocentric coordinates. Each 
neuron in the motor  groups corresponds to a 
particular movement  orientation according to the 
current position of the considered system. In the 
same way, the visual input images are expressed 
in polar coordinates (as in the mammal  visual 
system [33]). For instance, the ocular saccades of 
the robot 's  eye are represented as vectors associ- 
ated to a grid of neurons that represents 32 
orientations and 32 intensities of possible move- 
ments. The direction of the eye saccades is also 
expressed in the same coordinates. This simplifies 
the connectic problems of linking several neuron 
groups. Indeed, the retinal image directly pro- 

PerceplJon Flow 
t1" 

Pero~ived situation Sensory int~ Recognition group 
pattern WTA 

- -  tmlearned associatiom 
• activated neuron 
o unacfivaltxi neuron 

Reflex Action Action selection group 
WTA 

Action Flow 

Fig. 5. Architecture of a PerAc Block. From the perceived situation a reflex action and a sensory input pattern are extracted. The 
action group learns to associate the recognized situation with the unconditional input. The system can then recognize a situation 
and react correctly even if the reflex mechanism is not activated. 
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Fig. 6. representation of a reflex link in the motor flow of the 
PerAc architecture. When something is perceived on the 
retina the robot moves in that direction. 

vides information for the activation of a particu- 
lar saccadic eye movement in the retinal coordi- 
nates. This also makes possible the tracking of 
goals by the robot itself. Quantization precision is 
not really important because the use of proba- 
bilistic neurons that simulate neuron populations 
coding [34] allows to make movements with a 
precision that depends only on sampling time 
(see Appendix). Such a WTA group of neurons 
can be integrated simply in a reflex behaviour 
architecture such as those proposed by [3,11]. 
Simple reflexes can be easily constructed to con- 
trol the ocular movement in the direction of 
"something" in the retinal image. In the same 
fashion, they can force the robot to move in the 
direction of that "thing" when it has recognized 
it as its goal (Fig. 6). 

The internal representation of perceptive informa- 
tion 

Because of the choice of the reflex structure, 
we cannot directly connect sensorial information 
to the action neurons. These latter neurons must 
compute a kind of logical "or"  operation between 
their input: a movement must be performed if the 
reflex link is activated or if a pattern "A"  or a 
pattern "B"  . . .  is recognized. Unfortunately, the 
recognition of a pattern "A"  for instance is a 
kind of "and"  operation between the learned 
shape and the current visual input. Indeed, to 
recognize "A"  the neuron must be sure that the 
first element of "A"  is the same as the stored 
element and that the second element is also 

correct and so on. It has been demonstrated by 
Minsky and Papert [12] that the same neuron 
cannot compute both "and"  and "or"  operations 
to perform any kind of logical equation. There- 
fore, we have introduced an unsupervised neural 
group to learn to recognize the perceptual situa- 
tions. It is a self-organized and fast learning array 
of neurons that preserves locally the topology of 
its input. It is called the Probabilistic Topological 
Map (PTM) because the weights are adapted 
according to a probabilistic mechanism [13-15]. It 
allows having an a priori generalization for the 
new shapes coded on the map. If a new shape 
"A*"  similar to a previously learned shape "A"  
must be learned, it will be coded in the neigh- 
bourhood of the neuron coding "A".  Then the 
lateral diffusion of the activity of the neuron 
coding "A*"  will be sufficient to lead the motor 
action associated to "A"  to be activated. For 
matters of simplicity and lack of space, we will 
not detail the PTM in the following (details about 
the interest of analogical and topological coding 
can be found in [14,16,17]). In Appendix A.2, the 
reader will find a simplified version of the PTM 
algorithm. It is a WTA model that uses a vigi- 
lance parameter to decide about learning a new 
shape (the algorithm can be replaced in the archi- 
tecture by a classical ART-1 model [18]). The 
neurons compute the matching between their 
weight vector and the input data (point to point 
correlation). Then, a competitive mechanism lets 
find the winner neuron. The output vector of the 
neuron group Y is then defined by: 

¥= Max f ( W . X )  

P 

otherwise 

X and ~.  have the same size. 
The vigilance parameter appears in the f func- 

tion. If the vigilance is high each presented shape 
will tend to be considered as a new prototype of a 
new class. Conversely, if the vigilance is low, a 
neuron will learn a new shape only if it is signifi- 
cantly different from the previously learned 
shapes. 



P. Gaussier, S. Zrehen / Robotics and Autonomous Systems 16 (1995) 291-320 297 

The conditioning mechanism and the action group 
Learning associations between the recognition 

of a particular shape and the realization of a 
particular action is conditioned by a reinforce- 
ment signal that represents the internal motiva- 
tions of the robot. A positive reinforcement is 
associated to the "pleasure"  arising from solving 
a particular goal whereas a negative reinforce- 
ment will be emitted when the robot collides in a 
wall ("pain"  signal) for instance. The pain signal 
provokes an increase of the random activity of 
the neurons, which allows the robot to quickly 
escape reflex solutions and to explore the whole 
action possibilities (for more efficient algorithms 
see [35]). In such a phase, the robot seems to be 
really stressed like a rat in a Skinner box when 
electric shocks are used to force it to discover and 
to learn a particular behaviour [36]. In the same 
way, pleasure increases the robot vigilance and 
allows it to learn what seems to have been the 
cause of the pleasure signal [13,37,38]. The rein- 
forcement mechanisms also allows to modify the 
synaptic connections of the neurons in the action 
group. Their  output is not the result of a weighted 
sum between input and weight vectors but a Max 
operator.  Indeed, the weighted sum of several 
small input activities can produce a higher re- 
sponse than a strong well defined input activation 
and then involve an incorrect action. The output 
vector Y of the WTA action group is then de- 
fined as follow: 

Y =  M a x ( [ A l  . X )  + - Max( - [ A ]  . X )  + + Io, 

where [A] is the weight matrix of the Action 
group and I 0 a constant vector that allows desin- 
hibition. ( [A] .X)  ÷ represents the positive contri- 
butions while ( - [ A ] . X )  ÷ represents the negative 
contributions. The matrix of the synaptic weights 
associated to the action group of neurons [A] 
takes into account the unconditional links [UL] 
related to the unconditional stimuli of the action 
group. The neurons in the action group are then 
able to learn conditional links [CL] according to 
the recognition result of the perception group. 

[A]  = [UL] + [CL]wi th [UL]  = a . l d  

0 . . .  0 

where ~ is a constant small enough to ensure 
that recognition of a learned pattern will win over 
the reflex pathway. We use an Hebbian proce- 
dure to adapt the modifiable weights of the ac- 
tion group: 

  j  . win- win(x + [d P'easure] ) 
where Yi win = [ 1 if Y/--- Max(Yj) 

0 otherwise 

and A >> 1 (the reinforcement term is much more 
efficient than the hebbian term). 

With y = [ x ] + * * y  = {x i f x > O  
0 otherwise 

Perception flow 

one to one links 

unconditional links - - ]  

/ 

one to all links The PerAc Block 
co~l i t ioml  links 

Fig. 7. two types of links to the formal design of our N.N. in Leto. In the second network, each neuron in the output  group is linked 
to all the neurons in the input group. The  sizes of  the  groups can be different. 
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Weight are reinforced when the reinforcement 
signal (pleasure) increases from time t -  1 to 
time t. In a general way, the pleasure function is 
directly responsible for the emerging behaviour 
of the autonomous agent. 

Implementat ion  o f  a PerAc block 

In Leto, our software used to design and cre- 
ate the N.N. that control Prometheus, a N.N. is 
represented by a set of boxes representing neural 
groups devoted to the same computation and 
using the same functioning rules. Each arrow 
represents a link between two groups of neurons. 
The arrows crossed with one short line represent 
one-to-one neuron links whereas the arrows 
crossed with two short lines represent one-to-all 
neurons links (Fig. 7). Commonly, the one-to-one 
links are reflex pathways and are considered as 
unmodifiable as in classical Pavlovian condition- 
ing. 

A token ring mechanism is used to update the 
activity of the neurons in each box. The activity of 
a box is computed only if all of  its input groups 
have already been activated. To avoid the dead 
lock problems (in the case of recurrent  or circular 
links) there is a special type of link which indi- 
cates that the presence of their input is not 
necessary to begin the process. In those cases, the 
input vector is considered as a null vector. 

When new PerAc associations have been 
learned, they appear like new reflex which can 
support a new level of association (like a recur- 
sive mechanism). Learned links can, thus, be con- 
sidered as meta-reflexes. Now, we will see how 
the PerAc block can be applied for object recog- 
nition and to control robot movements in a goal 
retrieval task. 

3. Visual scene and landmark recognition 

Prometheus'  visual system computes the re- 
quired information of the navigation system by 
emulating a moving eye' It performs learning and 
recognition of a local ~ ~ew associated to a land- 
mark together with the angle between the land- 
marks. Its task is to learn several objects and to 
recognize them in a scene, where they can be 
scaled, rotated, deformed, occluded or noisy 
[39,40]. The first important feature of Prometheus 
that allows it to solve this problem is that it has a 
limited vision of the scene. It cannot see all the 
objects at once. It needs to move its eye from one 
object to the other. This limitation requires it to 
have a sequential functioning which simplifies 
learning and recognition. 

Fig. 8. shows the general architecture of the 
vision system. 

frontal 
recognition ] 

What ? ~ - ~  Where 

_ 

Fig. 8. General architecture of the vision system. 

ocular saccades 
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3.1. Biological model of vision system 

Several cortical areas are involved in visual 
scene recognition [32,41]. The visual information 
preprocessed by the retina are used by the pri- 
mary visual area to extract boundaries (V1), tex- 
tures (V2), motion (MT) . . .  These primitives are 
integrated in more complex ones. They allow the 
preattentive control of the ocular saccades and of 
the focus of attention [42]. Next, the shapes are 
recognized by the temporal lobe whereas the 
parietal lobes control where to look. 

Two connected levels of processing can be 
distinguished. The first one is involved in low 
level processing. It is massively parallel. It ex- 
tracts the contours of the image [43] which are 
diffused to obtain local maxima that correspond 
to the characteristic points that attract the robot's 
attention [44,45]. The second one processes a 
state space transformation of the input picture, 
i.e., a log-polar transformation [33] which is toler- 
ant to rotations and changes of scale but really 
dependent  on shifts in position. 

The local visual interpretation is performed by 
a mechanism that realizes mental rotations. In- 
deed, it has been shown that the visual recogni- 
tion time depends on the angular variation be- 
tween the learned object and the presented ob- 
ject [46]. Thus, we can imagine such a switching 
mechanism that would rotate objects to simplify 
their recognition and another one that would be 

useful to build a scene representation that does 
not depend on the eye or head position. 

On another level, the eye movements (ocular 
saccades) and the focus of attention are con- 
trolled by motor map [47]. Both visual and motor 
data are joined in the frontal areas where tempo- 
ral integration is used to recognize sequences. 
They define a non-symbolic mental representa- 
tion of the studied object. 

The recognition of an object can be performed 
very quickly and does not need any ocular sac- 
cade but the recognition of a complex scene (and 
its recognition by a human subject) is more pre- 
cise when the presentation time increases [48]. 
Indeed, humans seems explore the same parts of 
a visual scene when they explore it for the first 
time than later when they look again at the same 
scene (scan-path learning [49]). 

3.2. A PerAc network for the visual system 

Primitives and architecture of the visual system 
Prometheus'  visual system tries to emulate the 

behaviour of the biological models depicted in 
the previous section. From the image of a CCD 
camera (256 × 256 pixels), the contours are ex- 
tracted and a simple filter allows to find a propo- 
sition on where the robot should focus its atten- 
tion. We have chosen to use angles between 
edges as focus points. They are extracted by a 

0 . 0 0 ~ ~  
o 

-o o o 

2 4 ~ _ 4  

Fig. 9. (a) The filter used to find corners: it is the difference of gaussian mask: a OFF-Center cell. (b) an example of feature point 
extraction on contour image. Big black dots represent features points. 
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kind of OFF-Center cell (Fig. 9) that provides a 
maximum response when there is a sharp corner 
in the neighbourhood. A competition mechanism 
identical to that involved to extract edges is used 
to find feature points at a particular resolution. 

We prefer the robot's eye to focus its attention 
on a corner rather than on the gravity center of 
objects, because with the second solution, if the 
object is occluded, the position variation of the 
object's center of gravity is huge and makes 
recognition impossible. When the robot glances 
at an object's corner, there is not recognition of 
the limited viewing zone. It only risks to lose a 
few focus points from all the focus points used to 
recognize the object. The sequential object explo- 
ration is then a good method to provide redun- 
dancy and movement information to help recog- 
nition. To sum up, a perceptive data stream iden- 
tifies the contour image around the focus point, 
and a motor one guides ocular saccades. Both 
interact with each other. The scheduling memory 
of the local recognitions and actions can explain 
attentional processes that lead us to first explore 
one possibility before "thinking" about the next 
one. 

As far as the final task is to allow the robot to 
navigate, we can suppose there is no rotation 
problem if the robot camera is always horizontal l 
and so simplify the explanation about the visual 
system (information about the mental rotations 
can be found in [39,40]). 

Due to these considerations, Prometheus' vi- 
sion system does not need any complex hierarchi- 
cal structure to recognize objects. Moreover, the 
object concept in Prometheus is not linked to the 
need to analyze a closed region in the image. An 
object can be composed of several isolated parts. 
So a scene with all or a part of its most relevant 
objects can be considered as a single object. Its 
recognition will depend on the robot's capability 
to recall the scan path used during learning to go 
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Fig. 10. Functioning of the PerAc block used for vision. Four 
neural groups are involved. Prometheus  focuses its eye on one 
of the square 's  vertices. The  ocular saccade it will perform is 
due to the combined activation of one neuron in the local 
recognition group and a neuron in the proposed eye move- 
ment  group. The performed saccade thus corresponds to the 
one learned when exploring this square 's  vertex for the first 
time. 

1The  atti tude of the camera  could be controled by a 
gyroscopic mechanism like the biological vestibular system 
and by a mechanism of mental  rotation like those performed 
to rotate the landmarks to retreave the learned angles. 

from one focus point belonging to one piece of 
object to the next. 

Learning and recognition of  a visual scene 
During training, the robot extracts the charac- 

teristic points in the scene and it performs an 
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invariant transformation from each of these 
points. During interpretation, the robot focuses 
its eye on a characteristic point (a corner), it 
performs an invariant transformation (i.e., a polar 
logarithmic transformation) and then a mental 
rotation to match the present target with the 
learned representation. To complete its interpre- 
tation or to remove any ambiguity, the robot 
focuses on the other characteristic points used 
during learning according to learned saccadic 
movements (Fig. 10). At last, a mechanism of 
time integration is introduced to simulate a short 
term memory. Thanks to it, Prometheus will be 
able to interpret a particular area according to 
the previous interpretation. 

When a characteristic point has been chosen, 
an inhibition mechanism prevents the robot from 
choosing it all the time. However, a problem 
remains. The points to inhibit are in {log(p),0} 
space and when the robot changes its focus points, 
it loses the origin of the transformation. There is 
a new mapping in the state space. If a simple 
feedback is performed, it is not the neuron corre- 
sponding to the previous mapping which will be 
inhibited. Consequently, we assume that the brain 
has a local mapping of the picture expressed in 
coordinates invariant with respect to the eye 
movements. This space must be like an internal 
universe and we also need an inverse polar trans- 
formation. For details, see [40]. The complete 
architecture of the vision part is shown on Fig. 
11. 

PerAc B l o c k  ~ !  // 
Mental / 

Rat~ans Sensorial Flow lntcgrat~ 
Ca-amand "~" 

Local Vision } ~ L ~  
Contour image a] 

feature points "--~ Ey 

Motor Flow ~¢ f 
Performed eye movement 

Fig. 11. PerAc architecture for visual scene interpretation. 
Each block is a group of neurons. The global recognition can 
be suppressed in the navigation task if all the landmarks are 
different from each others. 

The eye movement group is a WTA (Winner 
Takes All), with input in the perceptive and mo- 
tor flow: the position-of-feature-points group pro- 
poses a movement, and the local recognition 
group is associated to a given movement. There is 
a global recognition group, which learns with the 
help of a teacher, and which works according to a 
counterpropagation algorithm [25]. However, it 
does not belong to the studied unit block and it is 
not necessary to solve the complete robot task. 

3.3. Experimental results 

In the following example, the robot has learned 
3 objects (Fig. 12a): a key, a cube, and a cigarette. 
The objects have been presented just in front of a 
gray level CCD camera (256 × 256 pixels). The 
edges are extracted by a N.N. inspired from [43]. 
A simple Nagao contour extractor can also be 
used [50]. The resolution of the local views after 
the log-polar transformation is 32 × 32 pixels. The 
learning time only allows the robot to learn 4 
local views of each object. So, the N.N. stores 
4 × 32 × 32 = 4096 bits of information for each 
object (the compression rate is 128). Later, a 
scene with several of these objects is presented to 
the robot. The edges and the focus points are 
also extracted. The robot recognizes the learned 
objects well even if they are rotated, occluded or 
seen from a little different angle (Fig. 12b). When 
it finds a learned local view, it focuses in the 
direction of the supposed position of the follow- 
ing learned view to verify if its first interpretation 
was correct. 

Other experiments on our mobile robot indi- 
cate that the polar transformation and the pat- 
tern matching mechanism allow to recognize a 
planar object over a distance that varies of +__ 1 /3  
and also bear that the CCD camera should be 
horizontally oriented at + 50 ° from the learned 
position (the robot faces the object) [51] (for 
similar measures see [52]). 

3.4. Discussion about the visual system 

Obviously, if we want to use information about 
object integrity it may be difficult, and the system 
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a) 

/ 

b) 

Fig. 12. (a) Learning of a key labeled as object 0. (b) Observation of a complex scene: scan path of the eye (ocular saccades) and 
interpretation of each zone pointed out. 

would certainly need additional groups. But if we 
simply consider that each scene is an object to 
recognize, all the information needed is already 
available. Nevertheless, some precautions must 
be taken. For instance, horizontal and vertical 
movements do not have the same meaning for the 
navigation system. But the information about the 

apparent size of the object and about its angular 
position could be combined. All those things are 
not yet implemented but are currently being in- 
vestigated. 

The size of the local view (snapshot view) can 
be adapted to the complexity of the problem. If 
the landmarks are all the same then the informa- 
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tion is perhaps the "drawing" realized by a subset 
of landmarks. So in that case the visual field must 
be larger to take into account the low resolution 
information of the image. The temporal informa- 
tion can also be used to avoid ambiguities. It is 
represented by the Global Recognition group of 
Fig. 11. Its feedback loop to the Local Recogni- 
tion group then allows to distinguish the vision of 
the same "snapshot" by their order (temporal 
aspect). 

Today, the main problem is the difficulty to 
analyze the complexity of the learning and recog- 
nition task. If only few objects have to be recog- 
nized and are "sufficiently" different, the compe- 
tition mechanism will allow a very good general- 
ization of size and orientation variations. At the 
opposite, if a lot of objects that look like to each 
others must be recognized, the generalisation will 
be less important and a preprocessing that allows 
to take away the shape from each others should 
be added. 

4. Target retrieval using landmarks 

Most of the present navigation systems use 
odemetric information to know where they are on 
a cartesian map. A lot of path finding algorithms 
have been developed based on the classical A* 
algorithm or potential field techniques [54] (Refs. 
[17,53] for a neural approach of the potential 
fields). Unfortunately, odometry is not precise in 
a long run and it must be recalibrated by other 
sources of information such as particular visual 
patterns called landmarks [1]. These robots much 

more work like surveyors. In other approaches, 
based on proximity sensors (ultrasounds .. .  ), the 
different places are difficult or impossible to 
identify and the robot must take into account its 
movements sequence to decide what its current 
position is. These algorithms almost all separate 
the learning phase of the different places from 
the learning of the links between them: can I go 
from "A" to "B" ... ? They somehow succeed in 
building a cognitive map of the environment [55]. 
An interesting subsumption implementation that 
does not need to produce a cartesian map can be 
found in [56,57]. In our view, their main problem 
is linked to the learning criteria. How can the 
robot decide when to learn a new place? If the 
robot forgets to learn a place, it will be unable to 
reach particular places (cut in the graph of its 
cognitive map). Conversely, if it learns too many 
places it will have memory problems and will be 
unable to realize that two nodes in its map are in 
fact associated to the same physical place. In the 
case of an environment of heterogeneous com- 
plexity, a self-adaptation of the learning criteria 
seems to be difficult to implement without knowl- 
edge stemming from a reinforcement signal (goal 
reached, "important" places . . . .  ). Moreover, 
these algorithms do not answer the question about 
how to reach a place when an infinity of pathways 
can be taken as in an open area. 

4.1. Biological models of navigation system 

First of all, we can ask the question of whether 
animals use a "map" (Cartesian map) of their 
environment with information about the position 

Pine Cones 

Nest 

? Pine Cones 
0 • Q 

Fig. 13. When a wasp goes away from its nest. (a) It begins by circling around the nest position. (b) If the position of the pine cones 
around the nest are translated then the wasp will try to find the nest where it should be relative to the landmarks [58]. 
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of each landmark. Tinbergen had realized an 
experiment that brings light to that question [58]. 
He was interested in the manner  a wasp succeeds 
in retrieving its nest which can be difficult to see. 
Due to the wind, proprioceptive mechanisms can- 
not alone explain the nest localization. For that 
reason, he put around a wasp's nest several pine 
cones in a triangular fashion (Fig. 13). He noticed 
that the insect circles around its nest for several 
seconds, before departing for journeys as long as 
an hour. Before the wasp returned, he moved the 
triangle to another  location. Then, when the wasp 
returned in the neighbourhood of its nest, it went 
in the direction of the pine cones and tried to 
find the nest at the same position where it had 
been between the pine cones. If the pine cones 
are far enough from the nest then the wasp will 
never succeed to retrieve its nest because it is not 
easily visible. It, thus, appears that the wasp does 
not need a map of its environment but, like the 
ant, it "just" tries to retrieve landmarks at the 
same position they were learned (see Section 2.1). 

Different models have been proposed to ex- 
plain all those complex behaviours from only 
direct perceived image treatments. They show 
that animals do not need complex internal repre- 
sentation of the world (generally associated to a 
map). For instance, Cartwright and Collett [59] 
have proposed a model of bee navigation. In their 
model, the bee proposes a movement direction 
that lowers the discrepancy between the per- 
ceived image and a snapshot taken at the target 
position. The main drawback is that all the land- 
marks must be the same, and circularly symmetri- 
cal, such as the cylinders they use. Their  model 
cannot be generalized to more complex land- 
marks. 

Obviously mammals can use more sophisti- 
cated methods for navigation. But it would be 
unreasonable not to use the same principle, if it 
is compatible with the biological data about the 
mammals and if it can also explain their more 
complex behaviors. For instance, Morris [60] pro- 
posed an experiment in which a rat is trained to 
swim in a tank toward an invisible platform. Fixed 
marks on the walls of the tank are visible from 
any point in the tank, and they constitute the only 
information available to the rat for its localiza- 

~Landmark 2 

L a n d m a ~ 3  

Robot Position 
Fig. 14. Example of a landmark configuration that the robot 
can use in a localization task. 

tion. Other  experiments by O'Keefe [61] show 
that a rat can find a goal in a X maze by using 
familiar objects as a lamp or a window as land- 
marks (Fig. 14). 

These experiments have also shown that the 
brain's hippocampus plays an important role in 
this work of target retrieval in mammals [62]. 
They have found that particular cells in the hip- 
pocampus respond maximally when the rat is at a 
particular position and that their activity de- 
creases as the rat is displaced. It also seems that 
this response does not depend of the rat's orien- 
tation in its environment. This means that the rat 
must be able to rotate all its visual information in 
order to present it all the time in the same 
orientation. This switching mechanism can be ex- 
plained by the presence of head-direction cells, 
whose response depends on an absolute direction 
of the rat throughout the environment. Neverthe- 
less, the real role of the hippocampus in place 
recognition is still not clear. The only indis- 
putable thing is that the hippocampus merges or 
correlates information coming from different cor- 
tical areas in the brain. Thus, it provides a multi- 
modal representation that can linked the recogni- 
tion of visual landmarks with the movement to go 
from one landmark to the other. Other  proprio- 
ceptive information also allows hippocampal cells 
to react when the animal is in the dark [63]. In 
conclusion, the navigation of animals can be ex- 
plained without the need of a cartesian map of 
the environment. Their  internal "map"  can be 
very sparse and bear no reference to the topology 
of the external universe. 
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4.2. A PerAc network for the navigation system 

Obviously, more and more systems take into 
account these biological considerations and navi- 
gate directly from 2D perceived images to reduce 
their algorithmic complexity and to increase their 
robustness (qualitative navigation [64], visual 
homing [65]). The PerAc network for navigation 
somehow looks like the system proposed by 
Bachelder and Waxman [66,67] but it also allows 
the robot to decide which movement to do to 
reach a particular place. The main difference is 
that we do not want to learn each position in the 
environment. Our robot must only discover an 
interesting place and learn by itself how to return 
there from any other point. It can also generalize 
efficiently to other places in its environment. We 
will show that if a compass is available our algo- 
rithm can allow a robot to navigate correctly even 
if it is situated far away from the learned position 
(with the limitation that the landmarks must stay 
visually recognizable). If no absolute direction is 
available other simulations will show that a land- 
mark can be used as referential but then the 
generalization capability to long distances is re- 
duced. In that case, the algorithm can correctly 
model navigation in a closed room or an outdoor 
navigation limited in a closed area limited to the 
envelope of the landmarks. Moreover, we will 
also show that the place recognition is not more 

complex when the landmarks have different as- 
pects according to the robot's point of view. 

A hippocampus-like system that correlates incom- 
ing information 

In Prometheus, the position of the robot in its 
environment is coded as a snapshot image of the 
landmarks containing their bearings. We suppose 
that these angles can be known as the result of 
either ocular saccades or head movements. In the 
previous section, we have proposed a mechanism 
for providing this type of information. Both types 
of data can be joined to provide information 
about "what" are the landmarks and "where" 
they are. Simple product or logical AND neurons 
can be used to merge these different types of 
information in a map of neurons that reacts only 
if a particular landmark is recognized at a partic- 
ular place (Fig. 15). 

This model seems to be biologically plausible 
and to agree architectures and the navigation 
models based on the hippocampus [68-70]. In our 
model, however, a place is not coded in hip- 
pocampal neurons but in a cortical area. The 
hippocampus is only used as a relay to allow the 
information to be associated. A short term mem- 
ory represented by recurrent positive feedback 
links (or by the intrinsic synaptic properties) is 
used to obtain a spatial image of the position of 
the different landmarks in the observed environ- 
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Fig. 15. Recombination of visual and motor flow as an input to the place cells. 
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ment from the sequence of input activation. This 
sort of merging of two vectors [Per] and [Ac] 
(representing the recognition of the perceived 
image and the action flow) can be formally writ- 
ten as a [Hip] matrix: 

[Hip] ( t  + 1) = f ( [ H i p ] ( t ) )  + [Per ] .  [Ac] T, 

where f is a function that allows a short term 
memorization of the previous vectors, f can be a 
scalar function. Then, we have: 

[Hip] ( t  + 1) = a .  [H ip ] ( t )  + [Per ] .  [Ac] T 

with 0 < a < 1. 

If a = 1 then [Hip] is the sum through time of 
all the W h a t / W h e r e  associations. So a clear 
mechanism must be introduced to reset [Hip] 
when the robot changes its position and must 
compute again its location. This matrix [Hip] de- 
fines an array of neurons representing the robot's 
position in which a line represents the "identi ty" 
of the landmark, and a column its bearing in 
head-centered coordinates. The bearing is dis- 
cretized, in order to have a binary vector to learn. 
The activation of place ceils could be computed 
as the inverse of a Hamming distance between 
their weight vector and the hippocampus activity: 

IW j- match(W,Hip) = 1 - Y'. Hipij{, 
i - 1  j = l  n - m  

but then, all topology information about the 
landmarks scene would be lost. Indeed, let us 
suppose that the input vector of Fig. 16a. has 
been learned by a place cell. If the same vector 
shifted by a given amount is presented (Fig. 16b 

~ Recognition ~, /~ 
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Fig. 16. Displacement of the neural activity according to 
angular position of the considered landmark (Li) in the visual 
field. The response of the recognition neuron between case a) 
and case b) should be higher than between a) and c). This is 
obtained by using a diffusion of the active neuron (black 
circle). 

or 16c) the activity of the place cell does not 
depend on the shift value. This is a pity because 
two close sets of landmark bearings suggest close 
positions. 

If the active neurons in the input pattern are 
also diffused on their neighbours (in the horizon- 
tal direction), it is possible to overcome that 
problem, as shown on Fig. 16. Indeed, the diffu- 
sion induced activity on the neurons learned for 
pattern a is higher for pattern b than pattern 
(match(a,b)>match(a,c)). Obviously, we must 
suppose that the visual system can differentiate 
landmarks. We cannot afford having the same 
landmark found twice in the same panoramic 
view. Otherwise the system would not succeed in 
knowing which angle is associated to which land- 
mark. So, in the case all the landmarks are the 
same kind of cylinder, we suppose the visual 
system will use information about the neighbour- 
hood or will choose a particular landmark to 
index all the others by reference to it. This im- 
plies to learn a sequence and not just to recog- 
nize a snapshot. Fortunately, this is exactly what 
the visual system of Prometheus does [40] (see 
the previous section). Thus, the experiments with 
identical landmarks are not relevant for our navi- 
gation system because the problem must be solved 
by the vision part of the system. 

To sum up, we do not use the hippocampus 
has a structure that identifies the place but as a 
correlator between informations coming from 
motor and sensory areas. Why these correlations 
are not directly performed by the neurons in the 
cortical areas seems to be due to practical prob- 
lems [71]. As a matter of fact, the important 
number of neurons in the different cortical areas 
does not allow systematic interconnections be- 
tween them (each neuron has approximately 10 
000 synapses, if we consider the human brain 
with 10 000 000 000 neurons, the information can 
have to pass, in the absolute, throw 2 or 3 neu- 
rons to join any pair of neurons). Therefore,  they 
cannot detect easily the correlation of their activ- 
ity with the activity of other neurons located in a 
very distant area. As the hippocampus receives 
projections from all cortical areas, it could be the 
structure that decides if a situation is enough 
different from others to be learned. A more long 
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term learning could then explain the learning of 
the temporal  sequence of landmarks recognition 
in frontal cortical areas (linked to the time to 
make the cortico-cortical connections). That  will 
then explain why subjects with hippocampal  le- 
sions can continue to live normally but have diffi- 
culty to learn new information [60]. 

Learning how to return to a particular place 
At the beginning of the exploration phase, we 

suppose Prometheus moves randomly, looking for 
something interesting. When it finds " food" ,  it 
first eats a piece of it and then moves around in 
order  to find various positions in the food prox- 
imity. At these places, it will learn both the 
landmarks configuration and the direction that 
leads to the food. Later,  when the robot wants to 
find "food" ,  it considers the information of the 
place cells and moves in the direction associated 
to the most activated place cell (competitive 
mechanism) to reach the food. Thus, at each 
time, the distance to the target  is reduced (Fig. 
17) and it returns inevitably to the learned posi- 
tion of the food. The interest of  such a mecha- 
nism is that we only need to learn a few number  
of places in the immediate  neighbourhood of the 
goal and the robot generalizes to all the area in 
which the landmarks are visible (see Fig. 24). 

The learning phase is the most complex be- 
cause it is an unsupervised and an on-line pro- 
cess. When Prometheus  eats " food" ,  it triggers a 
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Fig. 17. Local exploration around the target represented by 
the intersection of the dot lines. The agent records at certain 
points (represented by small circles, N1 to N5) their relative 
position to the landmarks (represented by squares) and the 
direction to the target. 
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Fig. 18. (a) Local exploration around the target represented 
by the large black circle. The robot records at certain points 
(represented by small circles) their relative position to the 
landmarks (represented by squares) and the direction to the 
target. The numbers correspond to the place-field number in 
its neuron group. (b) Different trajectories. The Place-cells 
(PC) are indexed by their order during exploration. The 
Voronoi tessellation is represented by the thick lines, the 
landmarks by the rectangles and the target by the inner circle. 
The large circle represents the limit beyond which the target 
is not perceived. Thin lines represent trajectories from various 
starting-points. 

reflex which allows to somehow circle around the 
food at a certain distance, in order to visit evenly 
placed locations around it. At each of these well 
chosen locations, a place cell learns the relative 
position of the robot according to the landmarks, 
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Fig. 19. The navigation neural  network. SR is the Scene 
Recognition group. Its input is the Global Visual Input  group 
which corresponds to the Landmarks  Recognition associated 
to the Eye Movement .  The  Robot  Movement  group (RM) is a 
WTA.  When  the food is visible (Food Proposal group), the 
chosen direction in RM corresponds to the food position, 
because of high-valued one-to-one links between R M P  and 
RM groups. The RM'  group is also a W T A  and it corresponds 
to the Robot Movement  in the environment.  When  goal 
achievement  is activated, it activates through a high intensity 
reflex a particular neuron in RM' ,  causing the robot to turn in 
a given direction, thus giving rise to ellipsoid trajectories. The 
black rectangles represent  a shifting mechanism used either to 
provide an invariant representat ion of the input, or to trans- 
form invariant representat ions into extracorporeal ones. 

and the direction heading towards the target (Fig. 
18). We shall now detail the neural network used 
for landmark-based navigation. 

As usual when using the PerAc block, four 
neuron groups are involved in the navigation task 
(Fig. 19). Inside the PerAc block, the neuronal 
groups used for the input and the actions must 
correspond to invariant representations with re- 
spect to the robot's orientation (Fig. 20). The 
switching mechanism that provides that invari- 
ance must be used at the input of the block, while 
the inverse transformation is applied at its out- 
put. Thus, movements to go from the location 
learned by a place cell to the food are learned 
independently of the robot's orientation (inside 
the PerAc block) but the movement actually per- 
formed (outside the block) takes the orientation 
into account. 

When a movement direction is selected, the 
robot makes one step of a given length in that 
direction. The input to this network are the north 
direction, and the food and landmarks positions 
in the robot's visual space. We assume that a 
compass is available. It could be replaced by a 
vestibular system or a gyroscopic mechanism that 
would produce low precision information about 
the body orientation. A local landmark could also 
be used but it reduces the generalization capabili- 
ties of the robot to very distant situations (see 
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Fig. 20. The different reflex information added to the learned robot movement  RM. The inverse rotation is performed to take into 
account the rotation of the input data of  the scene recognition SR toward the absolute or relative landmark used for the angle 
measure.  The  Real  Robot Movement  is obtained through the competit ion of the learned information and the reflex of going in the 
direction of the goal or turning by a given angle. Both pieces of  information can be directly linked to the same box. 
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experimental results Fig. 24). Just as for humans 
and most mammals, we assume that the immedi- 
ate visual angle is limited. Therefore,  food is 
perceived only when it is located in a given orien- 
tation ahead of the robot. The same goes for the 
landmarks, but we assume that when a position 
must be recorded, Prometheus rotates in order  to 
see in all directions. This supposes that when 
exploring a scene, it can make ocular saccades 
and move its head as well, thus, spanning the 
whole surrounding space. 

The functioning of the N.N is easier to under- 
stand when starting from the end, that is the 
one-dimensional neural map corresponding to the 
movements. We used two different maps, because 
the "exploration" reflex must activate a " turn  left 
by a certain angle" from the current angular 
position of Prometheus. This reflex, thus, acti- 
vates the group coding movements located out- 
side the PerAc block (Fig, 21). 

When food is in sight (food recognized), a 
neuron corresponding to its angular position rela- 
tive to the robot's facing position is activated in 
the Food Position Map (we suppose that the 
robot has previously learned to what the food 
looks like). The shifting mechanism activates a 
neuron in the Robot Movement Proposal (RMP) 
by adding an angle corresponding to the angle 
between the robot and the north. If there is 
pleasure at that moment,  a place cell learns the 
invariant landmarks position, and the association 
with the robot movement in RM due to the reflex 
link from RMP. The inverse shifting mechanism 
is applied to the output of that group, by sub- 
tracting the same angle. This activates the neuron 
in the effective RM' map which corresponds to 
the actual movement to be performed by 
Prometheus. 

The achievement of the robot's goal (to eat 
food) triggers a movement reflex that remains 
active for a certain amount of time (Fig. 20). The 
provoked trajectories after reaching food, thus, 
take an ellipsoidal shape, which ends after a 
while. As soon as food is in sight (given a limited 
visual angle) the position of the landmarks is 
recorded. This supposes that when pleasure is 
active, the robot moves its "head"  in order to see 
landmarks in all possible directions. 

:~ GVI SR 

i .. 

lIMP RM 

J 
a) 

~g GVI SR 

angular position Scene Ree'e~mtton 

RMP RM b) 
Fig. 21. Example of place situation learned by the N.N. (a) 
GVI represents a configuration of landmarks seen from par- 
ticular angles. One neuron in SR learns that situation (black 
circle), The visual system devoted to the recognition of the 
target provides the direction of the goal in the group RMP. 
The unconditional link between RMP and RM allows one 
neuron to win in RM. 

To sum up the robot behaviour, we must not 
forget the timing of the learning process (Fig. 22). 
A learning cycle begins the first time the robot 
discovers or sees its goal, i.e., the "food".  At that 
time, we suppose that to see the goal causes 
pleasure and therefore an increase of a vigilance 
parameter  that controls learning. It is a global 
parameter  of the Neural Network simulator. It 
modifies the functioning of each neuron in the 
network (see Appendix 7.2.3). Much like in ART 
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Fig. 22. Scheduling of the learning and reflex signals. 

networks [18], the vigilance level controls if a new 
pattern must be learned or not. If it is high, the 
network will tend to learn all presented patterns. 
Thus, when pleasure is present, the vigilance 
causes the SR group to learn the presented land- 
mark panorama. If vigilance is low, a lot of pat- 
terns are not learned, because their matching 
with already learned patterns is too high. When 
the vigilance is low the neurons can generalize 
and produce an activity that tends to be monoton- 
ically dependent  of the matching. So the competi- 
tion mechanism can produce a well adapted an- 
swer. 

Thus, when the robot sees the goal at time t o , 
it activates learning at time t l that allows to 
extract and learn information about the land- 
marks and their bearings. This process ends at 
time t 2 and then the information is available for 
the navigation part of the robot's "brain".  At 
time t3, the GVI can be learned by the SR group 
and be associated to the activation of the RM 
group due to the reflex link from RMP. At the 

end, the robot performs the movement in the 
direction of the goal. During the time between t 3 
a n d  t 4 the robot moves according to the reflex 
movement in the direction of the visible goal. 
There is no learning during that time because the 
learning rate and the vigilance have returned to 
low values. Both parameters can be computed as 
the positive derivative of the pleasure signal. 
When the pleasure signal appears they are high 
but return to zero if the pleasure remains at a 
constant value. 

When this learning phase is over, it becomes 
possible to launch the robot from a place where it 
is not supposed to see the food, and it appears 
from the simulation results (Fig. 18 and part 4.3) 
that the robot always takes the right direction, 
whatever its starting point. The distance from the 
place cells recorded positions from which the 
robot can be launched grows with the angular 
resolution and with the width of the diffusion 
applied to the input. 

4.3. Simulation results 

We have simulated the navigation network on 
several test situations. These experiments are di- 
vided in two groups. The first series concerns 
examples in which the landmarks have the same 
interpretation from any point of view but are 
considered as different from each other. The 
second series use complex landmarks that do not 
have the same aspect according to the robot point 
of view. 

domain in which 
L5 the goal is visible 

the exploration phase (learning) 

,4 Landmark 2 
Goal 

L2 L3 

Fig. 23. Robot trajectory to learn to return to the goal 
represented by the little circle (in white). The largest circle 
represent the maximum distance from which the goal is visi- 
ble. The full disks represent the landmarks. All the landmarks 
are different from each other even if they are all represented 
on the screen by the same symbol. 
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Case o f  cylindrical landmarks 
Fig. 23 represents the exploration phase of the 

robot to learn how to return to the goal. In all the 
experiences, the goal is represented by an empty 
circle in a larger circle representing the area in 
which the goal is visible. When the robot is out- 

x x \ x x \ ¢ ,t \ ~ , ~ , ~  ,/ t 4 4 

~ "~ "~ ~I I I ~ I 
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Fig. 24. Vector field representing the robot movement direc- 
tion: (a) when using an absolute direction to measure the 
angles be~een the landmarks, (b) when using a landmark as 
origin of the angle measures. As reference direction (null 
angle), we take the direction of the Easter landmark. 

Landmark , / ~ ~ o n e  j 

~ /  here the robot sees 
/ ~ ~ w  of the landmark i 

Cone i 

Fig. 25. When a landmark is seen from the area or cone i, it is 
recognized as a different image than from the cone j. 

side this largest circle it cannot see the goal and 
therefore cannot use its visual reflex to move 
towards it. It can only use the recognition of the 
place to decide which movement  to perform. Fig. 
23 shows the 8 places that the robot has learned 
during the exploration phase. In the Scene 
Recognition group 8 neurons (or place cells) have 
learned the positions. 

Fig. 24a and 24b represents the movement  the 
robot will propose from all the possible positions 
in the environment in the case the landmark 
configuration has been dilated. Fig. 24a represent  
the case when the robot uses a compass (an 
absolute direction) to commute the measured 
bearings. The frontier between the different do- 
mains associated to the different proposed move- 
ment  are lines. On the other hand, when the 
robot use the East landmark as a reference to 
compute the angles then the proposed movement  
seem to turn around the goal (Fig. 24b). The 
Vorono'i frontiers are more complex but the robot 
nevertheless navigates correctly. So the model 
allows the robot to navigate correctly with land- 
mark dilatation and absolute or local point of 
reference to measure  the angles. 

Generalization to complex landmarks 
When the landmarks are not cylindrical or do 

not have the same visual aspect from any point of 
view, t he  previous results can be generalized if we 
consider that each landmark view is considered as 
an independent  landmark (Fig. 25). This idea 
boils down to consider more "snapshot  land- 
marks"  as input for the navigation N.N. [52]. 
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In fact, that simplifies the computation of the 
robot location: neurons that code situations which 
differ in the presence of one or several "snapshot 
landmarks" will have more distinct activities than 
in the case studied before (for a detailed analysis 
of the geometrical properties of such concepts 
see [72]). The competition mechanism can then 

/ 
/ 

"" ", l / '  ", "', / '  , s ., ,.' 'k \ / 
t 

'< .< id I 

\ ", ," ," ', : "s / 

\ I 1 ¢  " i , ~  ~ / ',, \, / 
,7 \ ',, / ~ ~ J.,." \ ', " i i '  

i' '~ 'x : \"--W)/" '\ 7S 

/' \., .~. , /  / ".,. "\,  

¢, :,, , , ' , 

'~ ' \  / / \, \, 

/ x.4.Y~,,, / / "<" ' \  / a )  / / ",. . ,, 

'k ,, \ , / / 

\ \ i • ~ "\ / 

'h ' i " \ /" 

,. ,., / / \ "x , 

.. .~ . 

"' "' / ", ,::~'.X / 
: e~,~/'7 7 7 .:', v' v e ' ~ $ , ' ~  ~ "-- ,~- 

" : c - S % .  
r~,.'\, / (  c'~ ~../ ' \ " 

,t ,t "--,: 1"4 ~ - "  /-~. -" "-" "/v' "'" " "  \"~-/'~ " 

> 

I I,: I I 1]x~',. ~ t t.." t \ ~/',"~"\,, 

t /"~ t t ,A %. 'A \ ". / '  

,." ~ ~ \ ; " \  \ "t ", ", .'~" "- "t \ \ 
• : / , ,  ,. ¢ 

% ", 3" ~, " " ..,~' '~"." ~" " ~' " " b) 

Fig. 26. (a) Learning of a place in the case of landmark which 
are associated to 6 different visual aspects. The robot is 
supposed to be able to recognize one visual aspect of  the 
object only if the object is seen from in the cone made by two 
consecutive lines. (b) vector field when using the east land- 
mark as origin. 

be less precise. Fig. 26 represents the case in 
which the landmarks have different visual aspects 
when they are seen from different points of view 
(the more common situation in natural environ- 
ment). The lines that start from the landmarks 
represent the limits of the domains associated to 
a particular view associated to a landmark ( Figs. 
25 and 26). To simplify, we suppose that the 360 
degrees around the object are divided into 6 
angular sectors. That means that one landmark is 
in fact represented by 6 visual landmarks which 
are at the same location but only one of them can 
be recognized at each position. Fig. 26 shows that 
the robot can reach the goal even if it loses a lot 
of information about the learned landmarks. For 
instance in the upper left part of the domain on 
Fig. 26, the robot can only recognize the learned 
view of the landmark 1 and 2. Whatever it suc- 
ceeds in going in the good direction because the 
associated neuron in the Scene Recognition group 
(place cells group) has won over the other neu- 
rons. In that respect, the image of the different 
sectors shows that the recognition of the right 
place is easier when landmarks cannot be visible. 
In most of the distant positions from the goal, the 
robot can only recognize 2 landmarks, and only 
few neurons have learned usable views. Thus, the 
eligible neurons are only good ones. 

4.4. Discussion about the navigation system 

Our model verifies some biological findings 
such as the capability to join the goal when the 
landmarks are dilated or when they are rotated 
[59,68]. It supports the lack of landmarks or a 
misinterpretation of few of the landmarks. There 
is no need for a particular number of landmarks 
(more than two). To learn or to recognize the 
place, the precision will only grow with the num- 
ber of landmarks. The main interest of the use of 
the PerAc block in the navigation system appears 
to be that it realizes an approximation of a poten- 
tial field function. With only 8 neurons, the N.N. 
allows the robot to deduce the correct direction 
of movement to reach the goal. So there is no 
need to code each position of the environment (in 
a real Cartesian map) and their associated move- 
ment as done in most the navigation models. 
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More realistic trajectories can be obtained if the 
movement is performed according to a probabilis- 
tic vote rather than a determinist WTA mecha- 
nism. 

Moreover, the same N.N. can be used to allow 
the avoidance of particular zones or to introduce 
other goals. For instance, if the robot finds an- 
other interesting area, it can learn it on unused 
neurons of the Scene Recognition group. Then, it 
may associate these last neurons to movements to 
perform in order to reach the new goal. The goal 
might change when pain is encountered, for in- 
stance when the robot collides in an obstacle (for 
more information about the goal level in the 
neural network [15,38,40]). 

Obviously, the 3D vision aspect is very much 
simplified because we only use information about 
the relative position of the landmarks. We also 
suppose the landmark recognition is not a prob- 
lem (the system can withstand miss-interpretation 
of a few landmarks). Here, we have simulated the 
possibility that a landmark can be associated to 
different snapshots as would happen with 3D 
objects but we have supposed the apparent object 
size (in the robot brain) does not vary too much 
when the distance to the robot changes [68]. Our 
current experiments on a real robot and results of 
other groups [67] indicate that the robustness of 
the vision system can be sufficient for simple 
shapes (log-polar transformation, see part 3). In 
any case, the recognition problem of really com- 
plex objects in the frame of autonomous robots 

using CCD camera is still opened. The invariant 
recognition of objects that need high resolution 
analysis should request a complete understanding 
of all the visual brain areas (primitive extraction, 
fill in mechanisms, focus of the attention, depth, 
movement . . . )  and will surely be more associa- 
tive than the simple pattern matching we perform 
[26]. 

5. Conclusion 

Our aim for designing the PerAc block and the 
neural architecture that goes with it is to find the 
simplest possible solution for a large set of prob- 
lems related to animal and human intelligence. 
We stressed particularly the simplicity principle 
because we think the simpler an architecture is, 
the less we have to put our own intelligence in it. 
Only proscriptive constraints implemented in re- 
inforcement signals (pain, pleasure) are used to 
control the system [21]. Therefore, we can hope 
to design really general architectures to under- 
stand cognitive processes. We also keep in mind 
that insects and mammal give precious informa- 
tion about the neural code they use (even if it is 
not the same), and we hope our model can pro- 
vide interesting information for biological re- 
search. 

Throughout this paper, we have insisted on the 
importance of active perception. We have shown 
that using action simplifies the interpretation of 

PerAc Block PerAc Block 
Perception Integration ) ,  

V i s u a l . ^ ~ _ ~  Recognition : ~ P ~ ° r ~ , a ~ 2 . c ~  Recognition / E ~ i ~ e 1 : n ~ i e n t  

" ~  Act ion/ i  ' " ~  Action 

"~ ocular saccades ~," Action Robot ~,- 
or/and -~, Movements ~" 

head movements 
Fig. 27. The global neural network for visual scene recognition and navigation. It is made of two PerAc blocks, the first one for 
vision and the second for navigation. 
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perception: each action is a choice and conditions 
entirely the future of the robot. The greatest 
advantage of this type of approach is that it 
makes cognition sequential, thereby avoiding the 
possible large duplications and relaxation mecha- 
nisms needed by massively parallel systems such 
as the connexionist systems proposed by Feldman 
[73] or by the PDP group [7]. 

Prometheus proves that a complete au- 
tonomous navigation system has no need for an 
explicit symbolic representation: high level capac- 
ities use all the emergent phenomena due to the 
lower levels. The robot learns to categorize its 
external world according to what is relevant to it 
and not to us. What it stores only depends on its 
action capabilities and on its perception of the 
world complexity. Prometheus ~ "brain" architec- 
ture is summarized on Fig. 27. It appears to be a 
sort of basic building block and a systematic tool 
to combine motor and perceptive information. In 
addition, the PerAc architecture takes into ac- 
count the dynamical aspect of the robot's be- 
haviour and solves some robot control problems 
in which the "autonomy" is needed. Indeed, the 
PerAc architecture relies on the postulate that 
the recognition of any cue can be simplified if the 
system can act on it. That justifies the splitting of 
any perceived cue into two parts: a motor part 
and a cognitive part. The first is the result of a 
hardwired conventional processing, and is imple- 
mented as a reflex link. The cognitive part pro- 
poses to learn to recognize problems or simply 
important situations in order to allow a quicker 
adaptation of the system's response. 

Furthermore, our model proposes an alterna- 
tive to the classical scheme of hierarchical classi- 
fication, because we propose to integrate not only 
static recognition information but also motor in- 
formation provided by the input cue or /and the 

local recognition. For instance, in the recognition 
problems or in the classification of high dimen- 
sional data, a commonly accepted method to avoid 
losing topology information consists in classifying 
local features before taking the results as inputs 
to higher levels. That constitutes a bottom up 
architecture with a pyramidal shape: the higher 
the level is, the less there are nodes to code the 
more abstracted information [74,75] (Fig. 28). 
From this point of view, the PerAc concept allows 
to greatly reduce the number of steps between 
the interface with the real world to "sufficiently" 
abstract levels. For instance, in our vision system, 
there are only three levels. The first level corre- 
sponds to low level processing, the second one is 
associated to the recognition of local features 
(local snapshots) and the third one deals with the 
global object recognition (by recognition of the 
temporal sequence of local recognitions). 

To solve the same kind of task Fukushima [75] 
needs a number of layers that will directly de- 
pend on the invariance expected in its image 
analysis. In PerAc, the reduction of the task 
complexity is due to the a priori  knowledge we 
introduce about the nature of the input image 
and about the relevance of the focus point. But 
that a priori  information as nothing to do with 
the information required by methods of recogni- 
tion by modelization. Here the information can 
be explained by two things. The first is the onto- 
genesis of the system, during which some value 
system could be evolved [76] (a review of artificial 
evolving can be found in [77]). The second is that 
we suppose that inputs have their own topology 
and that simple competitive/cooperative mecha- 
nisms can always be used to locate important 
features in any perceived cue. Moreover, our 
model agrees the motor theory of speech recogni- 
tion which postulates we recognize speech signals 

Fig. 28. (a) classical pyramidal structure for hierarchical classification. (b) PerAc structure (less levels). 
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by trying to imitate the heard sound [78]. The 
information used for the recognition would be 
the sequence of articulations to imitate the sound. 
It would be obviously more variable than the 
original sound and must take into account the 
mechanical limitations of our phonatory system 
as well as of our knowledge about the possible 
succession of actions order that produces intelli- 
gible words and sentences. 

Obviously, the PerAc or any other one archi- 
tecture is nothing without a good model for all 
the neural groups involved. Consequently, we es- 
timate important to simultaneously improve the 
design of interesting neural group and the archi- 
tecture they fit in. For instance, topology must be 
preserved at each level of the system (see [14,15]) 
in order to simplify task planning ([16,53]). Be- 
sides, the architecture described in this paper 
only allow the robot to react immediately without 
taking into account motivational information. The 
robot can only do tasks which can be reduced to 
finding sensorimotor regularities. In other papers 
[15,38,40], we describe how motivational nodes 
can influence the shape recognition. This will for 
instance let the robot to prefer doing particular 
things such as homing or feeding. For generaliza- 
tion to even more abstract tasks, see [79]. In 
addition, associative searches and goal propaga- 
tion found at the cortical level [8,26,76] in the 
brain should be added to really allow the archi- 
tecture to be very general. This process would 
lead to the definition of an explicit parallel lan- 
guage to "program" animal robots with adapta- 
tion and autonomy capabilities. 

From another point of view, all those examples 
lead naturally to the question of the definition of 
emergence, central to the constructivist paradigm 
[19] in which it represents an alternative to the 
classical cognitivist paradigm [6]. At first sight it 
corresponds to the application of the holistic 
principle - -  the whole possesses feature that 
cannot be found in any of its subcomponents - - ,  
but there is no clear undiscussed definition of 
emergence. Nevertheless, we have given two ex- 
amples of phenomena which exhibit some kind of 
emergence, as the features of those systems can- 
not be explained by any of their components. 

In the vision application, the system in which 

emergence appears is the vision system plus the 
image itself. The approach is based on Gestalt 
Theory, according to which the image as a whole 
contains more information than the parts of the 
image. This includes all the possible ambiguities 
and optical illusions which are not present in 
subcomponents of the image. Moreover, the opti- 
cal illusions are due to the vision system perform- 
ing its operations on the image. This is a good 
example of a structural coupling between the 
system and its "environment" cherished by Matu- 
rana and Varela [19]. All these examples, which 
by no means pretend to propose a clear definition 
of emergence, at least show that it is necessary to 
set up global solutions to cognitive problems. One 
cannot be content with studying only a function 
to be approximated, or the behaviour of a single 
processing element, since it cannot be known a 
priori which role or how important this element 
should be in the whole system. Moreover, by 
studying only subcomponents, one loses the op- 
portunity to use the important dynamical proper- 
ties of the system [14]. 

Future work will be concerned by finding ways 
to extend that kind of networks to more complex 
tasks, always relying on the constructed level to 
obtain the next. A particular attention will be 
paid to introduce goal generation and resolution 
[8] and to improve their cheap limbic systems 
which is the major element to control the robot 
motivations and to allow leaning and adaptation 
capabilities. Next, an obstacle avoidance mecha- 
nism must be added [13] and conflicts between 
the navigation level and the reflex level of obsta- 
cle avoidance should be solved. At last, the intro- 
duction of imitation [80] and communication ca- 
pabilities (in the same bottom up approach as the 
rest of our development) could allow the robot to 
learn the basis of a language and then to access 
to symbolic objects or representations which 
would be a way to drastically enhance the robot's 
cognitive capabilities. We know the wasp nervous 
system contains about 100 000 neurons and 
Prometheus' N.N. involves about 60 000 neurons 
and about 1000 times more connexions (part of 
them have been rewritten in C programs to re- 
duce the computation time). Henceforth, it ap- 
pears that the design of robots with the intelli- 
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gence of an insect or a rat may not be completely 
out of reach. Obviously, this would require the 
proper  use of the advantages provided by the 
algorithms discover in computer sciences or in 
classical AI to short cut some of the simulation 
problems of N.N. 

A competition between neurons on [F] map 
belonging to a to (imaxJma x) neighbourhood allows 
to find local maxima. Their  intensity grows with 
the corner's sharpness and well-definedness at 
the filter's resolution. 

A.2. Formal description of  the perac blocks 
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Appendix A 

A. 1. A diffusion mechanism to find the focus points 

The process which extracts the focus points 
from the contour image [C] is equivalent to the 
convolution of the contour image with a local 
filter. Its shape is a difference of two gaussian 
functions [DOG] and allows to detect corner of a 
special resolution according to the gaussian pa- 
rameters. The diffusion equation is: 

x2+y 2 
1 O-2 

D0.(x ,y)  = 2,n.o.2 e 

Thus, the mask associated to the feature points 
extraction is: D O G ( x , y )  = D0.t(x,y) - O0.z(x,y) 
where cr 1 and cr 2 are two positive constants. 

The convolution between the contour image 
and the D O G  filter is: [F] = [C]* [DOG] 

Jmax /m.x 
F ( x , y )  --- Y'~ }". D O G ( / , j )  

j = 1 i = 1  

" x + - - ~ - - i , y + - - ~  , 

where ima x and Jmax define the size of the D O G  
mask. 

Basic operators: rotation, projection and selection 
In both vision and navigation N.N., we use a 

mechanism to simulate a space transformation of 
the manipulated vectors: we either select one 
part of a huge vector (information flow) or pro- 
cess a rotation. Those mechanism can be imple- 
mented in a neural fashion by the use of "switch- 
ing" neurons such as sigma Pi units [7], or by any 
appropriate learning or connecting mechanism, 
or by an action like rotating the head or focusing 
the attention on a detail of a panoramic image. 
Mathematically speaking, these operations can all 
be reduced to a matrix product between the input 
vector and a projection matrix. In the case of the 
selection of a part of the input vector according 
to a translation parameter  t, we have: 

r - -  [Proj ] .  X 

ProJi+t,i = 1 
with [Proj] definedby Proji,j , i_ t = 0 

dim(Y) can be different from dim(X)  in the case 
we want to extract a sub-picture from X. 

In the PerAc architecture the t parameter  come 
from the action flow. It is associated to the selec- 
tion of a part of the analyzed image. 

A probabilistic Winner Take All 
The quantization precision is not really impor- 

tant because the use of probabilistic neurons al- 
lows to make movements with a precision that 
only depends on sampling time. For  example, if 
the robot can only move forward or 90 ° left or 
right, it can move in the direction of 25 ° if the 
left-neuron is activated randomly twice more than 
the straight-ahead-neuron. The precision of such 
a probabilistic control can be very efficient and 
seems to explain human and animal manipulation 
precision [34] (Fig. 29). 
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Fig. 29. Example of vectors movements that can be proposed 
by the WTA. The vertical line represent the average direction 
of the set of vector. Its precision is higher than the precision 
of the vector resolution [34]. 

It  is an example in which the time integration 
can compensate  a low instantaneous resolution. 
If  Si represents  the analog activity of  the neuron 
before the competi t ion then the neuron i is acti- 
vated if pi(t) = 1. That  mechanism can be written 
as follows: 

Pi(t ) = ifrnd < Sm~( t )  

otherwise 

where S m ~ ( t ) =  Max{Si,i = 1 . . . . .  n} and k is a 
constant. If  k is high (typically around 100) then 
Pi tends to give the same result as a deterministic 
WFA. I f  S i is the maximum then P i - - 1 ,  other- 
wise p~ -- 0. The trajectory of the movement  from 
a point M at time t o to a point N at t ime t x is: 
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Fig. 30. Activation function for different vigilance values (1, 
0.5, 0.1, 0.05) in the case of a neuron that has previously 
learned a shape (Dk = 0.9). 

Neural pattern matching 
The matching can either be computed as a 

scalar product or a distance measure:  

w . x  IW-Xl  
Act = ~ or Act - -1  - - ,  

EW N 

where N is the number  of input. 
The normalization of the activity can be more 

complex in the case of the scalar product  because 
of the possibility of having inhibitory weights. The 
activation function f of a neuron k is: 

f k [ A C t ] ( t ) = D k ( t ) . e -  2-----'~-kl_Dk(,)] , 

h 

Y 

[Pro j] 

Y 

Z(t+l )=h(Z(t))+X.Y T 

L=[Proj].Y 

[w] 
X o 

Competition 

[A] 
X -  -- y 

Competition 

Ai r ~ AO 

PI ~ - ~  PO 

y Y=Max f(W.X) 

Y=Max (Max + (A.X) 
-Max + (-A.Xl)+lo) 

PerAc 

b) 
Fig. 31. (a) different operators used to construct the PerAc architecture. (b) Summary of the PerAc block. AI and AO are, 
respectively, the action input and output whereas PI and PO are the perception input and output. 
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/ l i b  

Fig. 32. symbolic representation of the N.N. used to control 
Prometheus in the case all the snapshots associated to each 
landmarks are different from each others. 

where Dk(t) depends of the neuron history. If 
the neuron has learned a shape Dk(t) is high and 
the neuron is highly selective. At the beginning, 
we take Dk(t)= 0.5 and after learning its value 
become Dk(t) = 0.9 for instance. 

The mean square value of the f function is or 
when vigilance = 1 and tends to infinity when 
vigilance tends to 0. When the vigilance is low the 
curve tends to look like a line because all the 
values are on the higher part of the curve. Never- 
theless, the competition between the neurons al- 
lows to find the maximum value of activation but 
such a high precision process does not seems us 
to be biologically possible. It should be simpler to 
consider that the nature of the non linearity 
depends on the vigilance value (Fig. 30). 

A.3. Synthesis 

Fig. 31 sums up the different elements used in 
and around the PerAc boxes. 

Fig. 32 represents the vision and the naviga- 
tion networks used to simulate the robot's 
"brain". It is clear that both networks are the 
same. We only need to add preprocessing mecha- 
nisms. 
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