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Abstract  

In this paper, we propose an unsupervised neural network allowing a robot to learn sensory-motor associations with a 
delayed reward. The robot task is to learn the "meaning" of pictograms in order to "survive" in a maze. First, we introduce a 
new neural conditioning rule probabilistic conditioning rule (PCR) allowing us to test hypotheses (associations between visual 
categories and movements) during a given time span. Second, we describe a real maze experiment with our mobile robot. 
We propose a neural architecture overcoming the difficulty to build visual categories dynamically while associating them to 
movements. Third, we propose to use our algorithm on a simulation in order to test it exhaustively. We give the results for 
different kinds of maze,; and we compare our system to an adapted version of the Q-learning algorithm. Finally, we conclude 
by showing the limitations of approaches that do not take into account the intrinsic complexity of a reasoning based on image 
recognition. 
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1. I n t r o d u c t i o n  

Nowadays,  mobile robots are able to perform complex previously learned or predesigned tasks. For instance, 
they can follow a con idor  until they find a specific identifiable scene which can be used either for recalibration of  
their internal map of  the world or for deciding to perform a particular movement like entering a room or grabbing 
a given object. A strong effort has been put on the design of  such control architectures allowing to react quickly 
by the use of  some reflex mechanisms and at the same time by enabling them to plan longer term actions [5,8]. 
However, most  of  these systems do not have the ability to learn autonomously. Generally, robot learning needs two 
successive phases: off=line categorization of  the possible situations and on-line learning of  the associations between 
the categories and the actions. Categorization is often performed according to statistical methods (classification) or 
even designed by hand (a priori choice of  thresholds on the sensor values). 
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The first well investigated case of reinforcement learning (both by simulation and by real experiments) is the 
one in which the reward or the fitness value is available at each time step [3,4]. Interesting results were obtained 
either with pre-defined categories [25,28] or with input information simple enough to be directly used for a sensory-  
motor association. This works best when sensory categories are linearly separable [31]. When the categories are 
not linearly separable, a "hidden layer" of  neurons must be added between the input and the output of  the system. 
If unsupervised learning is to be used, that layer can be a winner take all (WTA) group [26], an adaptive resonance 
theory (ART) architecture ([6] for an application), or a quickly learnable version of the Kohonen map ([29,30] for 
applications) which in essence, is a statistical classifer. The more the examples of  a class are presented, the more 
neurons are used to represent the class on the map. Therefore, if an insufficient number of instances of  a given class 
is presented to the network, that class will be "forgotten". This can have undesirable consequences for the robot. 
Taking all these factors into account, we have previously developed a neural learning algorithm: the probabilistic 
topological map (PTM), which allows one-shot learning while preserving locally the topology of the input patterns, 
through the use of  binary weights and stochastic weight modifications (see Box 2 [14]). 

We have designed a regular building block called PerAc (perception-action architecture, see Box 1) to construct 
huge unsupervised neural networks devoted to the complete control of autonomous robots. We use a bottom-up 
approach that consists in making more and more complex systems relying on simpler ones. For instance, as we 
have shown in a previous paper [ 15], an attention orienting reflex (focus of attention) can be a good starting point 
to build a robot which is able to explore and to analyze a visual scene. The image analysis mechanism is performed 
by a single PerAc block. Furthermore, we have also shown that the output of  that neural building block can be used 

Fig. 1. Overview of a maze used in our experiments. 
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by a second PerAc block to learn to recognize a place in an indoor or outdoor environment and to learn how to 
reach it from any position in the surrounding environment [15]. However, in our previous systems, the robot was 
only able to perform instantaneous learning, such as associative learning or immediate reinforcement [ 11,14,15]. In 
this paper, we extend our previous on-line and immediate learning mechanisms to delayed reinforcement signals so 
that the robot will be able to learn a sequence of perception-action associations according to an internal or external 
reinforcement signal occurring later. 

We chose to address the problem of "reaching a goal" in a partially structured indoor environment in order to 
avoid the multiple problems of identification present in a completely unstructured environment. In this paper, we 
present a study of how a robot can learn sensory-motor associations based on visual stimuli (obtained by a video 
CDD camera) in order to "survive" in its environment (Fig. 1). Practically, the robot's task is to learn the "meaning" 
of pictograms such as turning right when it sees a "right turn" arrow (see Fig. 7(b)). The task is defined with 
proscriptive constraints only [35] linked to internal motivations: we only define the viability domain of the system. 
More precisely, in oar application, a pictogram can be learned because its association to a given movement will 
induce a delayed positive reinforcement signal (akin to the pleasure an animal feels when it eats something good) 
or an immediate negative reinforcement signal when the robot collides with a wall (equivalent to a pain signal in 
the animal context). The reinforcement signal can also be delayed if the robot does not succeed in solving a task 
after a given time. In the other cases, the robot will just learn repetitive or recurrent associations. It will only store 
really new patterns (different enough from previously learned patterns) and will have a low probability of changing 
its behavior. 

In Section 2, we ,;tudy classical methods for delayed conditioning and we introduce a new conditioning rule: 
probabilistic conditioning rule (PCR) allowing to test hypotheses (associations between visual categories and move- 
ments) during a given time span, afterwards the rol~ot decides whether it will keep the same rule or not. Section 3 
is dedicated to the description of a real maze experiment with a mobile robot. In Section 4, we propose to use our 
algorithm in a simulation in order to test it exhaustively. 

2. Learning delayed sensory-motor associations 

In this section, we present algorithms allowing a robot to make systematic sensory-motor (or stimulus-response) 
associations in order to find, in a maze, the shortest path from a starting point to a given goal location. The problem 
is to build a set of sensory-motor links which allow the use of immediate sensory information in order to perform 
actions leading to the goal. An important remark is that for a given set of sensory-motor associations, it is not 
known a priori if the set fits the problem well. The information is only available when the goal is reached or when 
a dead-end is encountered. 

2.1. Neural network formalism of classical reinforcement techniques 

The vocabulary of conditioning makes a distinction between a stimulus involving a reflex action of the robot 
(unconditioned stimulus - US) from any other kind of stimulus (conditioned stimulus - CS). Accordingly, it distin- 
guishes a reflex response (unconditional response - UR) and a forced response (conditional response - CR). Condi- 
tioning can, therefor, e, be divided in two types, whether it is based on a UR or not (see [10,19,22,34] for a review). 

In the first case, a link already exists between US and UR. The problem is then to reinforce the link between a 
CS and the UR. After learning, even if the CS is presented alone, the robot should produce the CR. Such simple 
conditioning mecharfsms are based on the Hebb rule (see Eq. (1)) and on classical models of formal neurons. The 
weight of each link between neurons i and j is given by Wij. The neuron activity Oj is defined by 

) Oj(t) = f ' ~ j ( t ) .  li(t) , Wij(t + 1) ---- Wij(t) -k-6. li(t)" Oj(t), (1) 
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where li terms represent the inputs, e is the learning rate, and f a non-linear function. In the second case, no US is 
available. Therefore a global reward signal must be introduced to tell whether the association between the CS and 
the CR is correct or not [2,4]. Those models work quite well if the reward is given immediately after a correct or 
an incorrect action was performed. But, in most cases, and particularly for our task, the reward can only occur at 
the very end. So a response must be proposed without any US and the robot must reinforce the link between the CS 
and the CR only according to the delayed reward. This reward signal takes at least two opposite values in order to 
tell the robot if the association is "good" or not. To be able to find by itself which movement to perform, the robot 
has to be able to test different responses in order to choose which one should be associated to the CS. An intuitive 
solution consists in selecting a random response (by adding noise to the neuron output - see Fig. 4(a)) and testing 
the consequences. The number of  stimuli and responses must not be too large, otherwise the probability of  finding 
the right association will be very low (NP-complete problem [24]). 

In that context, Barto and Sutton [2,4] propose an efficient solution using both a diversity generator (selection at 
random) added to the neuron activity (see Eq. (2)), and an equation adapted from the Hebb rule (see Eq. (3)): 

N I 1 ifActj > O, 
Actj = Woj + Z Wij • Ii d- noise, Oj = (2) 

0 otherwise, [ 
i=1 

where Actj is the neuron activity before threshold, 

Wij(t + 1) = Wij(t) + E .  [ P ( t ) -  P ( t -  1)]. [Oj(t - 1) - Oj(t - 2 ) ] - O i ( t  - 1), 

which is equivalent to 

OWij  OP OOj 
- -  = E. . . . .  Oi ,  (3) 

at Ot at 

where P(t) is the reward signal at time t. P(t) has a low value when the system does not solve the problem and a 
higher value when its behavior is better. 

This last rule will be the starting point of  our discussion even if it has been improved for years by trying to predict 
the reinforcement signal through time (for instance TD(k) and Q-learning). 

2.2. Presentation of problems linked to maze experiments 

In an ideal case, we can consider a maze as an environment divided into simple situations: corridors, T-junctions 
with a "turn left" arrow on the wall (called "pictogram"), T-junctions with a "turn right" arrow and dead-ends (see 
Fig. 2). At this point, we assume that wherever the robot might be in a corridor, it recognizes it as such (we will show 
in Section 3 that categorization is a complex problem and we will propose a neural network (NN) that dynamically 
allows this kind of  categorization). At a T-junction, the robot learns to recognize the pictogram shown indicating 
in which direction it must turn. The robot movements are restricted to: "go straight", "turn left 90 °" or "turn right 
90 °". In Fig. 2 for instance, the robot must reach the hammer located in the left branch of  the maze. Then, it must 
learn to associate the recognition of  a corridor to a "go straight" movement. When it reaches the T-junction, it is 
shown a "turn left" arrow. The robot may "turn right", then subsequently reach a dead-end, and receive a negative 
reinforcement signal. So, in the rest of  the experiment, the robot should learn to turn left when it sees the "left 
arrow" instead of  "turning right". Thus, it will obtain a positive reward which allows the learning of  the correct set 
of  perception-action pairs (see Fig. 5). 

Most methods [23,38] do not take into account the fact that situations are not necessarily equiprobable. If we 
use a model in which noise is added to the output of  the neuron, learning can be unstable. When the robot tests a 
set of  sensory-motor associations and receives a negative reward, the global noise level grows. So the robot will 
move randomly with a high probability of  performing a "stupid" movement in frequent situations without a high 
probability of  choosing the correct action in rare situations. Moreover, these methods suppose that a place can be 
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Fig. 2. The robot must reach the hammer dripped on the left-hand side of the maze. Dotted lines represent the boundaries of the perpetual 
categories. 

~ ~ . ~ ~ ~ o m e  .. - -"" "" ~ g i n g  door True path . . . . . . . .  ".... 

Fig. 3. Krechevsky's experiment: a rat is on the home box and must reach the food box. In each box the correct door may be determined 
by the experimenter in terms of its being light or dark, left or right. 

easily recognized as such. For instance, when the robot moves in a corridor the visual information can change in 
such a perceptible way (see Fig. 11) that it cannot be categorized as a single state by an unsupervised recognition 
system. As a result, pictures must be taken at a rate high enough in order to avoid missing potentially important 
events. Therefore, we decided to build a conditioning model that allows to bring situations with different occurrence 
probability on the same level (PCR). 

2.3. Making and testing hypotheses: the PCR algorithm 

Studies of  animal strategies in maze experiments provide good hints to design robot control architectures that 
solve problems noticed in Section 2.2. For instance, Krechevsky [20] has proposed an interesting experiment in 
which a random search is unable to explain the rat's capacity to solve a high dimension association problem. In his 
experiment, the rat must pass 10 times a day through four identical discrimination boxes (see Fig. 3). In each box 
there are two doors ~md the correct door may be determined by the experimenter in terms of  its being light or dark, 
left or right. So, the:re are 40 choices to be tested. Krechevsky found that the rats mainly performed a systematic 
well-above-chance choice called "hypothesis" (see also [21,37] for all-or-none learning). 

In this section, we propose a neural learning rule that tries to model such a behavior. The robot uses a hypothesis 
long enough to test its consequences and to decide if it needs changing. As global noise added to the output of  
a neuron leads to unsteady states, we choose to introduce diversity generators (noise) on each synaptic weight. 
Moreover, in the case of  the simple sensory-motor associations encountered in maze experiments, weights do not 
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Fig. 4. (a) Classical neuron model with noise added at the neuron output. (b) Schema of the PCR model. 

have to be analog: a binary value is enough to indicate the existence of an association between a particular recognition 
and an action. But we now come to contradictory requirements: how to modify binary weights while keeping the 
same hypothesis for long enough? Our solution is to introduce a probability associated to the binary weight which 
gives confidence to the input/output association it represents (see Fig. 4(b)). When a reinforcement signal occurs, 
only the probability term is changed. Yet, a random draw is done in order to change weights whose confidence term 
is low. Such a mechanism gets the robot to behave as if it was testing hypotheses. It is interesting to draw a parallel 
between the PCR algorithm and genetic algorithms (GA). The way binary weights are switched can be compared 
to the GA mutation process which allows bits change in the DNA sequence of an individual. Yet, while GA test the 
behavior of populations whose DNA is fixed, the PCR allows a similar process during the "life" time of a single 
robot (kind of evolution: the robot tests different configurations of its weights during the same "life"). In fact, our 
mechanism is much more similar to the neural-Darwinism proposed by Edelman [7,9] and the notion of re-entrant 
maps [32] (but here the link suppression can be performed according to a delayed fitness value). 

In order to know how to modify the probability Pi j  associated to a synaptic weight, an input-output correlation 
measure must be stored. At each time step, three (time-integrated) parameters, associated to the input li, the output 
Oj and the input, output product are computed. They are designated by: I,  O and I O. These values can be computed 
in a neural fashion by averaging on a time window of a given width. Formula (6) is a way to compute a first-order 
integration in a time window of width r + 1. 

Simplified PCR Algorithm 
Activation rule: 

Actj = Maxi(Wij  • Ii) + noise, (4) 

1 if Actj = Maxk(Actk),  
Oj = 0 otherwise. (5) 

Updating at each time step: ~j ,  Oij and I Oij updated according to the following equation: 

b 

~-j(t + 1) =' rXj(t)  + Xj( t )  (6) 
r + l  
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l f  lO P ( t ) /O t l  > ~: Probabil i ty  updating 

OP 
A p i j ( t  ) = or. ~ t "  C i j  • f B  ( W i j ) ,  Pi j ( t  + 1) ---- Pi j ( t )  + A p i j ( t )  

with 

and 
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(7) 

{ 1 if Wij = 1, fs(wij) - l  if Wij = O. (9) 

If R n d  > Pij and I • 0 5~ 0 then 

Wij = 1 - ~¢l~j, Pij = 1 - pi j .  (10) 

noise is a random value as little as wanted. 
P ( t )  is the global rei:aforcement signal. It represents a way to measure robot satisfaction over time. 
ct is the delayed conditioning learning rate. 

is a constant fixed by the experimenter. 
R n d  is a random value in [0, 1]. 
PO ~ [0, 1], Wij ~ {0, 1}. 

The input/output normalized correlation is given by Eq. (8). This term does not depend on "appearance" proba- 
bilities of input--output pairs. For instance, if a situation is encountered N times while another is only encountered 
once (both involving a given output each time they are met), in both cases the correlation Cij is equal to 1. This 
normalized Hebbian term is very similar to the eligibility term used in Barto and Sutton [2,4]. 

Each time the reintorcement signal P (t) varies enough ([3 P (t)/0 t l > ~), confidence terms are updated according 
to formula (7). After updating the probabilities a random draw is done so as to determine whether a weight will be 
changed or not (see Eq. (10)). 

A typical learning situation is proposed in Fig. 5. At the beginning (t = 1), the robot tries to "turn left" in the 
corridor and it collides with the wall. A negative reinforcement signal is emitted and the synaptic link between 
the "corridor" situation and the "turn left" movement is inhibited. Next (t = 2), the robot tries to turn right and 
the same thing happens. Finally (t = 3), it tries to go "straight ahead" and succeeds because it avoided a negative 
reinforcement. A positive reinforcement signal is emitted and the association between "corridor" and "go straight 
ahead" is learned. The robot will have no more problems with this situation and the problem complexity is reduced. 
When the robot mee.ts the "left arrow" shape (t = 5 in Fig. 5), it will try to go straight ahead and will end up 
turning right by cha~ace. The association is not painful and can be at that moment considered as correct. This is 
where the problem of delayed conditioning begins. The weight is not directly strengthened but the Cij variable 
(correlation between input and output in Eq. (8)) is updated. When the robot reaches the dead-end, it receives a 
negative reinforcement. It modifies the probabilities associated to each weight according to the reinforcement signal 
and thus decreases the probability associated to the link Wlr between the "left arrow" recognition and the "turn right" 
movement. Finally, the probabilities are used to decide whether the weight must be switched to its complementary 
value and obviously the weight Wlr has a high probability to switch from 1 to 0. 

In the worst case, if the robot receives increasingly negative reinforcement, the confidence associated with the 
activated links decreases and all the weights will end up switching to a null value with a confidence of 1. At that 
point, the PCR algorithm becomes equivalent to a random search (because of the little noise added to the neuron 
outputs), Thus we have set a lower bound to the algorithm convergence. By chance, in all our tests; the rough 
information provided by the reinforcement signal was large enough to ensure results better than random choices. 
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Fig. 5. Example of a course in the maze. At time t = 0 the robot is introduced in the maze and must reach the hammer dropped on the 
left-hand side of the maze. It tries several movements in the corridor until it learns to go straight ahead. When it arrives at the T-junction 
it turns right while it should have turned left. As it arrives in a dead-end, it will reconsider the movements it has performed. 

2.4. The reinforcement control system 

In this kind of  experiments, the reinforcement signal can be either binary (the good set of  sensory-motor as- 
sociations has been found or not) or analog (the solution is more or less correct). In the first case, the robot must 
perform a random search because no gradient in the reinforcement signal is available. In the second case, PCR uses 
the reinforcement variation to reach the good solution quicker. On the other hand, we cannot accept that the robot 
gets to the end of  the maze experiment before it stops scraping walls. I f  an immediate negative reinforcement signal 
is encountered, the robot must learn to avoid the wrong movement immediately. 

Another problem can occur when the robot spends too much time without any negative or positive variation in the 
reinforcement signal (OP(t)/Ot < ~). Imagine a loop inside a maze. If  the robot was mistaken on the interpretation 
of  a pattern at a T-junction of  the loop, it can turn round and round in this loop without any reinforcement (because 
the robot neither collides nor reaches a dead-end). To stop this dead-lock situation, the robot needs an internal signal 
which allows to change the associations it has made (such as a "hunger" or "I am fed up" signal). This mechanism 
is equivalent to testing several hypotheses during a single exploration. For the sake of  space and clarity, the internal 
reward system (limbic system) will not be described in this paper (see [18] for more detail). 

2.5. Discussion on the PCR algorithm 

First of  all, we chose binary weights in order to be compatible with the probabilistic topological map (PTM - 
see Box 2) which is used for on-line learning of  the perceived situations. Moreover our interest is more in finding 
a minimalist delayed reinforcement conditioning rule than in optimizing a state space exploration mechanism. 
Accordingly, we refuse all the algorithm optimizations that contradict the local computation aspect of  the neurons. 
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Second, in the description of the PCR algorithm, we have supposed that categories had already been built and that 
the PCR algorithm was used to connect these categories to the "good" outputs only. In a real neural architecture 
devoted to the controlI of an artificial animal, things are not so easy because in the beginning, no category exists, 
and the neurons to associate must be chosen out of thousands of other neurons. For instance, all the neurons of 
the N x M recognition map (typically more than 10 x 10 neurons on our PTM map) can be linked to any output 
movement. Theoretically, there are 3 N xM (310x 10 = 5.15 x 1047) possible associations. Moreover, we do not want 
the algorithm to destroy reliable associations learned in previous experiments. To fulfill that goal, only links between 
the winners of the map and the WTA are learned. This choice allows to limit the number of links that are actually 
learned. It also avoids confusion with the neuron being activated because it is closer or further from the winner input 
neuron (in the computation of the output neuron activity). 

If we consider an exhaustive or random search algorithm, there is a little chance that it can find all the sensory- 
motor associations in a reasonable time because of the combinatorial explosion. Obviously, the search process could 
only be performed be.tween situations that have been encountered during a set of random trial for instance. This 
supposes that these situations are kept in memory by a mechanism similar to our time correlation procedure (Cij 
parameters). Also this brings a problem for the viability constraints of the robot. PCR is mainly designed to keep the 
robot from performing the same big mistakes again and again. Moreover, for an exhaustive search (enumeration) 
there is always a risk :from one trial to another that the same situations will not be encountered. Then, the complete 
enumeration would have to start over again. Another solution might be to use a linked list to store all the new 
associations' possibilities that appear during the maze exploration and that have not already been tested. But in that 
case, the computational cost of the algorithm increases drastically. However, enumeration must be rejected because 
it does not rely on local computation. Accordingly, for the PCR rule, we could only modify one weight in each 
trial avoiding difficulties linked to the assignment of the reinforcement signal. But, this modification supposes the 
possibility of modifying the weight of the first neuron before modifying the weight of the next one. Neurons would 
need information coming from a supervisor to decide which neuron might try to modify its weights and that denies 
our local computation a priori. We must thus reject this optimization of the PCR rule that would also renounce the 
local computation of ,weight modification. 

PCR is an algorithm which can be used in many applications depending on the kind of reinforcement signal 
which is provided. Moreover, our algorithm can be improved in order to use analog weights. We just need to take 
as an analog value the product of the probability Pij  and the binary value Wij" lldij = Pij  • f B  ( W i j )  -[- 1. The  
interest is then that this analog value cannot vary continuously, thereby avoiding the precision problems found in 
slow learning algorithms. Furthermore, it allows to maintain the same properties as the binary PCR algorithm and 
use the analog values (modulation of the activity). PCR can also be improved as follows to allow simple associative 
or Hebbian learning and to speed up its convergence time: 

,gp ) 
z~pi j( t )  = a . - ~ -  -I-E .Cij  . f B ( W i j )  - )~" p i j ( t )  . l i ( t ) .  (11) 

•" Cij" f B  ( W i j )  allows us to keep a "Hebb rule" in order to make classical conditioning possible and ;~. Pij  (t)" I i (t) 
allows us to avoid unstable behavior of the pi j  (t) t e r m s  (pseudo-normalization of the Pij) .  

Box  1: The PerAc architecture. The  PerAc (Perception-Action) block has been proposed as an elementary generic 
brick of neuronal computation [ 1,5,17]. It allows on-line learning of sensory-motor associations. A PerAc block is 
divided into two levels; corresponding to the action and the perception data flows. The first level is a reflex mechanism 
which extracts basic information from the perceived input so as to directly and roughly control the actions. The 
second level performs situation recognition and allows learning of the associations between what is recognized in 
the perceptive ftow and the chosen movement. This level permits to maintain the behavior provided by the reflex 
system or to avoid it when there are contradictions with the robot's viability constraints. All perceived information 
as well as the motor output are expressed in egocentric polar coordinates. Thus direct "one-to-one" links between 
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Fig. 6. Schematic representation of the PerAc block. From the perceived situation, the reflex system extracts information to control 
directly the actions. Concurrently, the recognition system learns sensory input patterns and how to link them to the action by associative 
or reinforcement learning. The system adapts itself dynamically to the environment. 

the reflex action proposal group and the action selection group allow making movements in the direction of  features 
already known as "relevant". A PerAc block is a competitive network composed of  four neural boxes as seen in 
Fig. 6. 

At the beginning, the robot has not yet learned anything. All the movements it performs are provided by its 
reflexes. Each time it perceives a "new" situation, it categorizes it. Depending on the learning procedure used to 
associate the recognition group with the action selection group, several different behaviors can be obtained. If the 
learning process is an associative rule (Hebb rule), the robot learns to associate the recognition of  a situation with 
the action which is proposed by the reflex system. It thus allows to obviate the reflex system's deficiencies, and to 
overcome it if the US is absent. For instance, if in front of  a given situation the reflex is unable to choose a response, 
the recognition system can generalize from learned perception-action schemes and trigger the most appropriate 
action. The use of reinforcement learning as an adaptive rule allows to make the system even more flexible. Indeed, 
if the reflex system provides a given action which is not adapted to the environment, a negative reinforcement signal 
can make the system learn to avoid this movement. The reflex action is then inhibited and replaced by another action 
which better fits the situation. Each action of the robot modifies its perception in a particular way. We try to have 
an appropriateness of the robot with its environment and we refuse to choose a priori the robot's categories (visual, 
motor, etc.). The interesting point is that all the robot's behavior is not completely coded in the network. In fact the 
system evolves because of  the dynamical interaction between the robot and its environment. 

3. Situation categorization and association learning in a real maze 

3.1. In t roduct ion  

To test our global architecture applicability, we have developed a simple maze experiment with a prototype of  
the Koala robot (25 cm x 25 cm - see Fig. 7(a)) (Kteam - LAMI/EPFL).  NN is computed on a SUN Sparc 5 
workstation. Information is transmitted by a bidirectional serial link at 19 200 bands. The global size of  the maze is 
3 m x 3 m and the corridor width is about 60 cm. Fig. 7(b) presents an example of an image taken inside the maze 
with the on-board standard CCD camera (the image is subsampled to 128 x 100 pixels). 

Whatever the merits of  some conditioning rules, if inputs are not linearly separable, they cannot be used directly 
to compute an action. The image complexity must be reduced by finding relevant information in the image. For this 
purpose, we have chosen to represent a given pictogram by a specific oriented texture. A "right turn" arrow has been 
chosen to correspond to a rectangle made of  vertical stripes while a "left turn" is a rectangle with horizontal stripes. 
Shapes are detected by a series o f  Gabor filters. For legibility reasons we did not give details of  the complete visual 
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Fig. 7. (a) The Koala robot. (b) Example of an image taken by the CCD camera. 

system (for further explanation, see [11]). In fact, it is only important to understand that the visual system enables 
the robot to perceive tlhe pictograms as if they were in the center of the image, even if in reality the images can be 
slightly translated or rotated. Practically, our robot's visual system includes a mechanism of attention focus which 
provides translation invariance. 

An experiment consists of  a series of  trials which make the robot leam a given number of  sensory-motor 
associations so as to obtain or to maximize a final reinforcement signal (robot goal). Each trial is a sequence of 
perceptions and actions that end by a reward or a punishment. A path is considered as a trial if the robot is at 
the starting point and leaves the maze at a dead-end or arrives at the goal. The robot's progress are computed in 
"time steps". A time step is a sequence of  perception/computation/action. The reinforcement signals are provided 
by two electrical contacts allowing to measure the conductivity of  the object the robot collides with. If  the object 
is not a conductor, it is considered that the robot has collided with this object. It corresponds to an immediate 
negative reinforcement signal (like a shock). Conversely, if the object is a conductor it is assumed to be the goal. It 
corresponds to the positive reinforcement signal (reward). 

3.2. Robot  "brain" architecture 

A simple PerAc block is used to control the robot (Fig. 8; see also Box 1 about the PerAc architecture). In our 
experiment, the reflex consists in following the corridor. The motor input (MI) box is a group of  neurons that simply 
filters the input image so as to detect known relevant features in the image for corridor following (here the vanishing 
point of  the corridors -- see Section 3.2.3). In a simplified case, if we do not take into account the corridor following 
problems, there are only three movements: turning left 90 ° , turning right 90 ° and going straight ahead. The motor 
output (MO) is a WTA group of  three neurons intended to provide only one action at a time. A small noise is added 
to each of  these neurons in order to avoid indecision when different neurons have the same activity. 

The higher level is composed of  two groups of  neurons: the visual input (VI), the visual output (VO) interconnected 
by the mean of plastic links. VI consists of  a series of  Gabor filters which are able to detect four orientations of  
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Fig. 8. The neural architecture used to realize the experiment of sensory-motor associations. VI = visual input (CCD camera), VO = visual 
output (recognition map), MI = motor input (reflex system) and MO = motor output (effectors). 
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Fig. 9. Example of the detection of spatial frequencies on two maps with different orientations. The "turn left arrow" is represented by 
horizontal stripes, so, only the map sensible to horizontal orientations of spatial frequencies is activated. In the other case ("turn right 
arrow") it is the contrary. 

three spatial frequencies in all the positions in the image. Each frequency/orientation pair corresponds to a neuronal 
map. There are thus 12 maps. I f  a neuron on these maps is activated, it means that a spatial frequency of  a given 
orientation has been detected at the corresponding position in the image. A competit ion between the different maps 
for all the positions in the image guarantees there is only a winner frequency for each position. 

VO is a probabilistic topological map (PTM) which codes patterns obtained in VI (see Fig. 9 for an example). 
This map provides the different categories that will be associated with a movement. Indeed, the weights between 
VO and MO are learned according to the PCR algorithm. 

3.2.1. Topological map utilization f o r  on-line categorization and association 
Let us come back to our example (Fig. 5). We have presented in Fig. 10, the different images the robot sees when 

it moves along the corridor. The patterns formed by the horizontal stripes on the wall correspond to the "turn left" 
arrow. 3 It can be correctly recognized in situations c, d and e (Fig. 10) but not a and b. 

At  the beginning, the robot has no knowledge about the visual shapes it can encounter (except that they are 
textured). The vigilance term - a parameter of  the PTM that determines the level of  similarity to previously learned 

3 In fact it can be seen in the reflection on the ground that a real arrow has been drawn but as the image is overlighted, it cannot be seen. 
Besides, it does not matter because, due to Gabor filtering, the robot can only recognize spatial frequencies. 



P. Gaussier et al./Robotics and Autonomous Systems 20 (1997) 225-250 237 
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Fig. 10. A sequence of images taken during the movements of the real robot into the maze. The position of the snapshots into the pictures 
corresponds to the location where the robot was when it took the image. The starting position corresponds to situation a. Situations b, c 
and d correspond to "straight ahead" movements. When the robot arrives in situation e, it is just in front of the perpendicular corridor. 

patterns required to learn a new pattern (see Box 2 and Appendix A) - has a medium value (practically p = 0.7). 
When the robot sees lJhe situation a, it codes it on the neuron C1 of  the PTM map (VO group) which has won (see 
Fig. 11). As weights have an initial random low value, any neuron can be the winner. In the VO group, weights 
of  the neurons surrounding the winner neuron are modified with a probabili ty which depends on the Euclidean 
distance of  these neurons to the winner. This mechanism allows us to make neurons in the winner 's  neighborhood 
react to a pattern similar to the one it has coded. Furthermore, an activity diffusion bubble is also created around the 
winner. As no link between the VO and MO exists yet, a movement is chosen randomly, according to the noise. If  
it is "turn 90 ° left or right", the robot collides with the wall. This collision activates a negative reinforcement signal 
which is used in the PCR algorithm to decrease the probabili ty of  association between the situation a and one of  the 
turning movements. Yet, there is still no link between neuron or category CI and any movement. The subsequent 
movements are thus still chosen randomly until the robot chooses the "straight ahead" movement. At  this moment,  
the movement being successful, the negative reinforcement stops and a positive reinforcement signal is emitted 
(OP(t)/Ot > 0). A link between category Cl and the movement "straight ahead" is learned and its associated 
probabili ty is increased. 

After  moving ahead one step, the robot sees the image b. As it is similar to the previous one, 4 it activates a neuron 
close to Cl. Due to the diffusion bubble, C1 is also activated but with a lower value. There is a l ink between C1 and 
the "straight ahead" action, so this movement is performed (see Fig. 11 (c)). 

From situation c to e (Fig. 10), as horizontal stripes begin to appear increasingly clearly, they are detected by 
Gabor  filters. This activates a bubble which is further away from C1. As the vigilance term is rather low (see Box 
2 and Appendix A), the system tends to overgeneralize and it continues performing the same movement. As the 
robot arrives at situation e, it tries to move ahead but collides with the wall. Then, a reflex system makes it move 

4 As Gabor filtering is performed, almost no spatial frequencies are detected, neither in image a nor in image b. So the pattern of the 
filtered image corresponds to a vector with null components. 
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Fig. i 1. The activity on the map when the robot moves in the maze: (a) no reaction is learned yet but a first category CI is created; 
(b) after the robot has performed a correct movement, a link between category CI and the movement performed is created; (c) a situation 
similar to (a) makes the robot perform the same movement; (d) if the robot collides with the wall, a new category C2 is created and can 
be linked with other movements. 

backwards 50 cm and it takes a new image which must look like image e. The vigilance term is then set to 1. As 
the robot is much more watchful, it perceives that the image is very different from the image corresponding to the 
pattern coded in C1 to be matched by C1. A new category C2 is thus created (see Fig. 1 l(d)). Then, the robot tries 
to associate this category to a movement that keeps it from colliding with the wall. It can now turn left or right and 
learn the association. The problem of learning which movement is really the one which permits to reach the exit of  
the maze is solved by the PCR process as described in Section 3.1. 

Box 2: The Probabilistic Topological Map (PTM). PTM has been designed to take advantage of  the main features 
of  the Carpenter and Grossberg adaptive resonance theory (ART [6] and Kohonen's topological map: ART models are 
very interesting because they allow unsupervised on-line learning, while Kohonen's maps allow a priori topological 
generalization. Topological representations are interesting for two main reasons. First they allow to preserve, at 
least locally, the topology of  the input information. Two close stimuli would produce close activity patterns on 
the map. The map also induces an analog representation of  the recognition of  a given pattern (as in fuzzy logic). 
Second, they allow dimension reduction of  the input space. Thus, topological maps minimize the needed wiring 
required for local operations. If  there is no topology preservation, as in a WTA, all possible associations must be 
learned. Furthermore, a neuron that has not yet learned something cannot give any information and cannot take 
advantage of what has been learned by other neurons. On the contrary, with topological preservation, a neuron in 
the neighborhood of  a given winner will respond accordingly depending on its physical distance to it.. It thus gives 
interesting generalization capabilities [39]. 

The main characteristics of  the PTM algorithm are listed below: 
• input patterns and synaptic weights take only binary values; 
• a "new" pattern has to be learned immediately (incremental learning); 
• a selectivity function is used to allow neurons which have stored a shape to have a higher and sharper response 

than the other neurons; 
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• topology on the map is maintained by allowing the coding of the intersection of two learned patterns between the 
two neurons that codes each of them; 

• a vigilance term allows to modulate the generalization level of the map and the decision of coding "new" patterns. 
When an input pattern is presented, the most active neuron on the map is chosen as the winner. Due to a diffusion 

mechanism, neurons in the winner neighborhood are also activated and form an "activity bubble". This mechanism 
is coupled with a learning process which adapts synaptic weights depending on their distance to the winner. As 
weights take only binary values, weights of the winners' neighboring neurons are modified to store the input pattern 
with a probability depending on their distance to it. Thus, when the winner has learned a given pattern, it is a neighbor 
of that winner that is the most likely to respond when a similar pattern is presented. If they are completely different, 
they get coded farther away on the map with a maximum distance corresponding to the size of the activity bubble. 
If two different patterns are presented to the map, their intersection will be coded only between their associated 
neurons. Indeed, our probabilistic mechanism gives more importance to the synaptic weights which are linked to 
the intersection of the two shapes than to the other weights. 

3.2.2. Study of the dynamical update of  the visual categories 
In the previous paragraph, we have focused on the robot's ability to create autonomously new categories in order 

to better respond to its environmental requests. We now want to show that the use of a topological map allows the 
robot to define recognition frontiers by itself. 

Coming back to the example above, in the beginning, before the robot collides with the wall, all the situations 
are put into the same category C1 and are thus linked to the same movement; "straight ahead" (see Fig. 12(a) and 
(a')). After the collision, a new category C2 is created at a given distance from C1. Due to the diffusion mechanism, 
it automatically creates a boundary in the middle of the distance between C1 and C2 (see Fig. 12(b)). If  a situation is 
recognized by a neuron situated on the left-hand side of the boundary, it activates the movement corresponding to 
the recognition Of Cl (i.e. go straight ahead). By contrast, if the situation is recognized by a neuron on the right-hand 
side, the robot reacts as if it had been in C2 (see Fig. 12(b')). 

Now imagine that the robot is put in a situation a again. Then, it would begin by going straight ahead until it 
recognizes something similar to situation e. Let us now suppose that situation c is closer to e than to a and that if the 
robot turns left, it collides with the wall (see Figs. 13(c) and (c')). When the robot arrives in c it wants to perform 
the movement corresponding to the recognition of C2, but it cannot because it collides with the wall. As explained 
above, the vigilance term is increased and thus the robot creates a new category C3 (see Fig. 13(d)). 

Yet there is a problem in learning an association with a different movement from the one learned in e. Indeed, as 
situation c is closer to e than to a and due to the link between C2 and the neuron of the WTA that codes the "turn 
movement" (left or right), this movement always wins. The problem is that PCR only learns to create or destroy a 
link between the input map winner and the output winner WTA. It does not make any difference because it is not the 
link between C3 and the "turn movement" which is involved in the decision but the fact that the C2 is activated due 
to the diffusion of C3 activity. In fact there is no link to suppress. A solution is making another neuron of the WTA 
win. For that purpose, a first solution consists in adding a very important noise to the WTA neurons output so as to 
generate random movement choice which might be associated with C3. We have seen in Section 2.2 that this solution 
could lead to learning problems. We have preferred an alternative solution which consists in using inhibitory links. 
In this case, instead of having only one PCR excitatory link per association we have a pair of links: one is excitatory, 
the other is inhibitory. The learning process for inhibitory links is totally equivalent to excitatory links. As C3 is 
activated, it can inhibit the activity of the "turn movement". The next time this movement will not be chosen and 
another movement, randomly taken, wins. In that case, due to the activation of the positive reinforcement signal, 
PCR learns to associate C3 and this new movement. 

In fact, the boundary between the "straight ahead" and "turn 90 °' '  behavior, between C2 and C3, has thus been 
shifted (see Fig. 13(dr)). Boundaries can thus be reshaped until the robot reacts properly to the constraints imposed 
by its environment. This topology can be useful only if a certain continuity of the environment is perceived by 
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Fig. 12. (a) and (b): Creation of activity bubbles on a one-dimensional map. (a ~) and (b ~) Corresponding category boundaries in the real 
maze. 

the robot. In fact, the topology is controlled by the vigilance term. If  the vigilance is too low, the robot tends to 
generalize too much and to consider new patterns as patterns already learned. For instance, in a T-junction with a 
different pictogram from the pictogram it has already seen in another T-junction, it can overgeneralize and react as 
it would have done if it had been in the other T-junction (even if this movement is no more correct). For another trial 
in the maze, the vigilance must thus be raised in order for the robot to distinguish the two T-junctions. In conclusion, 
in order to build a completely autonomous robot, the vigilance term should be self-regulated according to the robot 
efficiency or to the number of  learned shapes (if it learns too many shapes, the vigilance should be reduced). 

3.2.3. The reflex system to stay in the middle o f  the corridor 

Our goal is to build a reflex system that enables the robot to have a correct alignment with the corridor. By detecting 
the edges of  the corridor walls, we can determine where they converge. In particular, detecting the vanishing points 
provides information on the robot position. If  there is a vanishing point on the left of  the image it is because the 
robot is too much on the right of  the corridor and it should turn left a little. The localization of  vanishing points 
can be obtained by different methods such as a log-polar transform or a Hough transform [27]. Yet, in a neural 
context, a vanishing point detector can be implemented with orientation sensitive cells. In the simplest case, three 
vanishing point detection cells are used to sum the activity of  orientation sensitive cells distributed in the alignment 
of  the vanishing point (see Fig. 14(a)). For each direction the sum is thresholded so as to suppress non-relevant 
information. There is one cell in the middle of  the image, and two other cells on each side. When a vanishing 
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Fig. 14. (a) Vanishing point detection cell. (b) Different kinds of perspectives. (c 1) and (c2) Real image and edges: "turn left" situation. 
(dl)  and (d2) Real image and edges: "turn right" situation. 
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PTM 

Fig. 15. Complete neural architecture of the robot "brain" used for the maze experiments (the reinforcement system and its input are not 
represented). 

point detection cell reacts it means that the vanishing point is close to this cell (see Fig. 14(b)). The solution of the 
movement regulation is then to turn slightly to the left when the vanishing point is detected on the right, to turn 
slightly to the right for the contrary and to go straight ahead otherwise. Other vanishing point detection cells can be 
added on each side of the image to more precisely locate the position of the vanishing point. The set of vanishing 
point detection cells is called the movement input group (MI). It is associated by a one to one reflex link to the 
movement output group (MO) (see Fig. 15). 

Figs. 14(c 1) and (d l) show examples of the real images the robot sees. The edge extractions (c2) and (d2) allow 
to take into account edges of the walls which are in the direction of the vanishing point. A threshold on the edge 
detector is automatically adjusted in a pre-processing phase at the beginning of the experiment in order to adapt to 
the contrast of the image. 

In order to be consistent with the PerAc architecture, the reflex mechanism must directly drive the motor output. 
Yet, MO 1 provides movement information corresponding only to "turn 90 °' ' or "straight ahead" while the MI drives 
small movements. They do not address the same kind of movements. In fact they belong to two distinct levels: a 
high level corresponding to the recognition of a specific category and a low level corresponding to the corridor 
following problem. If the high level has recognized a corridor situation ("go straight ahead"), it triggers the low 
level movement reflex. Of course, the associations between the vanishing cells and the robot movements to avoid 
obstacles could have been learned [14]. However, this "reflex learning" must be completed before the beginning 
of the maze learning in order to overcome combinational explosion (hierarchical learning [23]). The complete 
architecture of our neural network is displayed in Fig. 15. 

3.2.4. Commen t  on the robot trajectories 

In Fig. 16, we present a trajectory of the robot in a simple T-maze. The maze is 3 m wide and 1.8 m long. At the 
beginning, the robot is put on the right-hand side of the corridor. It can be seen that it succeeds in centering after 
two or three steps (one step_~20cm). As it arrives at the T-junction, it has no difficulty in turn 90 ° to the left and 
after this movement it is still centered. It can also be seen that if the movement is not performed correctly (left side 
of the trajectory), the reflex mechanism enables the robot to re-center itself. Other experiments have been tested in 
corridors that are slightly curved in a given direction. The robot then manages to follow the curve in order to stay 
in the middle of the corridor. 

In fact this reflex system makes the global architecture very tolerant to slight defaults in orientation or location 
of the robot. Let us come back again to the example of the robot in a simple T-maze. In Fig. 17, it can be seen that, 
wherever the robot is in the region B and whatever its orientation (if it respects the orientation given by the reflex 
system), it can perform a 90 ° left turn (it is simply a problem of geometrical construction). It relies on the fact that, 
intrinsically, there is a relationship between the perceived continuity of the images and the continuity of the position 
of the robot in space. Due to PTM topological properties, this continuity is taken "for free" from the environment. 
Yet, there might be a problem in region C. In that region, if the robot decides to turn left, it collides with the wall. 



P. Gaussier et al./Robotics and Autonomous Systems 20 (1997) 225-250 243 

s0 crn I 

Fig. 16. Record of the robot exact positions in a simple T-maze. 
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Fig. 17. Tolerance in orientation and position provided by the reflex system. If the robot is in region A (for instance in location 1, 2 or 3), 
there is no problem to turn left 90 ° whereas if it is in region C, it collides with the wall. 

First of  all, it must be noted that, as region C is not very large, the probability to be in that region is low. Besides 
we have seen previously that PTM was able to create a new category if the robot collided. Thus, regions A and B 
get larger and larger and the problematic region C must quickly disappear. 

We have used PTM topological properties in order to have the same reaction when the robot sees similar images. 
In fact, it is made possible because of  the intrinsic continuity of  the environment. This continuity can also be used 
"for free" because the process of  pattern learning respects the continuity too: similar patterns are coded close to 
each other and a patlLern which is intermediate between two other patterns is coded in the middle of the neurons 
which code these patterns. Yet, this continuity of  the environment is only local. After the robot has turned 90 °, for 
instance, the image i,; totally different from the image it has taken before turning. Therefore, the neuron coding that 
new image may well be very far from the one coding the previous pattern. The continuity of  the map is thus only 
local. 

4. Simulation, tests and discussion 

We have shown on a real experiment that PCR algorithm was able to make the robot learn sensory-motor 
associations that allowed it to reach a given goal. Yet, as this algorithm is stochastic, we need to test it exhaustively 
in order to show how it statistically converges. But this process is very "time-consuming" and requires important 
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material and human resources. In the first part of this section, we have thus chosen to validate the efficiency of 
the algorithm on a maze simulation. Yet, we keep the whole architecture and we use images taken by the robot. It 
allows, in particular, to keep PTM's generalization properties and dynamical state definition. 

4.1. Description o f  the simulation process 

Each of the simulated experiments corresponds to the behavior of a single robot. In order to see the influence of 
the maze size on the learning, three kinds of mazes are used (see Fig. 18). The short maze (Fig. 18(a)) has 30 squares 
(positions) and the shortest path is 20 squares long (steps). The long maze with a loop (Fig. 18(b)) has 62 squares. 
The long maze without a loop (Fig. 18(c)) has 49 squares. For both, the shortest path is 40 squares. Moreover, in 
the simplest case, there are only three patterns, one per direction (all "turn left" T-junctions show the same pattern). 
In the most complex task (four patterns), each T-junction presents a different pattern (three patterns for the three 
T-junction + one pattern for "go straight ahead"). 

4.2. Results and discussion 

Results are given as histograms representing 100 robot explorations. Fig. 19(a) represents the number of robots 
that succeeded in finding the correct set of associations within a given number of trials for the different kinds of 
mazes. Fig. 19(b) makes the comparison of convergence mean time (in time steps) for the same mazes. As can be 
seen, the results are very heterogeneous: most of the experiments take only a few number of trials to succeed but 
some of them require much mor e time (due to "bad" random draws). 

For the mean value, no difference can be seen between learning a "long maze" and a "short maze" for a given 
complexity (see Fig. 19(a)). This is not surprising because the robot only learns a set of sensory-motor association 
without regard to their appearance frequency. So, independently of the maze's size, the problem is always to test the 
efficiency of a behavior during a time long enough to know if it fits the problem well. This is given by a time constant 
l;maze which must be greater than the shortest time to find the solution (for instance, Z'maz e = 22 time steps for the 
short maze and "~maze = 45 for the long mazes). It is also important to see that the robot manages to find the solution 
even if there is a loop inside the maze (as in Fig. 18(b)). Moreover, the loop is of no importance in discovering the 
solution (the mean numbers of trials are the same for the short and the long maze if their complexities are equivalent 

- the complexity is defined by the number of associations to be learned). In fact, the mean number of explorations 
to find the solution depends only on the complexity of the maze. 
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Fig. 19. Histogram of the number of robots which succeed in finding the solution in exactly x trials. 

The median value represents the necessary number of explorations for 50% of the robots to succeed in finding 
the solution. It allows to account for the data heterogeneity. It can be seen that for the case of three patterns, 
the median and the mean value are very similar. On the contrary, for the case of four patterns, the median is 
smaller than the mean values, especially for the "large maze" case. This is the indicator of an asymmetry of data 
distribution that can be explained by the delayed reinforcement signal which forces the robot to find the solution 
faster. Indeed, in a lirtle maze, this mechanism does not have enough time to work. It thus shows the interest of 
this mechanism for tfie convergence speed. Obviously, performances are drastically increased if the reinforcement 
signal is analogical instead of being binary (i.e. if the reinforcement signal depends on the length of the path). 
These results are not the concern of this paper because they would involve too long description of the associated 
reinforcement system. 

5. C o n c l u s i o n  and  [~rspec t ives  

In this paper, we have emphasized the need for a global and coherent neural architecture able to control an 
autonomous robot. We claim that autonomous system designers have to find at once, on-line solutions to both 
categorization and as:sociation problems. We have shown that the PerAc architecture coupled with the probabilistic 
conditioning rule (PCR) is an efficient approach to solve delayed credit assignments in an indoor environment. 

However, in the described NN we have deliberately ignored that some animals can create and use "cognitive maps" 
of their environment ! 10,36] to improve their navigation performances. Indeed, if a rat can explore a maze before the 
beginning of the experiment (without any reinforcement), its learning time to find the shortest path to reach a goal in 
the same maze will be drastically reduced as soon as it finds the goal (in comparison to "naive" rats). In our current 
research, we try to fill the gap between models of outdoor navigation [ 15] and goal seeking and cortical explanations 
of planning [ 1 ]. Then, we hope to have at the same time reinforcement and planning capabilities. Another important 
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Fig. 20. Representation of the system complexity versus the data complexity in our hierarchical PerAc architecture for complex 
sensory-motor associations. 

issue is to modify the neuron model so as to introduce continuous time considerations. Neuron simulation by 
differential equations should avoid harsh neuron activation and allow the use of dynamic fields modeling for the 
control of autonomous robots [33]. 

In conclusion, it can be noticed that in the artificial life (AL) approach, nowadays, most of the robots use simple 
and explicit sensors that must directly fit an interpretation (for instance: to detect only the red objects in a scene, 
you can use a photosensor sensible to red color!). But if the sensors are "omniscient" with regard to the task and 
the universe, both can be considered as trivial. The main problem is solved by the sensor-designer and not by the 
roboticists. There is no need for the robot to build categories on its own and the "symbol grounding problem" is not 
addressed [ 13,16]. As a result, on a second level of this AL approach, the goal is to build robots capable of working 
in complex universes. A complex universe can be characterized as a universe without "omniscient" sensors. Its 
information needs to be analyzed or interpreted before a decision can be taken. For instance, several types of red 
objects may exist. The system must also build an internal representation of the object to recognize. In that case, 
the "interesting" objects are supposed to be in the perception field of the robot. Unfortunately, in a real application 
with an image coming from a CCD camera, the robot has to decide which object in a complex visual scene must be 
associated to a particular action, so that there will be a combinatorial explosion. The choice must also be restricted 
to potentially good shapes; i.e. to shapes that can be relevant in robot movement situations. So, the architecture of 
an intelligent system must reduce, at the same time, the perception and action flow (see Fig. 20). 

In this paper, we have only shown how to implement three levels of the architecture depicted in Fig. 20 in a 
simple case. Indeed, we have deliberately simplified the visual part of the system by making the assumption there is 
a single object in the scene (Gabor filters are used and designed to approximately match the "interesting" shapes). 
The conclusion is that we have not solved the following general problem: How can a robot learn to find what can be 
relevant for its analysis and at the same time perform delayed sensory-motor associations? If a robot or an animal 
has to face all the possible associations at the same level, it would never be able to find a solution because of the 
combinatorial explosion. For instance, if we consider a sequence of images there can be more than hundreds of 
possible objects in each image that could be associated to a particular action with the help of a delayed reward. The 
limitations of reinforcement mechanisms would make it impossible for an animal or a robot to address very complex 
universes such as outdoor environments, which is nonsense. That combinatorial problem could be partly solved 
assuming a Darwinian process and an ontological development of the perception-action system (for a discussion 
about this problem see [12]). 

But these mechanisms cannot explain everything. Indeed, there can be several well-recognized (and learned) 
objects in a visual scene (the best recognized object might be not relevant for the task). An intelligent system should 
be able to build a set of hypotheses. Obviously, if the focus of attention mechanism used to select possibly relevant 
objects chooses an incomplete or biased set of hypotheses, the system will be unable to solve the problem. It is 
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exactly what seems to happen for children who do badly at school [21]. Thus, the architecture for the control of an 
autonomous robot that use complex sensors (such as vision) cannot be reduced to simple sensory-motor associations. 
One cannot hope to scale up behavior based learning strategies to this kind of problems because vision problem 
involve complex and interdependent internal functionalities. The information provided by the neurobiology and 
experimental psychology are certainly the only way to mark out the direction in which we must search well-adapted 
architectures. 
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Appendix A. The PTM rules 

The algorithm for the probabilistic topological map is the following: 
(1) Present an input vector I to the map. 
(2) Find the winner N*, i.e. the map cell with highest activity. The similarity between I and the weight vector is first 

computed and the real neuron activity is processed through an activation function fk with variable selectivity 
Dk (t). 
The activity in neuron Nk under presentation of binary input vector I is measured as follows: 

(3) Act(Nk, I) = fk[Sinput(Wk,  I)] + noise. 

i f / )k < 1, 

(4) 

\/~"~P Vto ) 1 {/_,to=lsk .Ito E P = I W T . I o  
Sinput ( Wk, 1) = ~ " - -  -}- -~ ~ ~ , 

otherwise 
P to p --to ~to ~ o = 1  V~ • Ito + )-]to--I W k  " 

Sinput ( Wk , I) = p p __to , 
Eto=! + Zto=! wk 

where Wk is Nk'S weight vector and 

(A.1) 

W~ = 1 - W~ °, Ik  = 1 -- lff, Vff = Wff + o~. ~ o .  (A.2) 

r ; ]  <,,3> (5) f k l x ] ( t ) =  Dk(t)exP L--~--d-- ~ . 

(6) 11t/k is the vector derived from W k whose components r~o are equal to 1 when W~' has been reinforced more 
than once and 0 otherwise. P is the dimension of the input space and S is the presumed number of ones of the 
input vector (it is a constant value). 

(7) Diffuse the winner activity on the map according to a diffusion function 

Dk(t) = Dk(Nk, N*) 

(a) exp[ -u  2 * = • dmap(N , Nk)]. 
(8) If Dk(t) -- L3k0") > v (the vigilance parameter) enable learning on the map: 

(a) If random < Dk(t) then adapt Nk's weight Wk: 
(i) W ~ ( t  + l )  = Ito, 



248 P Gaussieretal./Robotics andAutonomous Systems 20 (1997) 225 250 

(ii) If  po = 1 and W ~ ( t )  = 1 then ff '~'(t + 1) = 1, 

Else W ~ ( t  + 1) = W ~ ( t ) .  

(b) Modify Ark's selectivity parameter 

bk(t + 1) = Ok(N*, Nk). 

In our experiment the different constants are: 

e = 0 . 5 ,  a = 6 ,  o r = 8 ,  P = 1 5 , 1 1 , 1 2 = 1 9 8 0 ,  S = 1 5 0 .  

The vigilance parameter (similar to ART one) allows us to decide whether a new pattern is coded or not. In fact, 
PTM computes the difference between the maximum activity of all the winner neighbors and their present activity, 
and compares it with the vigilance term. If it is greater, it is considered that the pattern must be coded. In the other 
case, the pattern is similar to a pattern already learned, and it is not worth differentiating it. 
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