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Abstract. We propose a cognitive system algebra (CSA) useful to represent cognitive
systems and to analyze them. This formalism is based on a deep structural link that should
exist between Perception and Action in any autonomous system. The main idea is that
Perception and Action are equivalent to voltage (tension) and current in electrical circuits.
An energetic matricial representation

R

Per.AcT dt is also introduced. In a simple case,
maximizing the rank of this matrix allows to retrieve classical learning rules used to model
conditioning mechanisms. We use it also to justify some simple algebraic simplifications
rules in the case of a cognitive system in an equilibrium state (after learning stabilization).

1 Introduction

In recent brain modeling works, we assist to the
presentation of more and more detailed but also
complex architectures that become difficult to ana-
lyze and to compare. In the design of autonomous
robots and animat systems, the problem is even
more important since several schools of formalism
exist: the classical IA formalism (Newell, 1982;
Chatila, 1995), the Brook’s subsumption (Brooks,
1986) and all the other behavior based approaches
(Pfeifer and Scheier, 1996; Schöner et al., 1995).
More and more researchers wonder about the
validity and relevance of the current works since we
do not know neither how to compare 2 cognitive
systems (CS) nor to be sure an architecture cannot
be simplified. Moreover, some open questions are:
how to predict the major behavioral properties
linked to a given architecture? How to connect
adaptation and learning performances to the com-
plexity of the architecture? How to measure a kind
of energy consumption linked to the adaptiveness
and the reactiveness of the system (ability to show
the simplest and most appropriated behavior in a
given static or dynamic environment)?

Several interesting directions of research have
been proposed in previous works that try to over-
step the old theoretical frame of the cybernetics pro-
posed by Wiener (Wiener, 1961) or Ashby (home-
ostat principle (Ashby, 1960)). In the animat com-
munity, the Steel’s proposition about a mathemat-
ical way to analyze robot controllers was interest-
ing but limited to pure behaviorist systems (Steels,
1994). Another study of Smithers showed the diffi-
culty of characterizing the complexity (in terms of
dynamical systems) of a simple obstacle avoidance
behavior (difficulty to measure the fractal dimen-
sion of the phenomenon (Smithers, 1995)). Other
interesting formalisms have been proposed in the
frame of dynamical game theory (Ikegami, 1993).
The searches in formal logic, signal processing, in-
formation theory, automatic and Neural Networks
(N.N.) tackle some fundamental properties of CS.
Each of them focuses on one particular feature but
not on the global properties that make the system
really “cognitive”. For instance, the interpretation
of neural dynamics in terms of dynamical systems
(chaotic or not (Kelso, 1995; Schöner et al., 1995;
Tsuda, 2001; Daucé et al., 1998; Kuniyoshi and
Berthouze, 1998; Berthouze, 2000)) seems a very
promising direction of research but also a way of



building and understanding large networks (Albus,
1991; Taylor, 1995).

The formalism, we propose, is based on our con-
viction that a deep structural link exists between
Perception and Action (Berthoz, 1997; Pfeifer and
Scheier, 1999; Gaussier and Zrehen, 1995) (this
can be seen as another way to say that the cog-
nition must be understood as a dynamical system).
Specifically, we will emphasize that Perception and
Action are the two faces of the same entity or coin.
In any part of a CS, if an Action can be defined,
this means there is an associated Perception and
vice versa. We will suppose : the perceptions and
actions in a CS are equivalent to the voltage and
current in an electrical circuit.

|Per(t)> |Ac(t+dt)>

|s(t)>

ψSystem
ActionPerception

Environment

Figure 1: Typical system/environment interactions.

In the next sections, elementary operations (ad-
dition, composition...) will be defined and used to
simplify a set of equations describing a CS. An en-
ergy measure will be introduced and used to com-
pare the complexity of different architectures. We
will show the LMS (Least Means Square) rule can
be deduced from the minimization of an energy loss
built from the (Perception,Action) couple. These
energetical considerations will also be used to jus-
tify some algebraic simplification rules of the for-
mal description of some simple CS (rules valid after
learning stabilization). Finally, extensions and limi-
tations of the proposed formalism will be discussed.

2 Basic formalization of a CS

We introduce here a mathematical formalism to ma-
nipulate CSs. The input and output of a CS will be
represented by vectors in the “bra-ket” notation1.
An input or output vector x (column vector) will
be noted |x > with |x >∈ R+m while its trans-
posed vector will be noted < x|. Hence < x|x >

is a scalar representing the square of |x > norm.
The multiplication of a vector |x > by a matrix A
is |y >= A|x > with |y >∈ R+n for a matrix A of
size n×m.

1The formalism is inspired from Hilbert space used in
quantum mechanics. Nevertheless, in our case it is not an
Hilbertian space since the operator will not be linear...

A CS is supposed to be made of several elements
or nodes or boxes associated with input informa-
tion, intermediate processes and output (command
of actions).

Definition 1 “Cognitive System”
A CS ψ is a function associated to a control struc-

ture that belongs to the space of the cognitive control
structure Cs (ψ ∈ Cs). We postulate Cs associated
operators that will be defined now is an algebra. 0
denotes a null CS (no output whatever the inputs
are).

If |s(t) > represents the current internal state of
a CS, ψ allows to compute the next action and the
future internal state of the CS:

(|Ac(t + dt) >, |s(t+ dt) >) = ψ(|Per(t) >, |s(t) >)
(1)

To build a CS from the sum of 2 cognitive sys-
tems, we have to analyze 2 different cases. In the
case both CS have completely different input and
output, the problem is trivial. We will consider
that the 2 systems have the whole set of inputs
and outputs with null connections between the not
used input/output (see fig. 2). In the more fre-
quent case where two systems have some common
inputs/outputs, the problem is to merge the out-
puts (there is no problem with the inputs because
it is the same thing to consider 2 identical input
groups or a single one with two times more connec-
tions). In the sequel, we will note O(ψ) the vec-
tor representing the concatenation of all the output
groups of the CS ψ.

System 1

Environment

Input Output

Input Output

System 1

System 2

Environment

System 2

Environment

Input Output
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Figure 2: Merging of 2 cognitives systems. The sum of
2 CSs is also a CS.

If both systems propose two different outputs a
problem can arise to merge their outputs. Indeed,
if two different actions are proposed, an average ac-
tion can be trigerred or one of them can be chosen.



The main constraint in an autonomous system will
be the temporal stability of the decision making. It
would be stupid to choose an action and in the next
iteration to change it to the opposite action. The
formalism of the neural fields theory is a very good
solution to solve all these problems (Amari, 1977;
Schöner et al., 1995). So we will suppose that all
the output groups of a CS are competitive structure
controlled by neural field equations so that different
outputs of the same modality can be merged easily.

We summarize now some basic properties used in
our Cognitive System Algebra (CSA):

Property 1 Addition
The sum of 2 cognitive systems is a CS (the addition
is an internal law of Cs). For any couple (a, b) ∈
Cs × Cs, there exists an unique c ∈ Cs such as a+
b = c. The addition is commutative and associative.
Let take a, b and c ∈ Cs then (a+b)+c = a+(b+c).
0 is the neutral element for the addition.
If a ∈ Cs then a+ 0 = 0 + a = a.

Property 2 Vectorial product
The product of 2 cognitives systems ψ1 and ψ2 is
also a cognitive system ψ3 = ψ1 ⊛ψ2 corresponding
to the vectorial product of the output of ψ1 and ψ2.
The resulting system is the sum of the 2 CS plus a
new group build from the output of ψ1.ψ

T
2

ψ1 ⊛ ψ2 = ψ1 + ψ2 +O(ψ1).O
T (ψ2)

Property 3 Product by a scalar
The product of a cognitive system ψ by a non null
scalar constant does not change the cognitive prop-
erties of the resulting system kψ = ψ. 0 is an ab-
sorbent element: 0.ψ = 0. 0 will denote an integer
value or a CS as well.

∀ψ ∈ Cs and k ∈ N∗,

k
∑

i=1

ψ = k.ψ

Property 4 Composition
Two CS can be composed (push-pully connected) to
create a new CS.

ψ1oψ2(|X >) = ψ1(ψ2(|X >))

with Id the neutral element. If f and g ∈ Cs then
f ◦ g ∈ Cs

This list of properties is not exhaustive but it
shows the possibility to manipulate CS via algebraic
rules. A complete mathematical study is out of the
scope of the present paper.

3 Flow and effort in a CS

The bond graph theory is a very interesting frame-
work to analyze complex systems and to simulate
them (Rosenberg and Karnopp, 1983). It has been
proposed as a general tool to describe any physi-
cal, biological or chemical system composed of sub
systems that exchange energy between them. It
has been shown that any physical system can be
expressed in terms of effort and flow equivalently
to voltage and current in electrical circuits for in-
stance. After writing the physical system under this
formalism, it is possible to use general rules to sim-
plify, analyze and simulate the system without any
knowledge about the original problem.

The bond graph theory considers two kinds of
junctions: serial and parallel. In the case of a
serial connectivity, the flow is the same in all the
branches and the total effort is the sum of all
the efforts (see fig. 3). On the opposite, when
subsystems are connected in parallel (derivation),
the effort is the same in all the system, but the
total flow is the sum of all the different flows that
cross the subsystems (see fig. 4).

Ac Ac Ac Ac

Figure 3: Serial connectivity. Typical representation
of a functionalist architecture.

P
er

P
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Figure 4: Parallel connectivity. Typical case of a be-
haviorist system in which all the behavioral blocks are
supposed to be orthogonal to each others.

These 2 kinds of connectivity correspond to
the 2 major approaches in cognitive sciences
and robotics: functionalist and behaviorist ap-
proaches2. Indeed, fig. 3 corresponds to the
classical decomposition of a problem in boxes used
in sequence: preprocessing, classification, decision
taking... On the contrary, the second architecture
(fig. 4) is very similar to the Brook’s subsumption
(excepted that here nothing is said about the
arbitration between the different proposition in
case of contradiction (Brooks, 1986)).

2Note that if the present approach is valid the opposition
between functionalist and behaviorist theories should vanish.



The interest of the electrical analogy does not
only rely upon the way subparts of a CS can be
combined to create a more complex CS. The anal-
ogy can also be applied to describe 3 fundamental
basic behaviors of cognitive systems:

• Resistive element R. The action is propor-
tional to the perception: |Per >= R|Ac >

or |Ac >= R−1|Per > (purely reactive sys-
tem such as reflex systems or direct Percep-
tion/Action associations).

• Capacitive element C. The Action is pro-
portional to the derivative of the Perception

|Ac >= C
d|Per>

dt
. If the perception remains

constant, the action vanishes (classical habitu-
ation mechanism in psychophysic and neurobi-
ology).

• Inductive element L. The action is propor-
tional to the perception integral |Ac >=
1

L

∫

|Per > dt. Cyclic perception implies null
action whereas a constant perception implies
intensive action (sensitization mechanism).

In simple cases, the action vector |Ac > can be
expressed as the product between a perception vec-
tor |Per > and a conductance matrix [G] such as:

|Ac >= [G]|Per >

One can notice that the majority of control
architectures developed in the animat approach
use only “resistive-like” elements. In the next
section, we will show it is also possible to find the
equivalent representation of a planning system in
the case it receives a pure sinusoidal stimulation.

To sum up, we can consider that any element of a
CS filters an input vector according to a weights ma-
trix W . The final outputs are modified according
to a non-linear function and a pattern of interac-
tions between the elements of the same block (lat-
eral interactions in the case of a competitive struc-
ture, recurrent feedback in the case of a dynamical
system...). Hence, in the following we will speak
about these elements as “neurons” even if they can
be more complex algorithmic elements in other pro-
gramming languages (any “if...then...else...” treat-
ment can be expressed in terms of dynamical lat-
eral interactions but the reciprocal is false). All the
processes performed at the level of the neuron map
are represented by a given operator, k for instance.
We will use the following formalism to represent all
these processes:

|y >= k|W |x >

The operator k controls the way the weight ma-
trix is combined with the input. It can be a product
(classical neurons) or an explicit distance measure
like in Kohonen maps:

|y >= k|W |x > (2)

W = (|w1 >, |w2 >, ..., |wn >)

yi = ‖ |x > −|wi > ‖

where ‖|x > ‖ is the norm of the vector |x >.
The interest of this formalism is that we can also

express all the simple vectorial transformations
such as translation, rotation... of an input vector.

Note 1 In the general case, the operator k is non
linear3. That implies k is not distributive. Hence,
in general:

k1|W1|(k2|W2|x > +k3|W3|y >) 6= k1|W1|k2|W2|x >
+k1|W1|k3|W3|y >

When several groups are connected to the same
group, we can write:

|y > = c|F1|x1 > +...+ c|Fi|xi > +...+ c|Fn|xn >

⇒ |y > = c|(
n

∑

i=1

Fi|xi >)

It represents a right-side factorization of the op-
erators on the same input vector.

|y>|x>

Input Output

c
one to one links

|x> |y>=c|I|x>
I

Figure 5: Unconditional “one to one” connections
between two groups used as a reflex link. Left image
is the graphical representation and right image is
the formal notation.

In practice, we will distinguish 2 main types of
connectivity between different parts of a CS. The
first type is the “one to one” connection used for
instance to define reflex mechanisms (see fig. 5)
and represented by I (identity connection).

3Indeed, in the case of a CS defined by eq. 1, the operator
k depends of the past. k(t + dt) = f(k(t), |Per(t) >) where
f is a function that can be defined from ψ.



|y>|x>

Input Output

c
one to all links

A
|x> |y>=c|A|x>

Figure 6: ”One to all” connections with a competitive
group representing the categorization of the input stim-
ulus at the level of the output group. Left image is the
graphical representation and right image is the formal
notation.

The second type of connectivity concerns the
“one to all” connections (see fig. 6) which are used
for pattern matching processes, categorization... or
all the other possible filtering. “One to all” connec-
tions will be represented in general by a A (A for
all).

3.1 Analysis of a planning system

This analogy with electrical components may seem
odd, so we will illustrate it with a “high level” cog-
nitive problem. Let’s consider a N.N. devoted to
planning. We have shown, in previous works, that
a group of neurons fully interconnected and using
a MAX operator can be used as a cognitive map
(Gaussier et al., 2000b; Quoy et al., 1999) (see fig.
7).
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Figure 7: Simplified representation of a NN used to
plan robot movements in a complex environment. The
connexions between neurons on the upper map repre-
sent the map of the known environment.

A simple Hebbian learning rule, is sufficient
to learn the connections between already discov-
ered places. The MAX operator allows to back-
propagate on the network a “motivation” (goal) so
that the robot has only to follow the maximum gra-
dient of nodes activation to find the shortest path
to reach the goal. The vector |y > representing

the activation of the set of planning neurons can be
described as follows:

|y(t+ dt) >= Max| (A|y(t) > +I|x(t) >) | (3)

with 0 < Aij < 1 representing the learned con-
nections on the cognitive map (links from place to
place). The inputs (vector |x >) are connected to
the planning neurons through “one to one” connec-
tions I.

Here, we consider such a map after learning and
we stimulate one neuron with a sinusoidal signal
(something that could be equivalent to activate
more or less a given drive). The input vector |x >
can be written x0 = 1+sin(ω.t) and xj = 0 ∀j 6= 0.
Fig. 8 show the input signal and the signal recorded
on 1 neuron on the output vector |y > (note that
the result should be almost the same with other
kind of analogical path planning like the resistive
grids for instance (Bugmann et al., 1995)).
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Figure 8: Activity of a neuron in a cognitive map (plan-
ning mechanism) according to a sinusoidal input stimu-
lation imposed on a neuron (lower part) in the neighbor-
hood of the recorded neuron (higher part - all synapses
have the same value Aij = 0.9997.

The planning mechanism can be analyzed not
only in terms of its algorithmic properties but also
in terms of an equivalent electrical circuit or au-
tomatic device. If the input is constant (or its
frequency is very high), the signal recorded on a
neuron in the neighborhood of the stimulation is
constant (or almost constant). When the period
decreases, a capacitive effect can be perceived in
addition to the obvious non linear behavior of the
system. The phase of the output signal is shifted
according to the input signal and its intensity tends
to decrease less than the input. This phenomenon
is linked to the value of the synaptic weights which
is lower than 1 and is equivalent to a decay term



in the computation of the neuron activity (MAX
operator).

Hence a cognitive map can be considered as an
energy storage mechanism and its cognitive effi-
ciency could be measured in terms of its capacity
to store and deliver quickly the energy the system
needs to face to a given situation.

R

d C
V

Figure 9: Equivalent electrical representation of a plan-
ning system excited by a periodical signal.

3.2 Basic simplification rules

Now, we can try to simplify some trivial networks
(see fig. 10 and 11) to deduce basic simplification
rules.

|y>|x>

Input Output

c

|y>|x>

Input Output

c

Figure 10: 2 groups linked with several one to all
connections links (several times the same connec-
tions between 2 nodes).

|y>|x>

Input Output

c

|y>|x>

Input Output

c

Figure 11: 2 groups linked with several one to one
reflex connections links (several times the same con-
nections between 2 nodes).

If we have a CS reduced to 2 reflex systems push
pully connected (see fig. 12) then we can write
|y >= c|I|x >, |z >= c|I|y > (the input of CS2
is the output of CS1) and finally |z >= c|I|c|I|x >
where c is the operator associated to a competitive
group (i.e. WTA, Neural Field, ...).

In the case of a group of neurons of the same
size and connected with one to one non modifiable
links, it is trivial to prove that the output is directly
a copy of the first input and that the intermediate
groups can be suppressed (network simplification)
because all the groups are equivalents4. This means

4It is possible to create a bijection between the activation
of a given neuron in a first group and the activation of an-

a

a b c d

d

Ac Ac Ac

Ac

|x> |y> |z>
I I

|z> = c|I|c|I|x>  = c|I|x>

Figure 12: Simplification of a cascade of of reflex mech-
anisms (unconditional connections)

the network fig. 12 is also equivalent to the network
shown fig. 13.

a d

b

c
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Ac
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Ac
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Figure 13: Equivalence of a cascade of unconditional
connections between a set of group of neurons with a
parallel structure of connections. Each group has the
same kind and the links are “one to one” connections.

|y >= c|I|c|I|x >= c|I|x > implies that

∀c I|c|I ≡ I (4)

but also

∀c c|I|c ≡ c (5)

Note that 2 operators are equivalent if their ex-
change leave the vector output unchanged. In the
case of a cascade of competitive structures (see fig.
12) that learn the output of the previous structure
with one-to-all connections then the system can be
simplified |y >= c|A1|c|A2|x >= c|A′|x > implies:

∀c A1|c|A2 ≡ A′ and also ∀c c|A|c ≡ c (6)

In the case of derivative connections coming from
and going to the same input/output group, simplifi-
cation are possible. For instance, if we have |y >=

other neuron in a second group. Both sets of neurons can be
considered as equivalents.



c|(A|x > +A|x >) then |y >= c|(A + A)|x >=
c|A|x > which implies that

∀F, c, λ ≥ 1, c|(λF )|x >≡ c|F |x >

is true only if c is a competitive structure. Let’s
notice that in the same case, we have also:

∀F, c, λ ≥ 1 c|F |(λ|x >) ≡ c|F |x >

Now, we can use these rules to simplify a cas-
cade of groups connected with one-to-one connec-
tions (see fig. 12 and fig. 13). We obtain the fol-
lowing equivalent relations:

|d > = c|I|c′ |I|c′′ |I|a >
|d > = c|I|a > +c|I|c′ |I|a > +c|I|c′′ |I|a >
|d > = c|I(1 + c

′ |I + c′′|I)|a >
|d > = c|I|a >

The addition is commutative so a lot of other
expressions are possible and a lot of simplification
since

1 + x|W = 1

1 is an absorbent element for the addition
whatever the operator x is.

A simple example of CS simplification is shown in
appendix. Our first results suggest the proposed al-
gebraic rules are efficient: the equivalent CS result-
ing from the CS algebraic simplifications seem to
preserve the major functionalities of the departure
system. If we come back to the electricity analogy,
we must notice some subtle differences in order to
obtain coherent results:

Conjecture 1 In the case of an adapted system,
the current is null between the directly connected
perception groups (they must have the same value).
Hence a line of several perception groups can be sim-
plified since they represent the same perception (null
current, same tension).

Note that the difference of perception between
the different boxes must be null (the difference of
perception measure should be defined up to a per-
mutation). If the pattern of connectivity and the
size of the groups and the interactions between neu-
rons in the different maps are congruent to each
others, the same is also true for the one to all learn-
able connections in the case of a “Winner Takes
All” (WTA) or other self-organized structures.

Per1 Per2 Per2 Per2

Per1 Per2 Per2 Per2

Per1 Per2

a b c d
Ac Ac1=0 Ac1=0

a b c d
Ac Ac1=0 Ac1=0

a
Ac

no perception variation / shortcut

b or c or d

Figure 14: Simplification of a cascade of learnable con-
nections between a set of group of neurons. Each group
has the same kind and the links are “one to all” connec-
tions. If 2 groups are associated to the same Per then
the intermediate group as a null impedance and the CS
can be simplified.

Indeed, in fig. 14 after learning, at the level of
the groups b,c and d, a unique and stable repre-
sentation of the input (a) is built. Hence, there
exists an isomorphism of the activity between the
different intermediate groups in the cascade. These
intermediate groups can be suppressed without any
change in the final output. Of course, if the connec-
tivity is limited to a particular input neighborhood,
several layers of neurons can be necessary before a
complete coding of the global input, and that hier-
archy of layers cannot be simplified directly. How-
ever a formal equivalence with a one-to-all direct
connection might be possible (with the restriction
of a lack of robustness of the “equivalent” simplified
representation - see (Linsker, 1988)).

Axiom 1 In the case of an adapted5 system, the
action imposed at the output is equal to the sum of
the input actions or currents. Because of the out-
put non linearity, each output is able to provide the
same output current at all the output links. The
output is a source of current. Its value is computed
from the input current but it is not the input cur-
rent.

Except for robustness and learning problems, a
lot of simplifications can be introduced in a CS ar-
chitecture so as to compare its functionality with
another architecture. Of course, in an autonomous
system with on-line learning, obtaining stable rep-
resentations might be a problem. We postulate that
for a given time interval the learned configurations
will be stable enough so that some simplifications

5An adapted system is a system that can be considered
as static in its structure and connectivity: the learning has
stabilized its behavior. A more formal definition will be in-
troduced in section 5 (definition 4).



can be performed (but only valid for this time in-
terval).

4 Energy measure in a CS

At this point, the problem is that we have proposed
relations between hypothetical intrinsic variables of
a CS but that we don’t have a relevant and use-
ful notion of measure. It seems difficult to define
a relevant intensive value associated to the vecto-
rial input information. Perhaps something linked
to the entropy of the vectors (like building contrast
functions (Comon, 1996)) might be useful but we
still have not found a simple way to use them. We
will try to overcome this difficulty and deal directly
with the energy that might be consumed by a CS
according to its actions and their effects on the per-
ception (we continue the analogy with electricity
and physics).

Definition 2 The energy matrix E associated to a
given Perception/Action system can be defined as
the integral of Per.AcT :

E(τ) =

∫

|Per(t− τ) >< Ac(t)|dt (7)

with τ the input/output delay.

If the system is purely reactive, the energy taken
from the outside to produce an action is E(τ) =
∆(τ) ·GT with

∆(τ) =

∫

|Per(t− τ) >< Per(t)|dt

and G the conductance of the system. ∆(τ) can be
seen as an auto-correlation function.

Obviously, an important bias can be introduced
by very high component values in the perception
and action vector. A normalization of the energy
matrix must be performed. A very simple solution
is the following:

E =

∫ |Per >< Ac|√
Per2 +Ac2

dt

This matricial representation of the energy can
provide an intuitive understanding of the CS com-
plexity. Fig. 15 ,16, 17 and 18 show respectively
simple examples of the matrix E associated to a
constant system, a random system, a chemico-taxi
behavior and a visual homing behavior.

Definition 3 The dimensionality of a behavior or
its “Energy” dimensionality ED (or its “complex-
ity”) can be expressed according to the rank of E.

ED = rank(E)

In the case of a constant action (fig. 15), it is
trivial to show the matrix associated to the behavior
has a single non-zero eigenvalue and the rank of the
∫

Per.AcT dt matrix is 1.
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constant action

T
Per.Ac 

00

w ww rank=1

Figure 15: Representation of the
R

Per.AcT dt matrix
associated to a constant behavior (always the same ac-
tion, whatever the perception is).
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random action
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Per.Ac 
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Figure 16: Representation of the
R

Per.AcT dt matrix
associated to a random system (no link between per-
ception and action). The actions are selected randomly
(they are independent from the perception). The ma-
trix will tend to have a uniform value and all the eighen
values excepted the first one can be neglected (see ap-
pendix).

The case of a random behavior is interesting since
it can be either associated to a very low rank, 1, or
to a full rank rank(E)=size(E)6. But in that last
case (fig 16), the matrix coefficients will have al-
most the same value (because input and output are
independent) and the matrix will tend to a rank 1
matrix (see appendix). So we can say the complex-
ity of a random behavior and a constant behavior
are the same and are the simplest behaviors differ-
ent of a null behavior (rank=0).

The chemio-taxi behavior used by bacteria for in-
stance can be considered as just a little bit more

6If the random matrix is rectangular, its size corresponds
to its smallest dimension.



complex. The strategy is “go ahead” when the
sugar concentration increases and moves randomly
in all the other cases (fig. 17). The matrix rank ED

is equal to 2 (2 rectangular blocs of identical non
null values).
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Figure 17: Representation of the
R

Per.AcT dt matrix
associated to a chimio-taxi behavior. The system moves
randomly or turn constantly expected when the goal is
in sight or a measure gradient increases. In this last
case, the system goes straight ahead (bacteria chemio-
taxi or simple photo-taxi behaviors could be explained
this way).
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Figure 18: Representation of the
R

Per.AcT dt matrix
associated to a homing behavior. 3 places (P1, P2, P3)
are recognized from the input perception flow and are
associated to 3 actions. These Perception/Action asso-
ciations create an attractor basin in which the system
will descend.

A more complex behavior is the visual homing.
It can be associated to a minimal value of ED equal
to 3. The simplified network supposes that it is
possible to extract from the perceived flow, contin-
uous enough information so that place recognition
neurons will react over large continuous areas (see
(Gaussier and Zrehen, 1995; Gaussier et al., 2000a)
for more details). Hence, if 3 places are learned
around a given goal and associated to the motor
actions allowing to reach the goal, the competition
in the place recognition group will allow the robot
to move in the goal direction whatever its starting
position in the visual field is.

To analyze more complex CS systems, the direct
computation of ED can be performed but another
interesting solution would be to estimate ED in

comparison to other CS. If we consider 2 CS, ψ1

and ψ2, we can use the following properties:

ED(ψ1 + ψ2) ≤ ED(ψ1) + ED(ψ2)

ED(ψ1 × ψ2) ≤ ED(ψ1) × ED(ψ2)

ED(ψ1oψ2) = MIN (ED(ψ1), ED(ψ2))

to bound the ED value of any CS. These equations
can also be used to characterize the simplicity or
the cognitive cost of a local network in a given CS.
We can consider the best solution, is the solution
associated to the minimal rank of the energy ma-
trix.

5 Analysis of a conditioning

rule

Now, we will show the “energy” measure defined
above can be used to retrieve the equations cor-
responding to the classical Pavlovian conditioning
modeled by the Rescorla and Wagner learning rule
(Rescorla and Wagner, 1972) in psychology and
the Widrow and Hoff delta rule (Widrow and Hoff,
1960) in signal processing (these two equations are
equivalent). The condition needed to deduce this
rule from our energy measure depends on the adap-
tation definition.

Definition 4 Adapted system We will consider a
system is adapted when there is no current or action
lost at the level of the different groups.

Fig. 19 show a network for conditioning learn-
ing and its equivalent “electrical” circuit with the
different current or action flows. To simplify the
reasoning, the system is reduced to a 2 input neu-
rons and 1 output neuron system.

"lost"

Pcc

Ac1

Ac1

Ac0= g.Per

1

g

Ground

Neuron

Max(g.Per,Ac1)

Per

Ac

conditionning

AcPer

Figure 19: Equivalent electrical circuit of a condition-
ing mechanism. Pcc represents a constant source of en-
ergy. Learning consists in minimizing the consumption
of this energy.

The associated equations for the Perception and
Action flows are the following: Ac0 = Ac1 +Ac and



g.Per = Ac0 which implies:

Ac = g.Per −Ac1 (8)

If we consider Ac as a current of lost, we can
try to minimize its average value if we consider the
input signal are stochastic variables. This can be
written:

E[Ac2] = E
[

(g.Per −Ac1)
2
]

(9)

The minimization of 9 in terms of g can be
achieved by the classical LMS (least mean square)
algorithm (Widrow and Hoff, 1960) or the Rescorla
and Wagner rule in conditioning theory (Rescorla
and Wagner, 1972). The learning rule is:

g(n+ 1) − g(n) = Per(n)
(

PerT (n)g(n) −Ac1(n)
)

Hence, in an adaptive filter, the action flow is
represented by the error correction (the adaptation
mechanism) according to the input data (the “per-
ceived” information).

In the case of an unsupervised learning like a
self organized map or a WTA mechanism, we can
consider each neuron as a subsystem that tries
to maximize the difference of potential between
neurons because of the negative weights (equivalent
to negative resistors). After adaptation the current
lost should be minimal or null.

The problem with this kind of reasoning is that
we have to come back to the description of each
particular neuron model which is contradictory to a
general analysis tool. It is clear that in a coherent
theoretical frame, it should be possible to deduce
the local adaptation rules from the global energy
rule of the system

∫

|Per >< Ac|dt. Unfortunately,
if the neuron has one action input and one percep-
tion input, the product between them is a scalar and
its maximization will induce an incorrect learning
rule (no constraint on their difference of activity
level). A more sophisticated measure could consist
in discretizing the two inputs over vectors of size N
(like a measure on a graduated rule).

For a scalar input x ∈ [0, 1], the associated |x >=
(x0, x1, ..., xi, ..., xN ) vector will be defined as fol-
lows: xi = 1 for i = round(x.N) and xi = 0 oth-
erwise. We will call B this function: |x >= B(x).
Now, if we consider the scalar input Ac and W.Per
then

E =

∫

B (W.Per(t)) .B(Ac(t))T dt (10)

We want to maximize the rank of E

(rank(E)=dim(E)). If Action and Perception
data are independent then the all the matrix values
will tend to the same value and the matrix rank
will be 1 (or a higher value if there are some
residual structures in the input data). Of course,
in the case the perception and the proposed action
(desired action Ac1)) are random independent
signals, it will be impossible to increase the rank of
the matrix and this agrees with the impossibility
to learn something.

On the contrary, if there is a linear correlation
between Perception and Action that the neuron can
capture, then the matrix E will be null excepted for
a line of non null values with a slope depending
of the linear correlation factor and on the neuron
weight (the rank of the matrix will depend on this
slope see fig. 20).
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Figure 20: Energy matrix a) when the neuron does not
predict Ac=W.Per. Here the weight W is too low. b)
The energy matrix tends to be an identity matrix when
Ac=W.Per.

To maximize the matrix E rank, we must have
λ.Id = E. It corresponds to Ac(t) = W.Per(t).
The rank maximization is performed when the av-
erage error onAc−W.Per is minimum. Fortunately,
it is equivalent to the minimization of the current
Ac associated to a loss of energy in the eq. 8 and
will induce the same solution (see eq. 9).

6 Conclusions and perspec-

tives

The theory outlined in this paper comes from the
merging of two different ideas. First, there is the
will to transform the philosophical ideas around
the importance of the Perception/Action coupling
in something more formal and systematic. Second,
we observed in a brain modeling work on a struc-
ture called the hippocampus (Gaussier and Zrehen,
1995; Gaussier et al., 2001) that this structure and
its associated cortical areas compute among other
things the product between perception and action
vectors (Per.AcT , see fig. 21) and has a short



term memory which could represent the integra-
tion mechanism. This Perception/Action product
could be used by the brain to predict future Per-
ception/Action transitions and to detect novelty.
Hence the hippocampus could be seen as an ap-
paratus able to measure a kind of cognitive energy
consumption.

X

hipp

Per

Ac

Figure 21: Simplified representation of the merging be-
tween Perception and Action performed at the input of
the hippocampus. The result is an internal representa-
tion of the whole system/environment interactions (an
operator to measure energy consumption).

Hence, it could be legitimate to represent Percep-
tion and Action as the two faces of the same coin.
We can choose to speak about Perception or Action
according to the fact data seem to represent more
the perception or the action side but it is always
the (Perception,Action) couple that will be manip-
ulated as a single entity. The analogy with the elec-
trical circuits is here very important to understand
what we mean. For instance, it is sometimes easier
to consider a current or a tension according to the
circuit topology but at any place where a current
exists, it is caused by a difference of tension, and re-
ciprocally any mention induces a current (the same
is true for Perception and Action).

Surprisingly, the analogy between the concept of
Perception/Action in a CS and the effort/flow or
tension/current in electricity was able to throw an-
other light on a lot of important concepts in cog-
nitive sciences such as the reactiveness, the habit-
uation, the sensibilization or the function of brain
structure such as the hippocampus. Moreover, it
seems possible with little modifications to apply the
computation rules used in electricity on diagrams
representing simple CS. The main difference is that
each CS block is supposed to be connected to a vir-
tual source of energy. This source must be able to
provide ”energy” in the case of a decorrelation or an
inadaptation between its different input flows (in-
coherence between the different input perception or
between the different proposed actions). This no-
tion of virtual energy is interesting since it can be
applied in the same way for biological cognitive sys-
tems and computer simulations.

At last, the capability to retrieve from these new
considerations a classical and optimal learning rule
seems to show there is an internal coherence in the
proposed formalism. Obviously, this framework is
really far away from a global and rigorous mathe-
matical theory of CS but our goal was only to insist
on the possibility and the interest of more formal
analysis and comparisons between CS architectures.
A good theory of CS should be able to :

• introduce some kind of abstract measures inde-
pendent of the system specificities (like the no-
tion of mass to describe any object in physics),

• propose simple writing rules able to describe
any architecture

• foresee the main properties of a given architec-
ture/environment couple,

• measure the adaptiveness of an architecture for
a given couple of behavior/environment,

• compare and simplify different models or archi-
tectures,

• deal with different level of CS description (neu-
rons or elementary logical or arithmetic oper-
ators, cell assemblies, functional blocs, or even
social interactions between individuals),

• simplify the communication between re-
searchers using different kind of tools to model
CS or to control autonomous robots or agents.

In the present paper, we have tried to avoid mea-
sure problems by the only use of relative informa-
tion between different sources of input and output.
We have implicitly supposed there is no cost “in
the cognitive sense” to transform an information of
action into a real action. If it can be a valid hypoth-
esis then we can certainly continue in that way and
try to understand what is the “cost” of a particular
adaptation of the behavior or the cost of the self-
organization or re-organization of a map of neuron
according to particular input and output. It is also
clear that global reinforcement signal and essential
internal variable of the system should have a strong
and central place in a coherent theory of cognitive
systems.

Future works will have to address the problem
of the minimal set of building blocks necessary to
describe any cognitive system. For instance, the
wide literature on neural network modeling should
be explored in order to find all the non-simplifiables
structures. The reentrant maps introduced by Edel-
man (see fig. 22) are certainly a good example of
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Figure 22: The reentrant maps proposed by Edelman

a structure that cannot be simplified. New mathe-
matical formalisms have to be imagined to enlight
the importance of the dynamics in these structures.
There is certainly nowadays a place for a Cognitive
System Algebra (CSA) useful to formalize the theo-
retical core of one science of the cognition (including
the development of more “intelligent” autonomous
robots).

Appendix

Random behavior analysis

Theorem 1 if |x > and |y > are 2 independent and

random vectors, then the rank of E defined as follow

E =
R

|x >< y|dt is 1.

To illustrate this theorem, we compute the estimator:

Ê(t) =
1

t

t−1
X

i=0

|xi >< yi| (11)

on a long time interval and for random vector |xi >

and |yi >. The results are presented fig. 23.
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Figure 23: a) Evolution of the “energy” conditioning
according to the number of integrated |Per >< Ac|
information. The scales are logarithmic to show the de-
tails of the beginning (matrix formation) and the long
decrease of ratio which means the min eigenvector be-
comes more and more little in comparison to the max-
imal eigenvalue. The curve is an average of 30 realiza-
tions, with vectors of dimension 10. The vector compo-
nents were drawn according to a uniform law [0,1]. b)
details of the ratio decrease after the first 10th itera-
tions.

Indeed, each component of the matrix will tend to the
same value (central limit theorem) and then the rank of

the matrix will become 1. Since the values will never be
exactly the same, the rank should theoretically remain
full. In practice, one eigenvalue will be very high and
all the other very low. We can consider a threshold
and say that when the ratio between the max and min
eigenvalues is too high then there is a “conditioning’
problem (see fig. 23).

Other measures could be imagined to obtain more
precise information on the behavior complexity but we
can notice the present measure already allow to make
some comparisons and justify the possibility to build a
mathematical framework to study the mean features of
cognitive systems.

Example of a network simplification

The figure 24 represents an example of a network that
can be simplified.
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x
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Figure 24: Example of a neural network that can be
simplified. c1 and c2 represent 2 types of competitive
structures. A, B, M and N represent the modifiable
weights of the groups a,b,m and n respectively. I rep-
resents a ”one to one” unmodifiable type of connection
(reflex pathway).

Indeed, we have |b >= c1|B|a > and |n >= c2|N |b >.
We can deduce |n >= c2|N |c1|B|a > that can be sim-
plified in |n >= c2|N ′|a > by using eq. 6. We obtain
the equivalent network shown fig. 25.
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Figure 25: First simplification of the network fig. 24.

Now, if we consider y is an action flow (the one to one
connections representing an action reflex pathway for in-
stance) then after learning stabilization, we should not
have current or Action lost between Ac1 = y and Ac2

(Acs = Ac1orAc2). This implies the learning weights
M and N are the same and |m >= |n >. The net-
work fig. 24 is then equivalent to the very simple PerAc
(Perception-Action) block that follows:
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Figure 26: Simplified network equivalent to the net-
work fig. 24.
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