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Abstract

In this paper, we describe how a mobile robot under simple visual control can retrieve a particular goal location in an open
environment. Our model neither needs a precise map nor to learn all the possible positions in the environment. The system is
a neural architecture inspired by neurobiological analysis of how visual patterns named landmarks are recognized. The robot
merges these visual informations and their azimuth to build a plastic representation of its location. This representation is used
to learn the best movement to reach the goal. A simple and fast on-line learning of a few places located near the goal allows
this goal to be reached from anywhere in its neighborhood. The system uses only a very rough representation of the robot
environment and presents very high generalization capabilities. We describe an efficient implementation of autonomous and
motivated navigation tested on our robot in real indoor environments. We show the limitations of the model and its possible
extensions. ©2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Surprisingly enough, nowadays, computers have
sufficient memory and power to simulate insect
brains or part of mammal brains. Nevertheless, we
are still unable to build really autonomous robots
with insect-like cognitive capabilities. Therefore, our

q This paper is a synthesis of conference papers devoted to visual
navigation and appeared in the Proceedings Control96, IROS97,
ISIE97 and SAB98.
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goal is to use neurobiological and psychological in-
formation to design neural architectures allowing an
autonomous robot to “survive” in an a priori unknown
environment (animatapproach [40,41]). For this pur-
pose, creating a generic autonomous control system
could allow a real robot to learn and perform several
complex tasks during the same “life” span. Moreover,
these real robots could be used as simulation tools to
validate the behavioral implications of the neurobio-
logical models supporting the control systems.

In this paper, a parallel is drawn between insect
and mammal strategies used to solve this class of
“survival” problems and the underlying theoreti-
cal principles are applied to control autonomous
robots. A simple and generic neural network archi-
tecture named PerAc, Perception–Action, inspired by
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Fig. 1. Schematic representation of the PerAc block. From the perceived situation, the reflex system extracts information to control
directly the actions. Concurrently, the recognition system learns sensory input patterns and how to link them to actions by associative or
reinforcement learning. The system adapts itself dynamically to the environment.

Box 1. The PerAc architecture

The PerAc (Perception–Action) architecture is a neural computation architecture proposed to solve a wide
variety of control problems requiring learning capabilities (in contrast to adaptation capabilitiesa). The PerAc
block is inspired by various neural networks and robot controllers [1,8,28,29,33]. It consists of an action level
(a hardwired pathway able to play the role of a reflex mechanism) and a perception level to recognize particular
situations and associate them with the correct action through an associative reinforcement based learning rule
(see Fig. 1). The perception level allows the robot to react to a situation by generalization of previously learned
situations (landmark configuration in the navigation task) even if it is too complex to allow the action pathway
to propose an answer (the goal is not in sight for instance).
Moreover, if the action pathway induces a negative reward, the links between the recognition of the perceived
situation and the current robot action can be inhibited and a link with an action avoiding a negative reward
can be learned. This kind of architecture is not contradictory with Brooks’subsumption [9] and other robot
controller architectures [54] but rather proceeds in the same direction, using a neural formalism (an obstacle
overtaking reflex is directly implemented on the low level layer of our architecture for instance).

[11–13,19,32,33] and described in Box 1 and Fig. 1,
is used to model place learning and retrieval mech-
anisms and is efficiently applied to control a real
mobile robot.

a Learning is a process that can be fast and involves a variation
in the structure of the control architecture whereas adaptation
consists in a slower variation of the structure parameter. Adaptation
can induce learning if there is a nonlinear modification of the
adapted parameters that induces a nonlinear variation of the system
response.

A two stage cascade of PerAc modules operating at
different levels of complexity is presented: first to learn
patterns and associate them with specific actions, sec-
ond by the same mechanism to learn locations (places)
and also to associate them to a directional motion [31].
This paper emphasizes the second module which nev-
ertheless requires the first pattern recognition module
in order to function. This architecture allows an ani-
mat to choose and reach a particular goal according
to its location and motivation even if the goal is not in
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sight. Specifically, the implicit use of the topological
properties of Euclidean space, makes our algorithm
simple and robust. Successful transposition to robotic
experiments reinforces this proposition. Along this,
an explanation about “view cell” activity as reported
by Rolls [51] in primate studies as a simple restric-
tion of place-cell properties is also provided. In par-
allel, the relevance of different models is questioned
in the light of our success or failure to implement
them.

1.1. Visual guidance in robotics

Most of the existing navigation systems use Carte-
sian coordinates or map representations to locate the
relevant and important objects (the robot, the goal, the
areas to avoid,...). In well structured environments, the
navigation problem consists in finding the best route
to go from one place to another. These planning sys-
tems suppose the places are already known and usually
use improved versions of the classical A* algorithm to
find the best route to reach a goal. These systems re-
quire an important engineering work to select the per-
tinent information, to re-calibrate the robot position,
to check its current state, or to wait for the recognition
of the next state when a reactive planning mechanism
is used. In the case of a real autonomous navigation,
if the robot forgets to learn a place or learns several
times the same physical place, it becomes unable to
navigate correctly (cut or infinite loop in the graph of
its cognitive map [10]).

In a less structured environment, when the robot
does not move through corridors but must operate in
a room or in any other “open” environment, potential
field techniques [3,36] can be used. For each location,
the strength of the goal attraction on the robot is com-
puted. This implies at least to store the goal and the
robot locations in a Cartesian referential frame (pre-
cise trigonometric computations are needed). Unfortu-
nately, odometry currently used to measure distances
is not precise in the long run and must be recalibrated
by other sources of information such as particular vi-
sual patterns called landmarks [4,16]. Thus in both
structured and “open” environments, the actual main
problem in implementing really autonomous mobile
robots concerns the choice of criteria for the selec-
tion of positions to be learned and the regulation of
the learning level [18]. Further, the way information

is represented seems to be crucial to reduce algorith-
mic complexity. Indeed, if the robot had to learn each
position in the environment before being able to navi-
gate correctly, learning time would be prohibitive and
the system would be unable to perform topological
generalization [34].

Today, most of the robots performing visual homing
tasks use a conic mirror associated with a classical
CCD camera so that they can perceive directly a 360◦
panoramic view [15,22,23,43]. In the experiment pro-
posed in this paper, the use of this device would avoid
the rotation of our CCD camera. However, we do not
plan to implement it since the versatility of the visual
system of our robot is very important (in different ap-
plications, our robot has to be able to focus its gaze
on a particular object to recognize them).

1.2. Role of the visual cues in animal navigation

Insects like ants, bees, and wasps are well known
to use visual information, in conjunction with a com-
pass,2 to return to their nest [14,24,35,56]. It seems
that these insects store multiple views taken from dif-
ferent places. The following strategy has been hypoth-
esized: when they leave the nest, they “turn back and
look” from different positions (possibly) in order to
store new views of the nest and its associated land-
marks. This information could be used on their way
back to decide which direction could get them closer
to a learned view, and to move in a learned direction
associated with the best recognized view. How these
views are recognized remains unclear since insects
possibly use at least two different visual mechanisms
to reach their nest (in addition to a path integration
mechanism [45]). When they are far away, they seem
to rely mainly on the whole surrounding landmarks (I
am here because there is a “tree” in that direction and
a particular “rock” in that other direction). Near the
nest this information is not precise enough to allow
to find directly the nest entrance (which can be very
small: few millimeters). So it becomes necessary to
navigate in the direction of an object or a scene directly
associated with the goal. In both cases, how these in-
sects succeed in matching learned view and current
view remains unclear. They seem to be able to recog-
nize an “object” only if it is perceived exactly under

2 They know their orientation according to light polarization.
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the same angle. The selection of the movement direc-
tion could then be explained for instance by a body
rotation translating the image on the insect eye. Inter-
estingly enough insects can learn to associate specific
movements with particular sensory situations and thus
learn to solve complex maze tasks [68]. Top down
visual processes are also used in their brain to allow
a kind of at tentional focus [69].

Similarly, birds, rats and primates can return to a
place by using visual cues and have the same prob-
lems as insects (if those cues are shifted for instance).
In this case, both insects and mammals using vision
to navigate will search the goal at a place which is
also shifted from its usual place. Nevertheless, neu-
robiological studies of mammals reveal that they are
able to perform ocular saccades or to use an internal
“spot light” to focus their attention on particular lo-
cal areas of their visual field.3 They can perform the
recognition of different subparts of a panorama. The
detailed identification of a complex scene is the result
of a sequential process even if a global recognition
of the scene can be performed more quickly (maybe
using lower spatial frequency information). Mammal
generalization capabilities could be higher than those
of insects (if actually insects are unable to do the same
[63], not completely proved today) but not so differ-
ent in their basic principles. Similarly, mammals can
either rely on surrounding landmarks to reach a par-
ticular place, or head in the direction of a particular
object. A priori, the simple sensory-motor learning
which seems to govern insect navigation can also be
used by mammals for the same kind of tasks (even if
the “hardware” is quite different).

Furthermore, in mammals like rats, a particular
brain structure named hippocampus is involved dur-
ing navigation tasks. Electro-physiological recordings
of hippocampus cells performed in CA3 and/or CA1
regions have shown the existence of cells that maxi-
mally respond when the animal is at a specific place
in its environment [47]. These cells have been named
“place cells”. Moreover, it has been shown that the
bilateral hippocampal ablation induces learning and
navigation problems in new environments (lack of
plasticity, i.e. Morris swimming pool [44,65]). More

3 It would be really time and energy consuming for mammals
to have rotate their head and their body in order to see objects
always in the learned position on the retina!

interestingly, human bilateral ablation of the hip-
pocampus induces an anterograde amnesia with a loss
of declarative (in particular, episodic) memory [42]
(subjects are unable to learn any new explicit infor-
mation but preserve the possibility to acquire new
implicit knowledge like manual skills, for instance).
These results as well as anatomical and histological
data lead to the idea that the hippocampus plays an
important role not only in navigation tasks but also
in a wide variety on spatio-temporal merging prob-
lems which are central to our “high level” cognitive
ability. The understanding and modelization of such
a structure can thus exceed the “simple” application
to navigation problems.

In collaboration with a neurobiologist (one of the
co-authors) we try to advance in parallel neurobio-
logical modelization and robotic implementation that
integrates these models (for a large review of existing
models, see [20,59]). The robot can then be viewed as
a simulator, at the behavioral level, of the dynamical
effects of the model in an environment that we want
to be the most realistic possible (environment not
prepared for the experiment).

2. Which “representation” for the visual
information?

2.1. Visual pattern learning

The first functional step of a visual navigation mech-
anism is to measure the similarity between learned
locations and the current location (e.g. a measure of
the distortion between current and stored images). The
recognition of an image can be simply performed by
a global correlation measure between learned images
and the current image. This kind of technique using
directly 2D perceived images has the advantage to be
very simple and relatively robust (qualitative naviga-
tion [38], visual homing [46], visual servoing [39])
but is not really robust to a contraction or dilatation of
the image resulting from moving backward or forward,
or to objects occlusion or displacement. In mammal
and more specifically in primate vision, ocular sac-
cade and/or attention focus play an important role in
object recognition capabilities. Hence, by a bottom-up
mechanism of “pop-out” attention, brain seems to fo-
cus on a particular part of the visual scene, to recog-
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nize it before focusing again on a new area, and so
on. Moreover, brain imaging techniques as well as le-
sion studies have shown that after the first occipital
visual processing steps involving gradient extraction,
end-stop and corner detection among others, visual
information flows through two distinct pathways de-
voted to “what” (inferior temporal cortex) and “where”
(posterior parietal cortex) processing [60].

In our approach, the image is divided into sub-areas
centered around focal features and the recognition
level will only depend on the correct recognition of
these features and the surrounding area, weighted by
the displacement of these features from the learned
configuration.

We argue that such a mechanism allows a more ro-
bust scene recognition than classical global correlation
(without feature extraction) because the recognition
level will only depend on the correct recognition of the
learned sub-areas around the selected features and on
their relative displacement with respect to the learned
image. If the learned snapshots are taken around points
that remain stable when the robot is moving then the
recognition will be very robust. In our case, the vi-
sual system focuses on corners and/or end of lines
(end-stop cells). The process consists in a gradient ex-
traction followed by a convolution with an OFF-center
difference of gaussians that allows to detect corners at
a particular spatial resolution [25,31] (see Fig. 2).

Fig. 2. This figure illustrates how the attentional focus of the
robot visual system performs the exploration of a scene. The
circles represent the center of the focalization area. The vision
field spreads over about 50 pixels around the focal point.

For instance, if there is a door in the image, the
system may focus on one of the door corners and will
learn the local view around that corner. Then, if the
robot moves forward in the direction of the door, it will
find again the same feature points and the same local
views (the local shape of the corner will not change4 ).
The only difference will be the relative position of
the different views (affecting the motor command that
must be produced by the visual system to move from
one focal point to the other). This kind of mechanism
can be used to compute the apparent size of the objects
as well as their azimuth.

In a first approach, azimuth appears more informa-
tive than size to locate objects. Indeed, information
about distance obtained from apparent size varies in
a very nonlinear manner and does not allow to esti-
mate the distance with a good precision if the agent is
far away from the object. The measure of the appar-
ent size also requires two points on the same vertical
structure at different heights. The chances of mistakes
in performing the right associations make this kind of
measure difficult to realize in a natural environment.
Information about the apparent height of the floor in a
plane environment could be easy to use but supposes
no ambiguity in separating the floor from the walls
(not granted if there is a texture on the floor or a lot
of objects everywhere). Moreover, the only use of ap-
parent size information does not allow to differentiate
mirror situations [70]: if a place cell response is deter-
mined by the distances to two objects A and B, then
the answer will be the same if A and B are swapped
or if the scene is seen through a mirror. Of course, in
a complete system, one will have to integrate both az-
imuth and apparent size information of the landmarks
(optical flow and/or stereo-vision could also be an
important information to estimate distances).

2.2. Robotic implementation of distant visual
landmark learning

Most of our robotic experiments were done in a
room of about 7.2 m × 5.4 m shown in Fig. 13 (the
size of our Koala robot is about 30 cm× 30 cm). The
visual input comes from a 384× 288 gray-scale CCD

4 This is only true if the images are at the same resolution. If the
second image is taken at a few centimeters from the door surface
then completely new things will appear... .
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Fig. 3. Azimuth of the 15 local views stored and used to learn a place form a given panorama (environment Fig. 13, black circle S). The
graph below the panorama represents the absolute value of the derivative of the signal obtained by averaging the image columns.

Fig. 4. 16 examples of 32× 32 local views learned as landmarks and their azimuth in the panoramic image (panorama referenced as
(image a) in Fig. 13).

Fig. 5. Another panoramic image constructed by our system referenced as (image b) in Fig. 13 that our system must be able to discriminate
from the image Fig. 4, for instance.



P. Gaussier et al. / Robotics and Autonomous Systems 30 (2000) 155–180 161

camera. Its field of vision spans about 70◦. To build
a panoramic view a servo-motor is used to pan the
camera. The robot takes 24 images with a 7.5◦ rotation
between each image acquisition. The central vertical
bands of each image (30× 288 pixels) are merged to
constitute the global panoramic view (only the central
band is used because the camera distorts the image
sides). A 1246× 288 pixels panorama is obtained.
The resulting field of view is about 250◦. It is not a
complete 360◦ image (there is a blind area) but it is
enough in practice. As you can see on the different
panoramic images (see Fig. 3, for instance) the images
merger is not perfect but it works (which shows the
robustness of our system).

The first step of the algorithm consists in locating
the possible landmarks. To reduce the computation
time, a very simplified version of the feature point de-
tector described previously is used to control the fo-
cus of attention. All the image columns are averaged
and weighted with larger weights for the points near
the center of a column. The resulting one dimensional
signal is differentiated and the local maxima and min-
ima are used as centers of local views (an example is
shown in Fig. 3). Each panorama projection contains,
in average, 20 local maxima. In Fig. 4, 15 maxima are
selected to be the centers of 15 local views. Another
panoramic image constructed by our system is shown
in Fig. 5.

For each selected focus point, a 32× 32 pixels
local view is built by averaging the 148× 288 pixels
of the corresponding panoramic image part. They
axis is just scaled whereas a logarithmic transforma-
tion is used for thex axis (no need of a complete
log-polar transformation since there will not be object
rotation problems in the camera plane). Then, each
current local view is compared with each learned
local view. This comparison is made by the norm
of the difference between the pixels of the two lo-
cal views. The best corresponding views are used
as landmarks, i.e. their positions in the image are
compared with the ones in the learned panorama.
The sum of these absolute angles provides us the
similarity measure between panoramas. Then, the
movement associated during learning with the best
corresponding panoramic image is performed and
allows the robot to reach the goal (obviously all
the angles are rotated according to the robot body
orientation).

2.3. Building a robust representation of a place

In our system, the information about the landmark
recognition and their azimuths are merged to produce
a unified representation that can be easily learned and
matched with previously learned representations. This
merging process is implemented as the vector prod-
uct of the information corresponding to “what” (Land-
mark) and “where” (Azimuth) the objects are (Fig. 10,
Landmarks Azimuths group). A time integration pro-
cess allows to suppress the sequential aspect of the
scene exploration (spatio-temporal merging). In this
representation, there is no need to “recognize” specif-
ically what the landmarks are (a fridge, a chair, etc.).
To discriminate them and to record their angular posi-
tion only matters. Even if a landmark is missing, the
other landmarks can allow a correct recognition. We
will show in the section devoted to the experimental
results how several landmarks can be moved, removed
or hidden without altering the global recognition of the
scene. In the mammal brain, this flexible merging by
opposition to the static recognition of a multi-sensor
configuration seems to be performed by the hippo-
campus5 [5]. An explicit neural network representing
this kind of treatments is proposed in Fig. 6.

The activity of the “place cells”Pi when the robot
is at the location(x, y) can be summarized by the
following equation:

Pi(x, y)

= 1 −
∑Ni
k=1Vi,k.f

(∣∣Θi,k − θk(x, y)
∣∣ , vk(x, y))

πNi
.

(1)

An intuitive understanding of this measure can be
seen in Fig. 7, where the negative term of the equation
is plotted according to the robot position.

In this equation,Ni is the number of visible land-
marks when the robot is at the learned placei (field
corresponding toPi).Θi,k represents the learned value

5 At least in primates, there is ample neurobiological evidence
that this “what” and “where” merging takes place either in the
perirhinal, parahippocampal, entorhinal cortices and/or in the hip-
pocampus proper (CA3) [52, pp. 107–108]. In fact, the types of
multimodal associations taking place in the perihippocampal cor-
tices and hippocampus proper could be different both in nature
(rigid versus flexible) and extend (more local in the cortices, more
global at CA3 level).
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Fig. 6. Part of the neural network devoted to the merging of what
and where information. The lateral diffusion allows to measure the
difference between the learned azimuth and the current azimuth.

Fig. 7. Simulation of the error of a “place cell” response com-
puted according to the negative part of Eq. (1). In that example,
the learned location is associated with the point (50,50). Four
recognizable landmarks are located at positions (20,20), (20,90),
(90,20) and (90,90). The shape can be seen as an attraction basin
centered on the learned location.

of the landmarkk azimuth from the learned placei.
θk is the value of the same landmark azimuth for the
current robot location(x, y). All the angles are ex-
pressed in radians and measured from an absolute di-
rection (the north, for instance).

∣∣Θi,k − θk(x, y)
∣∣ is

computed moduloπ , Vi,k is set to 1 when the land-
markk is seen from the learned locationi and 0 oth-
erwise (the same rule applies tovk for the current lo-
cation) for the current robot location). When learned
landmarks are not recognized, we can haveVi,k = 1

Fig. 8. A second room for the experiment, the white circles (a
and b) and bars on line D represent several tested positions.

andvk = 0. f is a nonlinear function to account for
landmark recognition:

f (θ, vk) =
{
θ if vk = 1,
π if vk = 0.

The error associated with a landmark azimuth is
maximum when the landmark cannot be found (land-
mark not visible for instance:f (θ,0) = π ). Eq. (1)
gives a growing activityPi that tends to 1 when the
azimuthsθk associated with the current location are
close to the storedΘi,k.

Experimentally, we first tested one robot “place
cell” response for different orientations (36 tests with
10 degrees rotations) at a learned location and we ver-
ified the activation of the place cell was always the
same up to a 1% error, in spite of landmarks lost in
the blind area of the robot.

Next, the robot was moved along a rectilinear trajec-
tory (line D in Fig. 8) in order to evaluate precisely the
variations of the activities of two place cells learned
at two neighbor locations. The maximum activity of
the place cells is always obtained for the learned lo-
cation and monotonously decreases with distance (see
Fig. 9). These results emphasize the fact that even with
large distances (compared to the robot size and to the
environment size), the robot is able to perform an
action in order to come closer to the goal.

In addition, the more complex the environment is,
the more numerous landmarks can be, and thus, the
more efficient our algorithm is.
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Fig. 9. Response of a place cell (learned view) according to their learned location on a rectiligne trajectory (see environment, Fig. 8). The
asymmetry of the field results from the views differences before and after reaching the learned location and beyond some distance the
views cannot be further used (generalization failure).

3. Learning of an homing behavior

In a formal perspective, returning to a given goal
locationXi (homing task for instance) can be written
as the minimization (or the maximization6 ) of a par-
ticular potential functionψi(X) such as

ψi(X) = P(Xi,X) (2)

with X the vector describing the current location and
P the function used in the previous section to com-
pute the place cell activity for instance.7 The poten-
tial equation must verify:

Xi = Arg min
X
ψi(X) or ψ(Xi) = min

X
ψi(X). (3)

Most of the navigation techniques use some kind
of measure of their distance to a goal to decide of
their movement. Gradient descent techniques are then
a natural solution as attested by the success of potential
field techniques proposed by Khatib [36] and Arkin
[3]. In this paper, we will not consider these methods in
relation to the use of an explicit field (i.e. the field has
to be computed for each location; more importantly
robot and goal position are supposed to be known in
the same absolute coordinates). We will rather suppose
the existence of an implicit potential field determined

6 In the case of a “place cell” like measure of a place recognition,
the activation of the cell is maximum when the animal is at the
correct place. Returning to that place is equivalent to maximizing
that activation or to minimize the error in the place recognition.

7 In that caseXi=(Θi,0, . . . , Θi,k . . . , Θi,Ni , Vi,0, . . . , Vi,k, . . . ,
Vi,Ni )

T andX = (θ0, . . . , θk . . . , θNi , v0, . . . , vk, . . . , vNi )
T.

by Pi(x, y), the activity of the place celli in Eq. (1)
(see also Fig. 7). In this frame, the action vectorAAAi
to reach the goalXi can be expressed as the result of
the spatial derivative of the potential functionψ() for
the currentX location:

AAAi(X) =



∂ψi(X)

∂x

∂ψi(X)

∂y


 .

Even without the requirement of building an explicit
field, the gradient can be very flat when the system is
far away from the goal. The system should therefore
move a lot in one direction to be able to compute the
value of the gradient in that direction. It would next
have to return to the current position to try another
direction and so on. Obviously, on a real robot, be-
cause odometry is imprecise and the measure of activ-
ity from all these locations is time consuming (a lot of
unproductive movements must be performed), the di-
rect implementation of this algorithm to approximate
the gradient and to follow it to reach the goal is not
straightforward. Nevertheless, this strategy could be
used by rats in maze problems when they lack informa-
tion (vicarious trial and error strategy proposed by Tol-
man [57,58] and used by Schmajuck for the modeliza-
tion of maze learning [53]). Another solution inspired
from bacteria strategy to reach a sugar area could be
to keep on moving in the same direction until the gra-
dient becomes negative. At this time, it is enough to
choose randomly another direction and to repeat the
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Fig. 10. The navigation neural network. Target azimuth and Direction of Movement groups are WTA. The Landmark-azimuths group
emphasizes merging of visual and directional information.

process. At the end, the robot must reach the goal lo-
cation but it is obviously not a very efficient strategy.
Moreover this strategy may become very inefficient
when obstacles appear. The robot could get stacked
in local minima. A solution that looks like stochastic
gradient descent with momentum could also be used
and could be a good complement to the previous algo-
rithm. An important number of other approaches also
use specific algorithms that compute the best move-
ment to perform in order to minimize the error of the
landmark position in the visual field [14,22]. These
algorithms have mainly been tested in simplified envi-
ronments where there is no recognition problem (use
of black cylinder landmarks in a white environment
[43]) or where there are no segregation problem be-
tween the ground and the landmarks (toy houses on an
homogeneous ground [22]). Recent works try to over-
come these problems by using visual learning based
on local correlation techniques and on the selection of
the most relevant or stable landmarks when the robot
is moving in the neighborhood of the goal [6,50]. Yet,
because the movement direction is computed in an ad
hoc manner only linked to the displacement of the per-
ceived landmarks, those models do not explain how an
animal could also use the recognition of a particular
place to decide to move in a particular direction cor-
responding to a place different from the learned place.
Moreover those algorithms do not allow to learn how
to reach several goal locations (lack of versatility of
the algorithm).

To avoid these problems, it looks simpler to learn
not the goal location but rather places in its neigh-
borhood and to associate these places with the direc-
tion of the movement to perform to reach the goal
(straightforward application of the PerAc architec-
ture — see Fig. 10 and Appendix A for a mathematical
formulation).

These positions must be sufficiently remote from
the goal to obtain different place cell activities accord-
ing to the different learned locations. Moreover, they
must be close enough to the goal to allow the robot to
associate these locations with the correct movement
direction to reach the goal. This can be done with the
help of the odometry which does not need to be very
precise or by visual tracking of the goal location (to
maintain active the goal direction on the motor map —
for a neural description see [31]). In practice, we have
shown that learning 3–6 places at 30 cm from the goal
is sufficient to join it from distances higher than 3 m
(the panoramic image size is about 1246× 288 pix-
els — a better resolution than insects). For these re-
mote (not learned) locations the movement decision
depends on the best recognized place or on a combi-
nation of the most active place cells [26] (see Fig. 11).

Interestingly, the simplest way to foster this kind of
learning is to mimic the exploration strategy used by
insects like ants or wasps when they leave their nest
(“turn-back-and-look” in the direction of the nest from
several locations [17,66,67]). At the beginning of the
exploration phase, we suppose our robot (Prometheus)
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Fig. 11. Example of a goal retrieval with an absolute direction.
Each “place cell” wins for a particular angular sector. The robot
position during each place learning is represented by a black circle.
The arrows associated to these circles represent the action to be
performed from that place in order to reach the goal location.
Competition between these place–action associations allows the
robot to reach the goal even if the goal is not in sight.

moves randomly, looking for something interesting.
The first time it finds a particular goal location, an
appropriate sensor allows to detect this success. A
positive reinforcement signal is emitted and the vig-
ilance level for on-line, autonomous learning is in-
creased. As a consequence, learning of “new” local
views and places are facilitated. This signal also trig-
gers the learning procedure which consists in mov-
ing backward for a particular distance (30 cm), taking
from that place a panorama while the body orientation
is in the goal direction. Then, the robot moves forward
on the same distance than before and returns on the
goal (see Fig. 12).

Classical Hebbian learning allows the robot to as-
sociate the recognition of that place with the fact that
moving forward in the direction specified by the com-
pass allows to reach the goal. When the robot is once
again on the goal location, it can, for instance, rotate
on itself of 60◦, move backward again on 30 cm, take
a new panorama, analyze it, return on the goal and re-
peat that until enough perception–action associations
are learned. If there is an obstacle while moving back-

Fig. 12. Procedure to learn place–action associations around a new
goal. The robot moves backward on 30 cm, takes a panorama,
analyses it, returns on the goal, rotates 60◦, moves backward again,
takes a second panorama,... .

ward (detected by the infra-red sensors in the back of
the robot), the robot simply comes backs to the goal
and tries to go to the next place to be learned.

The decision to learn a new place does not need
to be directly controlled by the learning behavior (see
[27] for a simulation of how our neural network can
be used to build autonomously a cognitive map of the
environment). If the activation of the learned place
cells is too low (inferior to the vigilance threshold)
the current place is considered as new and has to be
learned. If the variations of the perceived situations
are important on a small distance, several place–action
couples can be learned whereas for the same learning
trajectory in a poorer environment very few places will
be learned (in that case, the detection of the number of
learned places could be used to carry on the learning
behavior on more important distances). After a while,
an habituation mechanism allows the robot to cease to
be interested in the goal and then to stop the learning
behavior.

Because the robot may have an orientation differ-
ent from that used during learning, all the azimuths
are shifted of an angle corresponding to the angle be-
tween the robot and an absolute direction. In our case,
an electronic compass8 mounted on the top of the
robot allows to obtain an indication about the north

8 Pewatron sensor model 6070.
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direction9 (precision about 3–4 degrees with a bias
which depends on the proximity of metallic objects).
The inverse shifting mechanism is applied to the mo-
tor output, by subtracting the same angle. Thus, the
learned movements do not depend on the robot orien-
tation and are correct whatever the robot orientation
is (preservation of the sensory topology in the whole
neural network architecture).

When the robot wants to return to the goal, there
are two possibilities. If the robot recognizes the goal,
it moves in its direction (reflex link between Target
Azimuth and Direction of Movement in Fig. 10, for a
detailed description, see [34]). Otherwise, it considers
the information of the place cells (i.e. the cells which
react to a specific set of local views associated with
their azimuth) and moves in the direction related to
the most active place cell (competitive mechanism) to
reach the goal (we will only address this second issue
in this paper). Thus at each step, the distance to the
target is reduced (Fig. 11) and the robot returns in-
evitably to the learned position [31]. The PerAc archi-
tecture for place learning realizes an approximation of
an attraction field [3] avoiding the cost of either learn-
ing what to do at each position in the environment or
knowing goal and robot location in a Cartesian space.
Moreover, it has been mathematically proved that no
local minima were induced by the competition be-
tween the action neurons within the domain bounded
by the set of landmarks [71].

3.1. Importance of using a soft competition
mechanism

In the first robotic experiments, a strict Winner take
all (WTA) mechanism (that had to associate a unique
label to each perceived snapshot) was used. The re-
sults were not very good and sometimes the neural
activity patterns associated with different views were
very close because some of these learned views were
very similar. This problem increases with the num-
ber of learned views. The explanation is quite simple.

9 A directional information linked to the robot odometry or the
perception of the different robot accelerations (like in the mammal
vestibular system) could also be used to build a dead-reckoning
mechanism [21,63]. We have also shown in simulation the possi-
bility to use a distant landmark as a reference direction (the algo-
rithm works correctly if the robot remains in the area surrounded
by the landmarks, see [31]).

For two different places to be learned, the robot can
have the same object in its visual field. According
to the vigilance threshold, the two different views of
the same object A, can be just different enough to be
linked to two different labels and coded on two differ-
ent neurons. When the robot is between the two pre-
viously learned places, it is not sensible to attribute
only one of the two labels to the view linked to the
object A, because the choice of the associated label
will introduce an important bias in the place recog-
nition. For instance, the view can be more similar to
the first place but can have an azimuth that matches
better the recognition of the second place. The inter-
est of the nonlinear effect of taking local snapshots to
build a nonlinear measure of panorama similarity was
becoming in these cases an important hindrance.

Yet, in biological competitive structures almost
never a single winner emerges. The WTA is more
like a contrast enhancement mechanism. This process
was implemented in our system by using a smooth
WTA mechanism. The activities of all the neurons
which are below a given threshold are set to zero and
the activities of the others are left unchanged (a lot
of other solutions are, of course, possible — see the
section about motor control for an example of a more
efficient solution). In this system, the same “object”
can have several interpretations. The system avoids
to take decisions too early in the processing chain. It
does not take a hard decision either at the view recog-
nition level, or at the place recognition level. Only the
competition between the neurons associated with the
different places allows the robot to move correctly.
It never “recognizes” correctly a given place (in the
classical pattern recognition sense) but it succeeds to
reach the center of the attractor created by learning
the place–action associations. Indeed, in the naviga-
tion task, the system’s actual recognition of a given
place does not matter. What only matters is the place
field of the winner neurons in the place recognition
group being the closest possible to the robot current
location. Hence, when one or several landmarks are
randomly moved, the system keeps on working cor-
rectly. The system only needs that, at least, two land-
marks remain stable on the 20–30 landmarks found
in the image. Of course, the activities of the place
cells will decrease if landmarks are moved randomly
or if distractors are introduced but the outcome of the
competition will not be changed (all the place cell
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Fig. 13. Place cell-like segregation of space in a robotic experiment. Four views are learned (circles), others are associated with one of
these learned views (boxes). As we can see, if the robot learns to reach the cross from each learned view it can reach the cross from any
other view associated with the learned one (generalization). The set of arrows represents a possible path. The views are in a 1.2 m× 1.2 m
area, the learned views are at 30 cm from the center. The scale is not respected for the position of the different furnitures (in fact they are
about 1.5 m from the center).

activities will be reduced by almost the same amount).
Problems can only arise if a majority of landmarks
are moved in a coherent manner (say rotated around
the room of the same angle) or if the stable landmarks
for the recognition of a given place are in the blind
area of the device used to take the panorama. In a
normal case, just the system’s robustness to noise will
be decreased (in new experiments we try to measure
this kind of signal to noise ratio in order to obtain a
better characterization of the system performances).

3.2. Robotic experiments of a simple visual homing

The test environment is first presented Fig. 13. The
results of the robotics experiments on simple visual
homing show the activities of the four learned place
cells according to the robot location.

The variation of the place cell activity as a func-
tion of the robot location is emphasized (Fig. 14). A
combination of the four responses of the place cells
(which is the actual measure used to decide the direc-
tion to move) is presented in Fig. 15. These responses
allow to test the correct generalization capabilities of
our place cells to large open areas.

Fig. 15 presents a combination of the four responses
of the place cells recorded during a first experiment
(maximum of response at each location). It verifies
that our “place cells” can generalize correctly to large
open areas. The robot reaches the center of the goal
area (attractor) and stays in its vicinity with a precision
of 5 cm (each move was about 20 cm and the robot
size is about 30 cm). Even if the starting point of the
robot can be very far from the goal, the robot is able
to reach the goal with great precision (the precision
can be increased with smaller steps).

The correct goal reaching behavior (see Fig. 16) is
induced by the action sequences linked to the recogni-
tion level of the different learned places. Fig. 16 also
shows the movement precision can be better if the size
of each move is reduced to about 4.5 cm. Here, the
smallest distance of the robot to the goal is less than
2 cm. In theory, with landmarks at distanced, the pre-
cision p representing a 1 pixel shift in the image is
p = tan 1

4d). It comes from the field of vision be-
ing about 270◦, the x axis made of 1066 pixels, that
each pixel represents about1

4 degree. Thus, with land-
marks at 1.5 m, the maximum precision is 7 mm and
with landmarks at 15 m it would be 7 cm. The starting
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Fig. 14. Place field response of each place cell when covering a 1.2 m× 1.2 m square (environment Fig. 13), white color represents high
place recognition. The cross represents the position of the robot when learning the scene, the goal position is (0,0).

Fig. 15. Combination of the four place cells activities (see Fig. 14). For each point in space the maximum activity of the four cells has
been taken. The associated experimental area is shown Fig. 13. Unit is meter and a gray level is associated with each direction (verification
on Fig. 13).

point of the robot can be very remote from the goal.
The robot is still able to reach the goal with great
precision.

An important limitation in the first implementation
of the neural network was the coarseness of the move-
ments. So, we combine the different responses of each
“place cell” as a function of their activity. We have to
apply a transformation on each activity to enhance dif-

ferences because activities are very close. The contrast
enhancement of the movement direction is performed
as follows: S′

i = (Si/Smax)
n and EV = ∑

iS
′
i · EVi

whereSi is the value of the place celli, EVi its associ-
ated movement,Smax the value of the most activated
place cell and EV the robot movement vector.n is
chosen high enough to avoid that place cells with
a low activation (place cells coding for a distant
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Fig. 16. An example of a real path taken by the robot to reach
the goal (environment Fig. 8). This area is a zoom of Fig. 8. The
arrows’ positions correspond to those of the center of the robot
camera.

location) contribute significantly to direction of move-
ment (heren = 10). Conversely, this equation allows
to sum the contributions of place cells which are the
most activated and which have almost the same value.

4. Autonomous and motivated navigation

Obviously, our PerAc architecture can be used to
learn how to return to an arbitrary number of different

Fig. 17. Bias introduced by motivations in goal selection.

locations. When an interesting location has been dis-
covered, the robot only needs to move around the new
goal to learn how to reach it from different neighboring
locations. Hence, attraction basins are created around
each potential goal. The robot is nothing more than a
ball that falls in the implicit potential field created by
this learning. If we introduce a modulation of the po-
tential fields (place cell activities) linked to the current
relevance of these different places for the robot, one
can force the robot to reach a particular goal what-
ever its current location (it does not necessarily fall in
the nearest basin). The size of the attraction basin is
modified by this modulation that we can call a “mo-
tivation” (see Fig. 17). Motivations are controlled by
two internal variables associated with the perception
of something similar to hunger and thirst. As soon as
the robot is on a supply area, the level of the related
drives is immediately decreased with a constant quan-
tity.

The following experiments aim to simulate a system
with two different goals named A and B introduced
in our environment (see Figs. 18, 19 and 20). They
are made of colored paper stuck on the floor that spe-
cial light sensors located under our robot can detect
and discriminate but that cannot be used by the visual
system of the robot (no possibility for the visual nav-
igation system to “see” the goal). Images taken from
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Fig. 18. Map of a room used for simple motivated navigation. We can see the two goals A and B. The 3 arrows around each goal represent
the learned positions and the associated movements. The distance between each learned position and the center of the goal is only 30 cm.

Fig. 19. Panoramic image constructed by our system. We can see the experimental room with the two goals A and B (see plan Fig. 18).

Fig. 20. The experimental room, we can see the robot and the two goals A and B. On the image (b) we can see the introduced obstacle
which is a landmark moved in the center of the experimental area.
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Fig. 21. (a) Path followed by the robot attracted by two kinds of supply locations (linked with two different motivations). The robot starts
at the center of the room and is more motivated by goal A than B. When it reaches A the corresponding drive decreases and the robot
is attracted by B. Finally at B the drive A becomes preponderant once again. (b) In this example, the robot starts from the center of the
room without obstacle. Then, when it reaches the goal A associated with the most activated drive, an obstacle is put at the center (the
large box) and the robot has to reach the other goal B.

Fig. 22. The robot is close to a goal. In image (a) the robot is about 80 cm from the goal A, we can see it on the panoramic view. In
image (b) the robot is about 40 cm from the goal B, it is too close, we can not see the goal.

the CCD camera of the robot (Fig. 22) show that those
targets are too small to be used by our algorithm and
allow us to say that our system is blind to the goal.

The first time the robot finds a particular goal loca-
tion (detection of the color on the floor by a specific
sensor) it triggers the learning procedure (see previ-

ous section). When the robot is on a goal, the corre-
sponding drive is resolved (its intensity decreases) and
the robot is attracted by the other goal. Several ex-
periments were undertaken on the robot (see Fig. 21),
with motivations evolving with time. As we can see
the robot is always able to reach the goals, even if the
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Fig. 23. The robot is close to the goal. In image (a) the robot is about 80 cm from the goal A, we can see it on the panoramic view. In
image (b) the robot is near the introduced obstacle which occludes some of the learned landmarks.

size of the goal is small and if the robot is far from it.
In fact, in these experiments, goals are two rectangles
(16 cm× 14 cm and 16 cm× 20 cm) and the distance
between goals is 3.5 m. It is important to compare this
distance with the distance between learned positions
and goals which is only 30 cm. Fig. 21(a) and Fig.
21(b) represent the robot trajectories, goal positions
(A left-up and B right-down) and the position of an ob-
stacle added during the experiment (not present at that
place during learning). The vision and the compass are
used to reach the goal while the infra-red sensors are
used to avoid obstacles. Though the goal can be vis-
ible (the metallic paper on the black floor) the robot
does not use this information. As we can see in Fig.
23(a) when the robot is far from the goal (3.5 m) this
one is invisible. Moreover the shortest distance from
where the goal can be perceived is 80 cm (Fig. 22(a)),
closer (40 cm Fig. 22(b)) the goal is no more visible
due to the camera position on the robot body (we have
verified that it has not been learned as a landmark).

To verify that our system actually does not need to
see the goal and can integrate goal seeking and obsta-
cle avoidance behaviors, we introduced a huge obsta-
cle (a 60 cm× 60 cm× 60 cm box) in the center of
the experimental area. Those experiments are shown
in Figs. 21 and 23, we can see that the goal is totally
occluded by the obstacle. The learned positions are al-
ways the same, the robot starts without obstacle and

when it reaches the first goal we move the obstacle at
the center of the room. There, the robot uses an ob-
stacle overcoming strategy combined with our naviga-
tion model (like a Braitenberg vehicle [7]). In fact the
robot quits the goal reaching strategy and triggers an
obstacle following strategy until it succeeds in retriev-
ing the desired orientation, given by the goal reaching
strategy. Hence we avoid the local minima problems
that appear when two contradictory behaviors must be
performed at the same time. Figs. 21(a) and (b) show
that trajectories do not go to the goal directly but al-
ways reach it. Several other experiments with differ-
ent starting points and starting orientations have been
successfully completed. For the robot to succeed from
any position in the room it just has to learn some po-
sitions around each goal (in fact 6 positions around
each goal are enough to provide good performances
but 3 positions can be sufficient).

The introduction of “motivation” neurons associ-
ated with the place cells allows the robot to bias com-
petition between potential goals (Fig. 17) and then to
reach the desired goal [72] if the goal belongs to the
same visual environment than the current robot loca-
tion. Conversely to classical potential field techniques
[3] there is no need to know the location of the robot
and the goal in a explicit and common referential.

The presented model does neither compute in which
direction to go according to the perceived and the
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learned panoramas nor learn what to do for each lo-
cation in the environment. The information represen-
tation allows the system to use, at distance from the
goal, the movement direction learned from places near
the goal (a priori generalization). Our simulations and
robot experiments show that if we can separately rec-
ognize at least two landmarks (local snapshots) in a
panoramic image and know what their azimuths are
(relative to an absolute direction given by a compass
or by the odometry) then, this information can be re-
combined in a very robust manner to decide whether
the robot is far or near the learned location.

Moreover, the complexity of the algorithm for a
panorama analysis is very low. The system has to per-
form 14 million integer additions and 1 million float-
ing point multiplications. More than 95% of the cal-
culation time is dedicated to the creation of the local
views, the remainder is spent in view comparison. The
total calculation time is less than 1 second on a Pen-
tium 133 and could be easily reduced. In fact, when
the robot has learned 10 locations (2 learned goals),
it performs a movement every 15 seconds. About 13
of those 15 seconds are spent in the acquisition of the
panoramic image (camera rotation).

5. Synthesis and conclusion

The experiments presented in this paper show the
robustness of our algorithm and its adaptability to a
wide variety of tasks. It tolerates a lack of landmarks
or a misinterpretation of a few of them. There is no
need of a particular number of landmarks (more than
2) to be learned or present in the visual scene. The
precision of place recognition will only grow with the
number of landmarks. These properties support the
idea that animals do not need to learn a large num-
ber of positions in an open environment to be able to
return to a goal location. Moreover, there is no need
of an internal allocentric representation of the world,
like a Cartesian map. Instead of learning a map of the
environment, it is possible in simple but frequent sit-
uations (free open environment) to learn to build an
attractor around a desired location.

Whatever the interest of those visual navigation
models, one must not forget they cannot account for
navigation in a complex environment. Obviously, if
the obstacles are convex, it is possible to build a

repulsive field with a limited distance of activity
which functions exactly in an opposite manner to the
place attraction behavior. In the same way, selection
of a goal in such open environment is also easy to
model and simulate [30,71,72]. But when, no visual
information is available to reach a goal associated
with a particular motivation, the system must plan its
journey from a recognizable place to the other (need
of latent learning [57]). During its exploration of the
environment, it must learn places different enough
from each other. It must also code the links between
these places and so build a kind of “cognitive map”.
In [27] we proposed a detailed simulation of such
a system based on the results of our real robot ex-
periments. Our first real world experiments show the
PerAc architecture might be applied as a starting point
to solve this new problem. Fig. 24 shows how the
learning of few place–action associations is enough
to create a complex shape of attractor basin so that
the robot is able to go round huge obstacles to reach a
goal that does not belongs to the visual environment
of the starting point location.

This experiment demonstrates that place learning is
a prerequisite and a first step before learning a cog-
nitive map since if the robot had learned the places
corresponding to the different parts of the trajectory a
simple linking of those places could allow to create a
cognitive map (see some simulations in [27]). The de-
cision to learn intermediate places can be performed
with the information about the goal recognition level.
For instance, if the best recognized view is not cor-
rect, the robot can move in a bad direction but then at
its new position the global activity of the place cells
will decrease (see experimental results). It is easy to
build a learning rule that is triggered when the sum
of the place cells response decreases [30]. The robot
would then find a movement that allows it to go in a
direction associated with a global increase of the goal
recognition (an efficient reinforcement learning rule
is described in [28]). Our future work will consist in
testing for real a planning level allowing the robot to
pass from one subgoal to another in order to reach a
particular goal.

Our robot is intended to be in interaction with its en-
vironment. It is just an agent that learns to agree with
both its environment and its internal motivations. It
has no global or complete representation of the world.
The intrinsic meaning of recognized objects is not
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Fig. 24. The positions with figures and arrows represent the learned positions. The goal is under the table (near position 10). The gray
area represents locations where the robot cannot succeed to reach the goal. The black points linked by lines represent some of the robot
trajectory. The starting point of the trajectories is represented by the picture of the robot.

really understood by the robot (all the views associ-
ated with the same object are not explicitly linked to
each other). It “keeps in memory” the link between a
particular situation and the action that it has learned
to be correct in that situation. Should the universe col-
lapse, the robot’s memory would lose any meaning.
The system functions correctly because of the dy-
namical interactions between the robot and its envi-
ronment. In our point of view (following Piaget and
others [48,55,61]), we think that new internal repre-
sentations are built (in biological systems) and must
be built (in robotics systems) autonomously when the
interactions between the robot and the environment
makes it necessary.

Concerning the understanding of natural cognition,
our work shows the interest to carry analogical infor-
mation all along the processing chain and to avoid to
take hard decisions. The “weak” winner take all struc-
tures found in biological systems are not a limitation
but one of their strongest properties. They allow them
to be robust to the inherent contradictions and ambigu-
ities of the perceived information. In related works [5]
we proposed a global model of the hippocampus (Hs)
which specifies the contributions of Hs in Long Term
Memory (LTM) consolidation and transient Working
Memory (WM) operations (spatio-temporal process-

ing). The WM function thought to operate both at cor-
tical and Hs level is devoted to thissegregationbe-
tween information worthy to be “permanently” stored
because of its relevance for survival, or its human so-
cial relevance for the personal history of the subject,
and information which can be forgotten without major
damage. WM provides the animal with the possibility
to escape from a purely reflexive behavior, by taking
into account its more or less immediate past and sim-
ulating the consequences of planned actions into the
future. This temporo-spatial property is crucial to ex-
plain the short term storage of the information con-
cerning the sequential exploration of the landmarks
(that allows to separate angular information from the
pure recognition of the landmarks). In our model, the
structuration of space is considered as a degraded form
of sequence learning and of the Hs capacity to per-
form cross correlations between multi-modal stimuli.
In the robotic experiment, the use of a direct feedback
from the motivations to the “place cells” is certainly
not plausible (at least at the level of the Hs), since it
is known that place cells activity does not depend on
the animal motivation (does not depend on the cur-
rent goal). But our model can be easily modified so
that the motivations act on copies of the “place cells”
that could be located in the nucleus accumbens for
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Fig. 25. When the robot visual field is reduced “place cell” like activity turns into “view cell”. (a), (b) Activities of 2 view cells according
to the robot location represented by circles. The arrow in one of the circles represents the position and orientation used for the view
learning. The directional vectors represent the neuron activity when the robot is facing a particular view.

instance where cells have been recorded that react to
a combination of location and motivation.

Of course, our level of modelization cannot account
today for the neurobiological details of each brain
structure. Nevertheless, this kind of integrated mod-
eling could allow to test for the coherence of global
brain models and to verify if two functional boxes can
really be connected [2].

Going back and forth between robotics and biology
is full of promise. For instance, our robotic system
will soon be improved by a better model of the hip-
pocampus. Indeed, most of the robot time is spent in
taking images to build a panoramic view (14 seconds
to take the images and less than 1 second to compute
the movement). This problem can be easily solved if
the merged representation of “what” and “where” in-
formation was not reset after each move. The robot
could then only turn its head to verify old information
in order to update it. Moreover, the scalability problem
which appears when merging thousands of landmarks
recognition with hundreds of possible azimuths, can
also be solved by using a more realistic hippocampus
model. If the merging matrix is no more a hardwired
“AND” operator but a limited set of neurons able to
learn possible situations, the size of the matrix will
no more directly depend on the number of possible
landmark configurations. The computation complex-
ity would then be reduced.

Finally, if places are well determined by their angu-
lar positions relative to a particular set of landmarks
then the failure to find “place cells” in primates and
more specially in monkeys [51] could have a very
simple explanation. Indeed, the best condition to rec-
ognize a place surrounded by a lot of landmarks oc-
curs when the animal is able to see landmarks all
around the scene. The rat, because of the position of
its eyes, has a large visual field similar to the angu-
lar size of the panoramic views of our robot. Thus,
there is no reason the rat would be unable to recog-
nize a place since the place can be characterized by
its panoramic view. At the opposite, primates have a
more limited visual field and the recording of their
hippocampal cells predominantly show “view cells”
activity. This view cell activity depends of the direc-
tion of gaze and the corresponding view. Conversely,
it is independent of animal’s location. Our robotic ex-
periments show that with a limited visual field (180◦
in our experiment) our robot exhibits the same kind
of response (see Fig. 25). If the head is rotated be-
yond a certain angle, then there is no relationship be-
tween the extracted visual information even if the an-
imat stays at the same place. The animat only recog-
nizes the view. This recognition of a global view is
very robust. The robot “view cells” exhibits impor-
tant distance and orientation variations as observed in
monkeys.
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However, this interpretation leads to an important
question. It is well known that hippocampal place
cells of the rats for instance, continue to exhibit place
field activities even in the dark. In that case the an-
imal relies on tactile and smell stimuli as well as
odometry (integration of the information linked to
the animal motion — perception of the accelerations
by the vestibular system for instance [62]). So if rat
place cells receive both visual and odometric infor-
mation why is this integration difficult in the case of
primates? An explanation is first that view cells are
not sufficient to build a place. Even if they are asso-
ciated with odometric information they will allow the
animal to predict the presence of a particular view but
there is no reason they become place cells. Second,
we can deduce that location segregation (building
place cells) must be quite difficult from the sole odo-
metric information (learning an environment in the
dark and without proximity information that could
be used to settle place cells near the borders of the
area). Hence, the visual contribution to place cells
would be preponderant in the process of building an
association with other types of information and in
particular odometric information. Indeed, odometric
information is only relative and has to be linked to
two places (departure place, integrated movement
vector and arrival place) whereas visual information
give an absolute result (a value representing the di-
rection and distance to the learned place). So it is
certainly more difficult to build a cognitive maps
linking places to each other with only odometric
information.

In conclusion, biological inspiration can be used
to design very efficient robot controllers and pattern
recognition systems. At the same time, robotic exper-
iments appear to be a very promising tool to test bi-
ological models in more real life conditions and to
propose new biological experiments.

Appendix A. Formalization of the PerAc
architecture for the homing task

The PerAc architecture is formalized as follows.
The visual input (perception) is a vectorX. The ac-
tivity of the neurons linked to the “recognition” of a
learned situationX can be written as follows:

Rec(X)

= Λ(ψ0(X), ψ1(X), . . . , ψi(X), . . . , ψN(X))
T ,

(A.1)

whereΛ is an operator representing the competitive
mechanism,Λ can be a strict winner take all (WTA)
mechanism or a contrast enhancement of the most ac-
tivated components in the input vector.ψi(X) repre-
sents the recognition level ofX by the neuroni (by
definitionψi(X) ∈ [0,1]). The size of the input and
output vectors are the same. In the case of a strict
WTA mechanism, the outputV ′ of Λ(V ) is defined
as a Kronecker vectorδi = (0, . . . ,0,1,0, . . . ,0)T

with its only nonzero component being atith position
andV a vector.

Λ(V ) = V ′ = δj with j = Arg max
i
δT
i · V. (A.2)

The vectorAAA associated with the output of the action
selection group is

AAA = Λ(Act(X)) (A.3)

with

Act(X) = [W ] · Rec(X)+ AR(X)+ noise,

where [W ] is the matrix of weights corresponding to
the learned associations between perception and ac-
tion. All the noise components are supposed to be gen-
erated by independent white noise sources.AR is the
proposed “reflex” action (unconditional signal or su-
pervisor for action learning).AR is defined as follows:

AR = δ[N ·θ/(2π)], (A.4)

where

N = dim(AAA) = dim(noise)

= dim([W ] ·Λ(Rec(X))) = dim(AR(X))

andθ is the direction of the proposed motion expressed
in radians. [x] is the closest integer tox. In the homing
problem,AR represents the discrete possibilities of ro-
tation movements (with a constant translation speed).
In a more complex case not studied hereAR is a one
dimensional topological map using population coding
[37].

The selected action resulting from Eq. (A.3) can be
a rotation movement in the directionθ of the most
activated component of the vectorAAA:
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θ = 2π · arg maxNi
(
δT
i ·AAA)

N
. (A.5)

The learning of the perception–action associations
is performed through the modification of the [W ] ma-
trix so that the recognitionRec(X) of the current state
X alone allows to propose the correct action even if
the reflex vector is not present. That means, we would
like to have

AAA(X) = [W ] · Rec(X). (A.6)

In order to get closer to this ideal situation, the fol-
lowing mean square error criterium10 is minimized:

E =
N∑
n=1

R(n) (AR(n)−AAA(n))2 , (A.7)

whereR(n) is the reinforcement signal at timen (the
values can be positive, negative or null).

The matrix [W ] that minimizes the mean square
error ofE is

[W ] =
N∑
n=1

R(n)
(
(AR(n)−AAA(n)) · RecT(X(n))

)
.

(A.8)

In the one dimensional case, the learning procedure
will consist in moving backhand forth to the left and to
the right of the goal to learn two particular situations
or statesXi . These states have to be associated with
a so-called “reflex vector” that allows to reach the
goal. The intensity of the two learned actions have
only to be equal to each other (an unitary vector in the
goal direction is enough) in the case of a symmetrical
potential function. The learned states areX−

L andX+
L

such as

X+
L = X0 +1X, X−

L = X0 −1X (A.9)

and their associated actions are, respectively,−1X
and +1X. The different vectors can be written as
follows:

Rec(X) = Λ
(
P(X+

L , X), P (X
−
L , X)

)T
(A.10)

with P(X0, X) = (X−X0)
2 for instance. The learned

connections between the action group and the group

10 It has been shown that the Least Mean Square algorithm (LMS)
[64] and the Rescorla–Wagner equation [49] modelization simple
conditioning mechanisms are formally equivalent.

Fig. A.1. Example of a robot behavior using the PerAc architecture
moving in a one dimensional space. Two Perception–Actions have
been learned to define the homing behavior (learned places around
X+

L andX−
L ). Note that the goal locationX0 has not been learned.

devoted to the recognition of the two learned situations
X+

L andX−
L will be [W ] = (−1X,+1X). Fig. A.1

represents the time trajectory of such a system in the
case of a constant action speed. It is clear that the
performances and the stability could be improved with
a speed modulated by the distance to the goals (the
values of the component of the vectorP in the case
an analogical competition is used). This case will not
be studied here since the experimental results reported
here were limited to that very simple case of constant
speed (the constant step results from the need to move
step by step because of computation time).
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