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Abstract

The first goal of this paper is to propose an abstract
model of visual place recognition and homing behavior
that emphasizes common characteristics of insect and
mammal visual navigation. In the case of mammals,
the model and robotic experiments show that “place
cells” could be learned in the perirhinal and entorhinal
cortex. The role of the hippocampus (Hs) could not be
specifically dedicated to navigation or map building.
Conversely, in the second part of the paper, we show
the role of Hs could be to learn and predict transitions
between states. This transition prediction could be im-
portant for novelty detection and, above all, crucial to
merge in a coherent system planning and sensori-motor
systems. A neural architecture embedding this model
has been successfully tested on an autonomous robot,
during navigation and planning in an open environ-
ment.

1 Introduction

This paper is dedicated to hippocampal function dur-
ing visual navigation. In the first part, a theoretical
and transversal model for place recognition and hom-
ing behavior emphasizes common characteristics of vi-
sual homing in insects and mammals that could result
from different kinds of merging between “what” and
“where” features extracted from the visual flow. An
original implication of this model is that directional
place recognition in mammals could be performed be-
fore the hippocampus, at the level of the entorhinal
cortex, with information coming from the perirhinal
cortex. In this context, the hippocampus (Hs), usually
supposed to perform such a recognition, appears not
to be specifically dedicated to spatial navigation.
According to robotic and biological constraints re-
lated to complex action selection problems, we will
show that Hs is an ideal structure to learn the tran-
sitions between states defined by the merging of multi-

modal information, whatever its nature is (places in the
case of navigation). In fact, Hs could participate in the
selection of a transition-state among all possibilities,
allowing to choose the correct action during planning.
The presence in the hippocampus of neurons that react
when the animal is at a particular place, does not deny
this explanation. Indeed, “place cells” activity in CA
[30] could result from transition detection or prediction
rather than place recognition performed earlier in the
Dentate Gyrus (DG) and/or in the Entorhinal Cortex
(EC).

The second part of the paper addresses the problem
of action selection and goal seeking in a complex envi-
ronment. The issue of connecting sensory-motor and
planning systems is explored through the construction
by an animat (animal-automat — see [37]) of an abstract
model of cognitive map (based on the place recognition
model previously described). In particular, associating
the recognition of a transition between two places (or
two states) and not a “steady state” with an action is
shown to be crucial. Transition detection, storage, and
recognition are fundamental for an unambiguous con-
nection between sensory-motor and planning systems.
In conclusion, a global model of visual place recogni-
tion and action planning is discussed according to the
neurobiological data related to the perirhinal cortex,
the entorhinal cortex (EC), Hs and the prefrontal cor-
tex.

2 A general model for visual
place recognition

In this section, we try to reconcile models of visual nav-
igation in insects and mammals. Of course, we do not
claim that insects and mammals use the same kind of
visual information to navigate or have the same struc-
tures to compute a place recognition. Instead, the
abstract model of place recognition presented allows
a graded transition from insect to mammal processes.



The gradual increase in complexity of the model is re-
lated to the number of vision primitives and pattern
recognition capabilities.

In the studies of insect homing behavior, it has been
shown that insects can use very simple landmarks (e.g.
black cylinders) to navigate back to their nest. Experi-
ments have shown that if the cylinders (the landmarks)
are translated, the insect searches for the nest entrance
at the geometrical position originally associated with
the cylinders. Isotropic expansion of the experimental
setup does not modify the place the insect searches for
the nest [49, 11]. Conversely, when the nest entrance
can only be located according to a single landmark,
then, expanding twice the size of the landmark will in-
duce the animal to search the nest entrance two times
farther from the landmark than before. The same kind
of experiments have been successfully performed with
birds and mammals e.g. rats [30].

Models explaining navigation capabilities of insects
or mammals do not rely on the same assumptions
[11, 39]. For instance, models of human navigation deal
with landmark recognition, measure of the landmark
displacement, declarative knowledge linked to the use
of an explicit map, and so on. On the contrary, insect
models are based on the idea that perceived panoramas
are directly matched as a whole with stored panoramas.
Models of rodent navigation are also different because
rodent vision is less efficient than primate vision and
their cortex less developed. Whether insects and ro-
dents identify landmarks or merely use global patterns
is difficult to decide. Yet, the visual performances of
rats seem close to that of humans:

“one must be impressed by the similarity of
the rat’s discriminative behavior to the per-
ceptual impressions of the human observer.
If a series of patterns is ranked in order of
the conspicuousness of the figures for the hu-
man eye, that order will have a high predictive
value for the rate at which the rat can learn
the figures. Stimuli to which the rat transfers
in equivalence test are obviously similar for
man” (K.S. Lashley [35] p 181).

More specifically, during tasks involving object recog-
nition, rats use head movements to bring the stimuli
onto the temporal retinal region of binocular overlap
[34]. The main difference between rat and human vi-
sion seems to be mostly quantitative: -the rat’s total
view field is about 320 degrees [28] (180 degrees for hu-
mans); -rat visual acuity is 50 times worse than human
acuity, and obviously its brain is far less developed.
The diversity of results about insects’ visual perception
makes comparison more difficult even though common
characteristics with mammals can be found: insects are
able to focus their attention, to perceive virtual edges,
to learn complex visuo-motor associations [56]... Yet,

these results must be contrasted with Wehner claims
about the simplicity of the insects visual system [55].

In the present model, we would like to show that all
these points of view can be unified if we consider that
visual place recognition is the result of a more or less
complex merging of visual information including “ob-
ject” recognition (“what” pathway in mammals) and
“object” location (“where” pathway). Obviously the
notion of “object” may be supposed to be more com-
plex for mammals and primates than for insects but
our model suggests it could be not fundamentally dif-
ferent.

2.1 Basic insect models

Our abstract model derives from classical models of in-
sect navigation (see Cartwright and Collett algorithm
for instance [11]). These models are mainly based on
optical flow-like techniques in which summation of the
displacements in the visual field of particular cues is
used to compute movement direction which allows the
insect to reach the learned location [11, 55] (see fig. 1).

The low level visual treatment is simply an “ob-
ject/feature” detector using features such as gradi-
ent information to detect a transition between two
areas. The useful information is the azimuth of the
“object /feature” according to a given absolute direc-
tion provided by the sun light polarity for instance.
The possibility that insects directly use the perceived
panorama as a whole cannot be discarded, but the lim-
itations of such a global comparison between stored
and perceived panoramas prohibits its use for decision
making when the distance to the learned location is
large (very low tolerance to object displacements, vari-
ations of lights and shadows and object scale varia-
tions). That is the reason why the promoters of a
direct use of global panoramic information say that
insects seem to rely on path integration to reach the
nest area and then start to rely on global panorama
matching.

Cartwright and Collett algorithm has been success-
fully used to control autonomous robots and proved
to be able to deal with very low visual information
for homing behavior [39]. Its main feature is that the
movement direction is directly computed as a sum of
the direction variation of the vertical edges detected.
Unfortunately important limitations appear and need
to be overcome in order to get flexible navigation ca-
pabilities:

¢ the model does not deal with appearance or disap-
pearing of new features. The algorithm considers
that a given feature has to be matched with the
nearest feature on the ring of neurons. If objects
are introduced and/or occluded, the global distri-
bution of the local features can be very different.
A categorization of the local features could really
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Figure 1: Paradigm of the Optical flow like techniques (Cartwright & Collett). a) represents a typical experimental
setup with 3 identical block cylinders that the insect will use as landmarks. Absolute direction “North” can be obtained
from sunlight polarity. b) shows the variation of input information in a simplified model of the insect compound eye.
Black circles represent the neurons activated by the local landmarks “recognition”. When the animal moves from one
place to the other, the apparent motion of the landmarks on the compound eye can be computed and used to decide the

rotation to adopt for returning to the learned place.

improve the performances by avoiding the match-
ing of quite different local features.

¢ the same system cannot learn to return to several
locations because there is no separation between
place recognition and movement selection.

The need for autonomy means the animal must be
able to learn to return to a given location but also to se-
lect actions according to drives. Unfortunately, in the
Cartwright & Collett model, the actions result directly
from the panorama transformations. The system has
no action selection capabilities in order to decide to
turn right or left according to a motivation. The addi-
tion of the capability of turning right, according to the
recognition of a given pattern, implies to store twice
almost exactly the same information. Because some
kind of place recognition cannot be avoided, computa-
tional and memory considerations lead to introduce it
as a separate stage of the navigation process.

2.2 An abstract model of visual place
recognition

The abstract model starts from the following consid-
erations. First, the topology of the visual informa-
tion must be preserved (withhold an azimuthal cod-
ing). Second, the larger the number of landmarks rec-
ognized, the more accurate the displacement measure
will be. Unfortunately, if recognition means the ability
to recognize an object at a symbolic level (a phone, or
a face), this process cannot be performed in parallel as
it was performed in the extraction of visual primitives
(edges, corners...). Indeed, the cost and the learning
time would be too important (duplication of the mate-
rial for the object recognition).

Nevertheless, if low level undifferentiated features
are extracted in parallel and can be associated with
each azimuth location (an absolute direction provided
by a compass or by the polarity of the light or by the
vestibular system...) then the place recognition Acky,
is computed as the complement to 1 of the sum of the
distances between the expected location of a feature
and the location of the nearest similar feature (eq. 1).

1 (&N,
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where 6% represents the orientation of one learned
feature and §; the orientation of the corresponding fea-
ture in the current panorama (N is the number of land-
marks). The activity Acty is close to 1.0 when all
features are in their learned orientation: the place is
then recognized. The neuron activity decreases when
the features are not at their correct location. Unfor-
tunately even if the place does not look at all similar
to the learned place, the measured activity will not
tend to zero but will remain at a high positive value.
For instance, if the learned place is at the center of
an equilateral triangle shaped from 3 identical cylin-
ders (3 features) then the worst recognition level will
be obtained when the robot is to the infinity from the
learned place. If no more features are visible, the activ-
ity will be 0. But if the robot is far away and continues
to perceive some features, all these features will be seen
in the same narrow part of the visual field. The activa-

tion level will be higher than 1 — 332?" = 0.333 because
the azimuth error will not be farther than %’r from any
learned azimuth. Fig. 2 shows a possible N.N. imple-

mentation of equation 1.
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Figure 2: Level 1 model: Direct matching of low level un-
differentiated visual information resulting from a parallel
process. The visual information is expressed in an absolute
referential independent from the robot orientation. On the
input layer, the black circles represent the recognized land-
marks (parallel extraction). The neighbors neurons are also
activated according to their distance, in azimuth, to neu-
rons associated with recognized landmarks. The second
layer is just a copy of the first layer only represented for
sake of homogeneity with the other models to be presented
in the next figures. The third layer is devoted to place
recognition. If the winner neuron learns the connection to
its most activated inputs, it will have a relevant represen-
tation of the learned place (its output will decrease when
the landmarks move from the learned azimuth to another
apparent location on the input ring of sensors).

The network will be really equivalent to the formal
equation if lateral diffusion of the features on the neu-
ron ring is a maximum (max) operator (the diffusions
from different sources must not be summed. The max
of the contributions must be used). The effect of the
lateral diffusion on the activity I; of the neuron i of the
ring is defined as follows:
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where 67 represents the azimuth of the 5** landmark
in the environment. The neural computation associ-
ated with a place recognition is performed by a classical
formal neuron:

N
Actk = f (Z W,’k.Iiabs>
=0

where Wy, are the neuron k weights and f is a non
linear function that returns a null value for negative
inputs. I%® is the activity of the input neurons as-
sociated with the recognition of one feature under the
orientation % The input information is supposed to
be independent of the system orientation. If the animal
or the robot is rotated 90 degrees left, then all sensor
information is rotated 90 degrees to the left so that the

N.N. input are invariant to the system orientation.

3)

I = tr (I1,6) (4)

where tr(x) represents an operator allowing to trans-
late in a circular manner the components of the I vec-

tor according to the robot orientation §. In a first ap-
proximation, the weights W;;, can be supposed to be 1
(if a feature has been learned under the considered az-
imuth) or 0, but to avoid comparison problems between
neurons associated with different places, it is better to
introduce a weight normalization W;, « —Vie
Ei:o Wik

This set of equations defines a model of how insects
and simple animals with poor visual systems may rec-
ognize a place. We will name it the level 1 model. A
more realistic and efficient model could suppose that
some animals have the ability to differentiate few kinds
of features. If an animal has the capability of recogniz-
ing two different kinds of features and detects that they
are both present in the image, then, the discrimination
capability will be much more important (at least twice
better). As shown in fig. 3, the N.N. does not need to
be changed drastically in order to deal with this new
degree of freedom.
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Figure 3: Level 2 model: Direct matching of low level
information extracted in parallel (same comments as for
fig. 2)

In terms of complexity, it will be called the level 2
of our model. Its formal description is the same as for
the level 1. The only difference is that the input space
has one more dimension associated with the different
features which are extracted in parallel (see fig. 3).

In the case of an even more sophisticated visual sys-
tem, another level of visual recognition integrating sev-
eral local features can be added (level 3 complexity
in our model). In this case, because of the computa-
tional and memory requirements previously discussed,
the system can recognize very few objects at the same
time. The exploration of the visual scene has to be
sequential and a kind of buffer to store the previously
recognized information has to be introduced. Fig. 4
presents such a network. We have to suppose the ex-
istence of a mechanism that controls the focus of at-
tention (internal moving spot light or ocular saccades
or head/body rotations.). The system must also pos-
sess the capability of matching the perceived local view
with already stored views and to store on-line and au-
tonomously new views. A Winner Take All (WTA)
group or an ART network [10] can be used. Like in the



previous systems, the lower layer in fig. 4 provides in-
formation about the object location in the visual field
(its azimuth for instance).
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Figure 4: Level 3 model: Merging of “What” and “Where”
information for place recognition in the case of an high-
level visual system. The lateral diffusion allows to measure
the difference between the learned azimuth and the current
azimuth.

But now, the second group of neurons receives both
object recognition information and their azimuth. A
one by one product between those two kinds of infor-
mation is performed on that layer so that a particular
neuron is activated only when a given object is per-
ceived under a given azimuth. The formal computa-
tion of this group of neurons can be represented by the
activity in a matrix of neurons M computed as follows:

N
M= Z Rec;. Az}

i=1

(5)

where Rec; and Az; are respectively the recognition
and the Azimuth vector associated with the perceived
local view. The effect of the sum is similar to a tem-
poral integration without decay and with a reset to 0
after each panorama exploration. An inhibition of the
previously explored focus points guarantees the sys-
tem cannot focus twice on the same point during the
panorama exploration. So M only contains values be-
tween 0 and 1. The recognition of a learned local view
is associated with a strong activation of the correspond-
ing component in the matrix. A memory at the level of
the neuron is supposed to maintain the activity until
a reset is triggered at the beginning of new panorama
exploration. Different neurons will win for different az-
imuths or different recognized objects. The activity of
the “place cells” P, when the robot is at the location
(x,y) can be expressed by the following equation:

N
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An intuitive understanding of this measure can be
seen fig. 5 where the negative term of the equation is
plotted with respect to the robot position.

Figure 5: Simulation of the error of a “place cell” response
computed according to the negative part of eq. 6. In that
example, the learned location is associated with the point
(50,50). 4 recognizable landmarks are located at positions
(20,20),(20,90),(90,20) and (90,90). The shape can be seen
as an attraction basin centered on the learned location.

In this equation, Ny is the number of visible land-
marks when the robot is at the learned place k (field
corresponding to Py). ©; ) represents the learned value
of the landmark ¢ azimuth from the learned place k.
0; is the value of the same landmark azimuth for the
current robot location (x,y). All the angles are ex-
pressed in radians and measured from an absolute di-
rection (the north for instance). |©;, —6;(z,y)| is
computed modulo 7, V; 1, is set to 1 when the landmark
i is seen from the learned location k£ and 0 otherwise
(the same rule applies to v; for the current location).
When learned landmarks are not recognized, we can
have V;, =1 and v; = 0. f is a non linear function to
account for landmark recognition:

sz ’Uz':].
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The error associated with a landmark azimuth is
maximal when the landmark cannot be found (land-
mark not visible for instance: f(6,0) = 7). Eq. 6
gives a growing activity P that tends to 1 when the
azimuths 6; associated with the current location are
close to the stored ©; .

In the case where the system uses this sequential
mechanism of object identification and where all ob-
jects are similar, there is no need to add another mech-
anism to discriminate between objects. If all objects
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Figure 6: Sequential “recognition” of the cylinders allow-
ing the recognition of a place (case of identical and distant
landmarks).

have the same label then, a single line will be activated
on the “what&where” representation. The resulting
representation (see fig. 6) is exactly the same as the
one we used in the level 1 of our model for an insect-
like place recognition! The system can have problems
in case of symmetrical situations but if the number of
“cylinders” remains low and does not change, the place
recognition will be correct.

categories of the // features extracted

label of the "object" considered

Figure 7: Representation of the visual information fac-
torization in our model. The activation of a neuron in the
matrix is the result of the co-occurrence of the 3 kinds of in-
formation. To exploit the label or “what” dimension, there
is a need for a neuron dynamical memory to maintain active
the neurons while the system explores other parts of the vi-
sual scene. The apparent size of the objects (not taken into
account here) could be represented by a 4th axis similar to
the azimuth axis.

To sum up, our place recognition model, is a propo-
sition about how visual information can be factorized.
The model can be seen as a 3 dimensional represen-
tation (see fig. 7) of the visual information connected
to “place cell” neurons that learn particular configura-
tions of this 3D matrix (the representation is invariant
to the robot orientation). The dimensions are:

e the azimuth of the feature

e the feature category (the kind of feature extracted
if there are several low level feature extractors)

o the label of the “object” associated with the loca-
tion provided by the first dimension: the azimuth

Classical models of visual place recognition can be
seen as simplification, or computation on a particu-
lar projection of our representation. If the matrix
is degenerated to the single first dimension (the az-
imuth) then we come back to the Cartwright and Col-
lett model. If we consider the 2 dimensional matrix:
[azimuth x features] we obtain models that looks
like what is considered in rodents. If we consider
[azimuth % label] we come back to the level 1 model and
to something that looks like primate object recognition
capability. At last, if we consider a learning mechanism
on the complete 3 dimensional representation then, we
could have the possibility of understanding what are
the important features according to a particular task
(navigation, complex object identification).

2.3 Robotic implementation of place
recognition
Our merging and place recognition models have been

implemented on a mobile robot (see fig. 8) in order to
test their efficiency.

Figure 8: Photo of our six-wheeled Koala robot (size 32 cm
x 32 cm) from KTeam SA. The magnetic compass is visible
on the top. The CCD camera is mounted on a servo-motor
to control the direction of gaze.

To take a panorama, the CCD camera can pan from
490 to -90 degrees. This system allows to build a
panoramic image up to 300 degrees wide (fig. 9). Sev-
eral kinds of visual processing have been developed [16].
They involve very rough perception or, on the contrary,
complex visual processing such as log-polar transform
of the visual input, gradient extraction, feature point
detection, ... In this paper, we will only deal with the
simplest one that directly works with the grey level
image, which is good enough for the present demon-
stration.

The azimuths of the possible landmarks are chosen at
the maxima of the vertical gradient at a very low reso-



Figure 9: 16 examples of 32 x 32 local views learned as
landmarks from a 300 degrees panoramic image.

lution (see fig. 9). They are corrected according to the
value of a magnetic compass (gyroscopic information
could also be used). Any a priori selection mechanism
of “interesting” landmark can be used. The perceived
local views are centered around those points. For each
selected focus point, a 32 x 32 pixels local view is built
by averaging the 148 x 288 pixels of the corresponding
panoramic image part (see fig. 9). The y axis is just
scaled whereas a logarithmic transform is used for the
x axis (no need of a complete log-polar transform since
there will not be object rotation problems in the cam-
era plane). Then, each current local view is compared
with each learned local view. This comparison is made
by computing the norm of the difference between the
grey levels of pixels of the two local views. The best
corresponding local views are used as landmarks, i.e.
their positions in the image are compared with the ones
in the learned panorama.

All possible landmarks are used. As a result, the
number of object-landmarks found in the image can
change from one image to the next. The system can
consider a human or an animal as a landmark! This
is not a problem since the presence of a landmark, not
present during learning will have no effect on the place
recognition (see eq. 3 and 6). Obviously, the pres-
ence of new landmarks can hide learned landmarks. In
that case, the recognition level of the associated places
will decrease. But because the robot learns at least 15
landmarks!, the lack of 5 of them will not introduce
an excessively large variation in the neuron activities.
It might be noticed that the correct recognition of 2
landmarks is enough for a correct place recognition. If
the errors are not coherent, they can be interpreted as
noise on the neuron response. In the opposite case, the
system will fail because large coherent errors mean the
perceived situation looks like a massive displacement
of the landmarks (rotation or translation of the room)!

The interest of these experiments for our under-
standing of animal visual navigation lies in the oppor-
tunity to record the response of each neuron coding for

I The number of visible objects or landmarks depends directly
on the visual scene complexity. The presence of 15 “landmarks”
is a lower bound (in average). The system can find up to 40 land-
marks (intrinsic limitation of the landmark detection system).
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Figure 10: The room in which the experiments are per-
formed. The little crosses represent the places where the
robot has learned (see fig. 11 and 12).

place recognition (we may consider them as artificial
“place cells” — see below) in a completely controlled
situation. Fig. 11 shows the activity of 25 neurons as-
sociated with 25 different places. This activity is the
response of the neurons according to their direct in-
put (recognition level of the landmark and information
about their azimuth). Learning was supervised with
each neuron associated with a particular location in a
5x5 grid of the room used for the experiments (see plan
fig. 10). The different curve lines show that a neuron
may be activated even if the current view is far from
the learned one, and that there are no local minima.
Fig. 12 shows what happens after a strict competition.
For a given location, only the winner neuron remains
activated (it keeps its previous value while the others
are reset to 0). This activity looks very much like the
shape of place cell activity that has been recorded in
the rat hippocampus for several decades [30] (we will
come back to this kind of comparison in the next sec-
tion). The results show the model allows to obtain a
segregation of the place locations in a real environment
from the sole visual information.

The most interesting result is that the gradient of
the place recognition level can be used very far away
from the learned location (more than 2 or 3 m in our
case). In the following experiment, a supervised trig-
gering of the place learning is used so that the robot
learns only two places A and B which are 240 cm away
from each other (see fig. 10). The robot learns 20 lo-
cal views or landmarks from those two locations. Even
if the same object can be perceived from A and B,
the robot learns two different views for the object (the
vigilance threshold is set very high). Next, the robot
moves on a straight path between those two places and
the activation level of the two place cells is recorded.
Fig. 13 shows the average of the 2 neuron responses
computed from five different measures at each location
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Figure 11: 25 neurons, 25 places, 5 measures averaged
per place, diffusion 35 degrees. Neurons are considered to
be isolated (activation only comes from the direct input).
Learning was supervised: each neuron is associated with a
particular location in a 5 x 5 paving of the room in which
the experiments have been carried out. Each rectangle is
a map of the room. The curves show the activity of the
neurons corresponding to the crosses of fig. 10.
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Figure 12: Same setup as in fig. 11. A competition be-
tween neurons is introduced. Only the winner neuron re-
mains activated while the others are set to 0 (no activity
enhancement used).

on the line. The standard deviation comes from the
uncertainty on the “landmark” recognition in case of
ambiguous local views. The two curves decrease almost
monotonously on more than 2 meters, which means the
information learned in A and B is relevant when the
robot is far from those locations. A gradient following
technique or any other efficient technique could be used
to return to the learned places [18]. The neuron does
not only represent the recognition of a place but also

provides information about the distance to that place.
Another interesting result of this experiment lies in the
importance of a non linear measure of the azimuth vari-
ation for a given landmark between its learned and
perceived location. Indeed, in fig. 13 a) landmarks are
supposed not to be recognized if their azimuth varia-
tion is greater than 38 degrees while in fig. 13 b) the
threshold is about 276 degrees. In the first case, the
place recognition curve is sharp and precise around the
learned place, but becomes difficult to use for distances
longer than 1m. Conversely, in the second case, with
an important tolerance on the azimuth variation, the
measure remains correct over several meters but is ob-
viously relatively “flat” close to the learned locations.
Hence, during a homing behavior, it can be useful to
use a large diffusion when the robot is far from the
goal (low recognition level of that goal) and decrease
the diffusion as the robot comes closer to the goal. We
successfully use this kind of techniques on our robot.

These results must be contrasted with those obtained
using only the information about the azimuth of the
landmarks and not their identification (level 1 of the
model). Fig. 13 c) shows clearly that this kind of
information can be used when the robot is close to
the learned place but is of no use farther (no gen-
eralization capability). This experiment shows also
that algorithms directly inspired from Cartwright and
Collett model can work correctly if there are not too
many landmarks. When there are more than 10 pos-
sible landmarks, the problems of landmark selection
and landmark matching become non trivial and other
mechanisms need to be introduced in the algorithm
(learning intermediate places but with the problem of
no generalization or introducing a mechanism to rec-
ognize relevant landmarks [6]).

A last robotic experiment can be useful for under-
standing some differences between rodent and monkey
perception of their visual environment. In this new ex-
periment, the visual field of the system is limited to
180 degrees. Then the activity of the neurons associ-
ated with the recognition of the “what&where” repre-
sentation are no longer place cells but react like view
cells and have very similar properties than the “view
cells” recorded by E. Rolls ([42, 43]) in the monkey
hippocampus (see fig 14). The neuron response seems
to be defined by the view of the environment and not
by the place where the robot was.

This experiment shows something that was already
true in the previous experiment but more difficult to
see: our place cells are directional and their direction-
ality depends on the field of view. For large fields of
view (about 300 degrees) and for a given location, the
activation of a place cell decreases a little when the
robot orientation is at 180 degrees of the orientation
used for learning (if the landmarks are uniformly dis-
tributed). For smaller visual fields, it happens more



Mesure de | activte comparee de deux neurones (Diffusion: 35)

nnnnnnn e activite d un neurone WHERE

a)

Figure 13: a) and b) Responses of two places cells while the robot is moving on a straight line (dashed lines represent
the standard deviation computed over 5 trials). The diffusion is respectively about 38 degrees a) and 276 degrees b).

The 2 peaks are associated to the 2 learned locations (za=

3 and xp=11 distant 240cm apart). c) Response of a place

cell computed according to the sole azimuth information of the landmarks (the learned location is at x=3, the highest
peak). The landmarks are all considered to be the same. The diffusion is about 38 degrees.

walls

3 ¥

~—y—

3.3m

60cm

A\—=|

walls

Vi

)

3.3m

60cm

—=M o\

24m |

5

Figure 14: Record of 2 “view cells” according to the robot location and orientation in our experiment room (arrow
represents the position and direction of the learned view). The black bars represent the neuron or “view cell” activation
in direction of view. The robot uses the same algorithm as for place recognition. The robot field of view is simply

reduced from 300 to 180 degrees.

easily that landmarks disappear from the field of view.

2.4 Discussion of the model

The meaning of the robotic results presented here ques-
tion a lot if we compare them to animal visual navi-
gation. First of all, our results, like others obtained in
neurobiology these last years, confirm that visual infor-
mation is very important for place recognition. In con-
tradiction with McNaughton and others [36], it appears
to us simpler to imagine a model of place cells mainly
based on visual information but where the idiothetic
information would be used to increase performance or
to maintain a coherent activity when the light is off
or when the environment is visually non discriminant
(corridor situations or very poor visual environments
like those used for most of the neuropsychological stud-
ies about navigation...). Another argument in favor of
the preeminence of visual information is the fact that
rodents reset their odometric information according to

visual information if there is a strong contradiction be-
tween them [13]. This kind of merging has still not been
performed in our robotic experiment but it will be of
very high importance for complex navigation tasks.
Other information like apparent size could also be
used to improve the system performances and pro-
vide information about landmarks’ distance. But, as
pointed out by Zipser [57] the sole distance informa-
tion cannot be used to distinguish between mirror sit-
uations. Information about the relative locations of
the objects from each other are very important. More-
over, distance information obtained from vision is less
precise than azimuth information. One of the main ar-
gument of Burgess, Recce and O’Keefe model in favor
of the use of distance information for place recogni-
tion was to account for the results that an expansion
in a single direction of the experimental setup induces
a splitting of the place fields [8]. Their explanation is
that if a neuron takes distance information from two
different walls and if the distance between the 2 walls



increases then, the neuron will have two maxima of
activation from the two locations associated with the
learned distances.

If place cell activation is computed according to our
model (see eq. 6) then, it is not possible to account for
O’Keefe and Burgess experiment: the place fields re-
main robustly associated with the same location! That
means absolute azimuth information must not be used
if the model has to account for this kind of drawback.
The same “problem” also remains if a given landmark
is taken as referential to measure the angles (see fig.
15). This kind of robustness of place fields in our model
is interesting for robotic applications but disagrees with
the biological data!

Interestingly, if the angles are measured from one
landmark to the next (each landmark is used as a ref-
erence to measure the azimuth of the next landmark)
then we observe the splitting of the place field in two
when the environment is enlarged (see fig. 15 c¢) and
d)). In that case, to explain the splitting of the place
field in two, we will consider that the landmarks are the
4 corners of the workspace (a box) and not the walls by
themselves as in Burgess, Recce and O’Keefe’s model.
Then, a place is defined as the location where the an-
gles between landmarks remain constant. Because the
angles are measured between the current location and
two particular landmarks, the places where an angle re-
mains constant is an arc of a circle. If the box dilatation
is homogeneous, the dilatation of 3 circle radius will be
identical for all of them and the 3 circles will continue
to intercept each other at the same location. On the
contrary, if the dilatation only happens in the x direc-
tion, the places where the angle associated with L3 and
L4 will not change while the places where the angle be-
tween L1 and L2 remains the same will change because
the distance between L1 and L2 changes. As a result,
there is no longer a unique intersection of the 3 circles.
2 locations of intersections between the two pairs of
circles solution appear and constitute the places where
there is a minimum of error in the place recognition.
Then, the associated place cell has 2 local maxima of
activation and our model could be considered as an
alternative explanation to account for place field split-
ting. As a preliminary conclusion, we can only say that
our abstract model does not disagree with neurobiolog-
ical evidence. Questions that remain are: is the rodent
visual system complex enough to make our model plau-
sible? How is it possible to embody our abstract model
in the neurobiological structure?

First of all, it appears that the whole field luminance
is not much used by normal rats [31, 25]. We can con-
clude they use something more complex than the level
1 of our model. Rats must be able to use some kind of
landmark identification but “it is not clear, however,
how these distant cues are processed. They might be
fixated sequentially or processed in peripheral vision
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as either stationary of self produced movement cues.”
([32] p 293). The landmark identification performed by
rodents could involve only few parallel and low level
feature extractors (like in the level 2 of our model).
Indeed there are also some suggestions that the rat
temporal cortex may be involved in peripheral and not
central vision [32]. But, there exists in the rodent lat-
eral posterior cortex an area called Te2 (Krieg’s area
36, Zilles’s area Te2) that has some resemblance to
inferotemporal cortex of the monkey. It projects to
perirhinal region [12] and receives projections from the
entorhinal cortex [33].

These connections are mainly similar to those of the
monkey. Lesions to the posterior parietal cortex (PPC)
involve a “deficit in perceiving the spatial relations
between objects, such that the animals do not orient
themselves accurately with respect to spatial informa-
tion. This deficit is reminiscent of similar deficits in
humans and non human primates. The posterior pari-
etal deficit is likely dissociable from the frontal or hip-
pocampal deficits in that there is no additional mem-
ory deficit after PPC lesions [32]. From the anatomi-
cal data, it is not possible to say that complex object
recognition cannot be used for navigation, but the abla-
tion of Te2 region does not perturbate navigation task
like in the Morris swimming pool. On the contrary,
it suppresses the capability of associating the recogni-
tion of a complex object with an action, like jumping
in the direction of the object or avoiding it. It is thus
possible to conclude that there are in rodent and mon-
keys two distinct visual processing routes: one for the
spatial guidance and one for the kind of visual analysis
required for object recognition [38, 32]. Obviously, all
these features can be much more complex in the pri-
mate or the human brain with the possibility of more
cognitive function in PPC (spatial rotation, map vi-
sualization...). In conclusion, animals such as insects
(ants, wasps, bees...), rodents and primates can use,
at the same time, more or less complex (or integrated)
visual information that our generic model accounts for.
It seems very interesting there exists a path from sim-
ple to complex visual navigation linked with a more or
less elaborated or complex merging of visual informa-
tion.

Now, we can try to address the second question
about how to fit our model in the biological struc-
ture. Our starting point is that nearly every neocorti-
cal area has reciprocal connections with the perirhinal
cortex which is the major route to hippocampus and
amygdaloid formation [43]. Hence, the perirhinal cor-
tex or the parahippocampus could be the places where
local configurations of different kind of information is
recorded (like “what” and “where” information).

In the case where only low level and parallelly ex-
tracted visual information is used, this merging can
be seen as a first step towards information integration
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Figure 15: a) Simulation of 3 place fields on a flat surface (coordinates expressed in an arbitrary metric) before
environment dilatation when the landmark L0 is taken as the reference to measure the angles. The grey level represents
the level of neuron activation according to the simulated robot location (areas associated with higher activities are
represented by darker areas). b) Place fields after environment dilatation. ¢) and d) Simulation of the effect of a box
dilatation on 1 place field when angles are measures from one landmark to the next: c) before box dilatation, d) after
dilatation splitting in two of the place field. The arc of circles represent the location where there is no error on a given

angle or neuron input.

in order to recognize some kind of more complex lo-
cal views. When more abstract visual information is
available, the merging of the “what” and “where” in-
formation needs the presence of sigma-pi unit [44]. The
same holds if we suppose that other contextual infor-
mation is used. It will have a modulation effect on the
more spatial information and a product operator would
be of a great help. Hence, we can propose a very hy-
pothetical model of the place recognition in which the
parahippocampus is used to store experienced configu-
rations while the place recognition is performed in the
entorhinal cortex.

But it remains striking that the place cells found in
the rat hippocampus are restricted to an area about
10 to 20 cm while we insist on the possible availability
of a continuous place recognition information that can
be used on several meters (at least 2m, 10 times the
diameter of the observed place fields)! In a simple open
environment the sole use of the discrete place recogni-
tion performed in the hippocampus means the animal
is only able to recognize its very location and cannot
have any idea about its distance to a particular loca-
tion like a goal or the platform in the case of the Mor-

ris swimming pool. We know this information could
be available at a very low cost! As a result, models of
rat navigation based on hippocampal place cell always
involve cognitive maps [53] that can be represented as
a graph linking neighboring places. Unfortunately to
come back to a goal location, a robot using these mod-
els will have to already know a path linking the current
location with the goal location. A priori generalization
is then not possible and if mammals were all using only
this kind of strategy, they would have less navigation
insight than insects! On the contrary, as shown in fig.
16, it is sufficient with the Perception-Action (PerAc)
architecture (for more details see [24]) to learn only 3
place-cell / action associations in the immediate neigh-
borhood of a goal to allow the robot to come back to
the goal from any location in the open space around the
goal (even if the robot never experienced this location
before).

Is it possible that the “real” place cells or the precur-
sors of the hippocampus “place cells” would exist before
the hippocampus? According to our model those cells
might react over very long distances and would not ap-
pear at first sight as really place-specific because hip-
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Figure 16: Schematic representation of a robotic experi-
ment in which our robot learns 3 locations around a goal
(the black circles) associated with the actions that allow it
to reach the goal. When the robot is far from the goal, the
competition between place cells allow the robot to reach
the goal whatever its starting position is (see [18] for more
details). The 2 long straight lines represent the frontiers of
the place “recognition” areas associated with the 3 place
cells.

pocampal place fields are more localized and sharper
than the tuning curves of our model’s cells. It would
be only at the level of the entorhinal cortex that the
competition would allow to measure activities that look
like “directional place cells”. Now, the problem is now
to study how this place or view recognition mechanism
can be used in the case of a motivated navigation in a
complex environment.

3 A planning model based on
transition detection

Using the “place cell” learning mechanism presented
above, a given environment can be paved with place
fields so that for each subpart of the environment a
given place cell responds. Furthermore, each “place
fields” can be associated with a basin of attraction,
and is thus potentially reachable (provided it is rec-
ognized, and that there is an open space between the
place the animat actually is and the one it wants to
reach). Therefore, if some of those places are asso-
ciated with specific motivations (“hunger” or “thirst”
for instance — see figure 17), the modulation of the
recognition by the motivation level allows the animat
to reach the appropriate place. This simple action se-
lection mechanism still works even if there are obstacles
on the trajectory, provided a reflex obstacle avoidance
system competing with the goal attraction mechanism
[17].

The main difficulties arise when the animat cannot
perceive directly where the goal is, for instance when
there is a wall or a huge object. As the animat cannot
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see the goal, it cannot generalize the “good” move-
ment to perform from what it has learned next to the
goal. An intermediate step consisting in learning how
to reach places from where it is possible to see the goal
is necessary. Behaviorists have proposed that it could
be performed by learning what they call “condition-
ing chains”: they suggest that from place to place, the
movements leading to the goal could be reinforced (it
is interesting to notice that this mechanism is similar
to Q-learning techniques [54]).

O Gl
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O

Figure 17: Example of a complex environment showing
the need for a planning mechanism. Circles (and the as-
sociated capital) represent learned places and arrows show
the movement leading from one place to another. 2 goals
G1 and G2 associated to 2 different motivations are also
present. Conditioning alone cannot explain the capacity of
the animat to choose between 2 possible movements in B
(the dotted arrows represent the alternative movements), a
planning or anticipation mechanism must be added.

This explanation can still stand even if, at given
places, there are several possible routes (but a sin-
gle motivation). For instance, in figure 17, if the ani-
mat finds a new goal G which is closer than G, the
route can be reinforced more efficiently since it is closer
(short delay between reinforcement signals). Yet, in
case G; and G5 are associated with 2 different moti-
vations, the “conditioning chain” explanation does not
work anymore. For instance, if G is associated with
“thirst”, links BC' and BD will be reinforced (maybe
BD will be reinforced more since G is closer) and there
would be no way to distinguish the action leading to G
from the action leading to G>. One can think of using
a modulation mechanism as the one we propose above,
but in this case, there should be as many place-cells or
action coding as motivations!

3.1 Learning a cognitive map

In fact, the ultimate problem of the above model is
that it does not explain latent learning. Indeed, in the
30’s, Tolman performed a maze experiment with rats,
which consisted in comparing the results of rats that



were always rewarded while another group of rats was
only rewarded after 11 days [51]. According to the be-
haviorism paradigm, rats of the first group should have
had much better results than rats of the second group.
Yet, after the eleventh day, the rats of the second group
had results equivalent to those of the first group. Thus,
it seems that, although they were not rewarded before
the eleventh day, rats have learned (“latent learning”)
an internal representation of the maze (called “cogni-
tive map” ). The definition of the “cognitive map”
is controversial. In particular, some consider that this
kind of map must be in Cartesian coordinates [15]. Yet,
Schmajuck proposed a definition which is, in our opin-
ion, more appropriate [45]:

“..The cognitive map [...] is a topological
map, i.e, it represents only the adjacency, but
not distances or directions, between places...
The cognitive map allows the combination of
information about spatially adjacent places,
and thereby the inference of the connections
to remote places.”

Let us come back to our “place cell” model: how is
it possible to learn a “cognitive map” starting from our
implementation of the recognition of places? In fact, it
is rather easy if we consider that neurons of the place
recognition map are fully interconnected. Then, when
a place is recognized, it is coded on a neuron ;. When a
new place appears, it is coded on j, and a simple Heb-
bian rule allows the learning of the time relationship
(and thus the topological relationship) between these
two situations. If x; is neuron ¢ activity and Z; its cor-
responding short term memorization (7 time constant)
with:

O 20420 (7
dt
the Hebbian learning rule is given by:
dWi; dR _
o = -\W;; +(C + dt) 1-Wi;)-mi-z; (8)

where C is a positive constant (speed of the asso-
ciative learning) and A the decay factor. The weight
modification also depends on the variation of the rein-
forcement signal R. If the reinforcement decreases while
the robot is moving from one place to the other then,
the associated link will be less reinforced than in the
normal case. (1 — W;;) is a saturation term to ensure
Wi; < 1. By generalizing the mechanism, a graph of
the spatial relationships between places is constructed.

Planning requires also to learn the link between the
recognition of a given place and the satisfaction of a
motivation (that will be used as a goal). For this pur-
pose, it must be considered that the recognition of this
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place is associated with the activation of a given “moti-
vational” neuron. The links between the motivational
neuron and the recognition of the situation can be re-
inforced with a Hebbian rule. Then, a solution for
the planning process can be the back-propagation of
the motivation activity within the map (as for resistive
grids [7]). For a proper functioning of the planning pro-
cess, the activity of a neuron in the cognitive map (z;)
must be a function of its topological distance (number
of intermediate places for instance) to the goal. We
propose:

9)

We assume that neuron activity is bounded by 1 and
that the value of weights is bounded with a value W, 4,
which is lower than 1 (see above). Before stabilization
of the algorithm, there must be several iterations. The
2 phases of planning algorithm are:

zi = max (Wi; - z;)

e Initialization: 49 is the motivational neuron,
2, (0) « 1 and z;(0) « 0, Vi # 4o

e Do Vi, z;(t + 1) < max (W;; - z;(t)) While the
net is not stable (maximal distance between the
current node and the goal in connections number)

The use of the cognitive map could be the following;:
after backpropaging the motivations from the goals to
all the sub-goals or known places, the system tries
to recognize its current location (the most activated
“place-cell” is the nearest learned place from the cur-
rent robot location). Then, it selects as a sub-goal the
most activated node on the “cognitive map” directly
linked with its current location. To reach that place,
a gradient following technique can be used (moving in
the direction that maximizes the activity of the place
cell coding for the sub-goal the system wants to reach)
When the system enters in the vicinity of the next sub-
goal, the process is repeated (selection of the next sub-
goal...) until it reaches the nearest goal relative to its
starting location. This neural algorithm is formally
equivalent to Bellman’s shortest graph distance algo-
rithm [5] and it has been shown to be very efficient
in simulation to solve complex action selection prob-
lems including opportunistic choices and contradictory
motivations [20, 40].

If the place-recognition neurons were directly con-
nected to each other with recurrent connections so they
can be also used as a cognitive map, the meaning of the
neuron activity would become ambiguous: the neuron
activity would represent a mixing between the distance
to the associated learned places and the distance to the
goal (the feed-forward and the backward computation
would be mixed together).

A solution consists in separating the process in two
functional levels so as to separate the two information
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Figure 18: Building of a “cognitive map”. During learning,
the information goes from recognition to “goal” level to
allow the learning of the map (topology learning between
A, B, C and Gi...). During planning, the activation of a
motivation is back-propagated on the map.

flows: one corresponding to the “goal” level, another
corresponding to the recognition of the current place.
During learning, the information must flow “bottom-
up” from the recognition level (Py(z,y) activity) to
the “goal” level so as to allow cognitive map learning
(one-to-one connection between the neurons of the 2
levels). Conversely, during planning, the information
coming from the “goal” level must go “top-down” in
order to select the action to perform (see figure 18).
Interestingly, this functional organization corresponds
to the neurobiological model of cortical columns pro-
posed by Burnod [9]. But the need for 2 functional
levels does not mean necessarily an anatomical sepa-
ration. For instance, neuromodulations can be used
to inhibit the effect of a particular kind of inputs dur-
ing critical periods. We will come back to this point
in the discussion of the brain regions that could im-
plement such a cognitive map, but the possibility that
CA3 recurrent connections could play that role is not
impossible and is the basis of most of the navigation
models using hippocampus (see [53] for a review).

3.2 Need for transitions coding

Until this point, we have not considered action learning
and selection aspects. Animal studies have shown, that
rats were able, at “strategic locations” (T-junctions of
a maze for instance), to try for a short distance the
different possible ways, and come back to the junc-
tion, and finally choose the more appropriate action to
reach the goal [50]. This mechanism, known as “Vi-
carious Trial and Error” (VTE), can be understood as
a way to estimate the local gradient on the cognitive
map ([45, 46]). But these systems rely on an external
mechanism to analyze the cognitive map activity and
to decide of the correct movement. In fact, in these
systems, the action only results from a gradient de-
scent and cannot be controlled willingly. To overcome
this problem and the limitations of gradient descend

techniques (which are not efficient in a robotic context
[18]) it is important the system can learn to select a
particular movement in a given situation. Our prob-
lem is then about the “embodiment” of the cognitive
map in the sensory-motor system, i.e the problem of
connecting it correctly to the “place-cells” and to the
movement selection mechanism.

Motivation @

Figure 19: Planning is impossible by using only steady
states recognition. Indeed, a situation can be linked with
two different movements, and it is thus impossible to decide
which action must be selected.

A first idea could be to decide that each place recog-
nition cell has to be linked with the movement allowing
to go to the next place. Yet, during planning, the sys-
tem must use the information coming from the goal
level to perform the action sequence allowing to reach
this goal. If one place is linked to several actions, the
correct action cannot be selected. For instance, if the
animat starts from A on fig. 17, when it arrives in B
there is no way to choose which action must be per-

formed (B is linked with two movements! — see fig.
19).
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Figure 20: Use of the transitions for actions planning. At a
given place, there are several possible transitions which are
likely to be recognized by the recognition system. Thanks
to the back-propagation of the motivation activity, the
recognition can be biased in order to propose the appro-
priate movement to reach the goal (impossible with steady
states, see fig. 19).

As there are action selection problems due to the as-
sociation of two movements with a single place recogni-
tion, the solution is to build a representation which can
disambiguate movement selection. Besides, this repre-
sentation must take into account both the start and end
points. A solution consists in building a representation
of the transition between two situations (see figure 20).
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Let AB be the internal representation of the transition
between A and B. The associated action is the move-
ment allowing to go from A to B (learned using a con-
ditioning rule [22]). The idea of this representation has
been inspired by a neurobiological model of timing and
temporal sequences learning [1, 2, 21]. As the inter-
nal representation is elaborated from transition recog-
nition and not only from scene recognition, an internal
representation is necessarily linked with only a single
movement. In situation B, for instance, the animat
may turn left (arrives in C) or turn right (arrives in
D). Transitions BC and BD will be created and re-
spectively associated with “turn left” and “turn right”
movements.

During exploration, the “recognition” level creates
an internal representation for each transition between
places and associates the movement allowing to go from
one to the other. Besides, at the “goal” level, con-
nections between representations are learned so as to
create a graph of the topological relationships between
the transitions. When the animat reaches the goal, it
learns the association between the recognition of the
last transition and the motivation satisfaction. During
planning, the motivation back-propagation towards the
current state allows the activation of the graph nodes,
thereby indicating the movement that is necessary to
perform in order to reach the goal.

3.3 Transition prediction system

The planning mode, requires (at variance with the ex-
ploration mode) to decide what movement to perform
to reach the goal. Therefore, the system must allow a
prediction of the place(s) which can be reached from
the current location [1, 21]. We propose a neural imple-
mentation (see fig. 21) which consists in a map whose
neurons are, on the one hand, linked with the deriva-
tive of the current place recognition? and, on the other
hand, with the memory of the previous input. The
neurons connectivity is shown fig. 21. The activity of
neurons of this map is simply obtained adding the ac-
tivity of each input, and then, thresholding the result.
The initial weights and the threshold must be chosen
so that the activity of a single input cannot activate
the neuron, but both can. This system can also be
used to learn to predict the possible transitions. This
can eagily be done assuming the link between the de-
layed input and the map can be reinforced enough (by
Hebbian learning for instance), in order to be able to
activate the neuron when only the delayed input is pre-
sented (simulation results can be found in [41]).

2The direct input vanishes if the animat remains at the same
place. We suppose this derivation could be performed in EC.
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3.4 Experimental results

We have tested this architecture in the open environ-
ment detailed in figure 22.
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Figure 22: a) The robot path during the exploration and
the latent learning of the cognitive map. b) Sequence of
actions when the robot starts again from A and used the
diffusion of the motivation on the cognitive map to plan its
actions.

In a first phase, the robot explores the environment
at random and at the same time learns the places A,
B, C, D, and E when the activation of the already
learned places becomes smaller than a given thresh-
old (vigilance level). The cognitive map is elaborated
over time, creating a new node for each new transition
and linking nodes consecutively encountered. In the
present experiment, the robot learns and links together
the transitions AB, BC, CD, DC and CE (see fig. 23).
The movement associated with a given transition is ob-
tained after path integration of the robot movements
from the previous activated place to the next one. The
path integration is reseted when the robot discovers a
new place or arrives to a known place.

It can be noticed that a single path has been learned
in this very simple experiment. Nevertheless, it ap-
pears to be a very interesting case to show the capabil-
ity of opportunistic behavior of the algorithm. Indeed,
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Figure 23: Cognitive map built after the exploration of
the environment shown fig. 22. Note that there is no direct
connection between the neuron coding the transition BC
and the neuron coding the transition CE (because it was
not experienced by the robot during the exploration). With
the transition prediction system, the robot can nevertheless
choose the transition CE after the transition BC because
of its opportunistic behavior (recognition of C allows to
predict CD and CE).

according to the graph, there is no reason for the robot
to go directly from C to E. It should go first in D!

After this short exploration of the room, the robot is
brought back to the starting point and the motivational
neuron is activated. Because of the learning, the mo-
tivation is back-propagated on the cognitive map. At
the same time, the robot recognizes from the sole visual
panorama its current location (the most activated place
cell). This recognition is used to “predict” all the pos-
sible transitions from the current location. When sev-
eral transitions are possible the goal back-propagation
on the cognitive map allows to bias the competition
between the predicted transitions (through the top-
down connections). The best transition according to
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the planning system is then selected. When the robot
starts from A, only the transition AB is possible so
the robot moves in the direction AB until it recognizes
B. Then, the transition BC is proposed and the robot
moves in that direction. Later, when the robot arrives
in C, it predicts from C the transition CD but also the
transition CE. Because the planning node CE is most
activated than the node CD (nearer to the goal), the
recognition of the transition CE wins and the robot
triggers the movement in the direction CE (top-down
bias of the planning system on the transition recogni-
tion system). Hence, it performs a “shortcut” in the
graph. This new path (link between BC and CE) is
besides learned on the cognitive map after the robot
arrives in E.

Current robot experiments deals with navigation be-
tween several rooms. In simple cases, like moving from
room A to the corridor and selecting the room B or C
according to a particular motivation, the system works
quite correctly. But a lot of work remains to be done,
first, to select correctly the places to be learned (for
instance to learn to pass correctly through a door) and
next, to deal with visually ambiguous locations that ap-
pear in long corridors or in dark conditions (the place
recognition has to take into account odometric informa-
tion). Finding a low cost way to introduce odometric
information in the planning system will also be very
important to allow real short-cut like going directly
from A to G in the experiment presented fig. 22.

4 Discussion and conclusion
In this paper, we have proposed a neurobiologically

plausible architecture which could explain some ani-
mals’ visual navigation abilities. Starting from the bi-
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ology of insect and mammal vision system, we have
elaborated a generic abstract model. Our model ac-
counts for navigational abilities of both species pro-
vided the input and its processing are either simple
(rough recognition and no integration) for insects, or
complex (association of object recognition and spatio-
temporal integration) for mammals. This model is
mainly inspired from the “place cells” found in rat hip-
pocampus but it can also account for “view cells” found
in the monkey hippocampus if simply the system field
of view is reduced from 320 to 180 degrees. Yet, it is
argued that “place cells” and “view cells” could exist
before the hippocampus (in EC for instance). We pro-
pose that Hs is mainly devoted to learning and predict-
ing transitions between steady states which are crucial
when planning abilities are required (navigation in a
maze like environment for instance).

We can try to compare this model with neurobio-
logical data. In particular, in support of the temporo-
spatial planning function of prefrontal cortex, it has
been shown that rats with medial pre-frontal (MF)
lesions have impaired performances for a variety of
delay-type tests including delayed response [32]. They
have also difficulties for the acquisition of any spatial
maze task in which they have been tested [4, 27, 31].
Our proposal is that the cognitive map could be elabo-
rated and/or implemented in the prefrontal cortex but
that the internal representations of transitions could
be coded in CA3. Indeed there is neurobiological ev-
idence that the pre-frontal cortex has extensive con-
nections to and from CA1l (which is consistent with
our model — [14, 48]). However, it has also be shown
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that MF rats succeed in solving Morris swimming pool
task. This does not contradict our model, since navi-
gation in the Morris pool can be explained simply by
a direct association between “place cells” and actions
(see [23, 24, 19, 17, 18]). The rat capability of reach-
ing the platform even after Dentate Gyrus (DG) and
CA3 and CA1 ablation (even if its performances are
impaired) could be explained by the existence of place
cells in the entorhinal cortex. The impairment of the
performances could result from the incapacity either to
merge odometric information or to plan a short trajec-
tory or both, because of an incapability of predicting
the possible transitions from the current state.

We believe the hippocampus must not be thought
of as devoted only to navigation. It rather seems to
be a structure involved in a more generic function of
integration of spatio-temporal information, transition
detection, and novelty detection (an error in the pre-
diction is detected and the input considered as a nov-
elty). In particular, Hasselmo has proposed a model
of novelty detection involving the hippocampus and a
structure called the septum ( responsible for cholyner-
gic (ACh) modulation— [26]). Indeed, there is biological
evidence that a mismatch of recognition in CA3 (resp.
CA1l) makes the corresponding region of the septum
react and modulate the activity of CA3 (resp. CA1l)
in order to learn a new pattern. Due to links with the
pre-frontal cortex, the activity of the septum can also
be modulated according to a vigilance or motivational
level. In our model, we have used this inspiration to
account for the stabilization of the transition learning

[3].



More precisely, DG granular cells (fig. 24) could inte-
grate information linked with the directional place cells
of EC to build place cells with no preferential orienta-
tion (classical place cells). At last, CA3 pyramidal cells
could build transition cells as described in our model.
This could explain why the place fields associated with
neurons in DG are smaller than those associated with
CA3 neurons. In fact, CA3 neurons should react not
only when the animal is at a particular location, say
B, but also when it moves from B to C or from B to D
(see fig. 24). If transition selection really happens in
CAl, it should be also possible to notice smaller place
fields in CA1 than in CA3.

Besides, what is the role of the recurrent CA3 con-
nections? Are they used as an auto-associative mem-
ory (for the completion of distributed patterns)? Or
are they used as an “hetero-associative” memory that
could predict a sequence of possible transitions? In the
present model, both solutions are possible but it would
be simpler to imagine the CA3 recurrent connections
as an auto-associative memory. Otherwise, the prob-
lem would be to control the diffusion of activation first,
during the learning phase, then during the exploitation
phase. It is complex to manage but this is not impos-
sible to imagine. Other models use sequence learning
as either a memory system [29, 47] or a way to learn
graphs or maps [52]. In these models, only the events
that co-occur during the same theta phase are linked
together and reactivated during the successive theta
cycles. But do their results justify the complexity of
their system (difficulty to get back the stored informa-
tion or to add on-line new information)?

Another important question is how the pre-frontal
cortex and the hippocampus really interact. To have a
chance of solving these questions and developing more
“intelligent” controllers for autonomous robots, it is
necessary to come back to neurobiological data, search-
ing evidence and inspiration that can help us to im-
prove our model. Yet, it must be emphasized that the
neurobiological aspect is also enriched by the computa-
tional aspect and vice versa. Our model has been pro-
gressively tested on computer simulations as well as in
robotic experiments. But the main interest is possibly
not the proposed model, which will be improved or cor-
rected, but the fact that the strategy we use (neurobio-
logical modeling associated with robotic experiments)
allows to ask new questions that, we hope, will be of
interest for neurobiology and ethology communities.
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