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Abstract. The goal of this paper is to propose a model of
the hippocampal system that reconciles the presence of
neurons that look like ““place cells”” with the implication
of the hippocampus (Hs) in other cognitive tasks (e.g.,
complex conditioning acquisition and memory tasks). In
the proposed model, “place cells” or “view cells” are
learned in the perirhinal and entorhinal cortex. The role
of the Hs is not fundamentally dedicated to navigation
or map building, the Hs is used to learn, store, and
predict transitions between multimodal states. This
transition prediction mechanism could be important
for novelty detection but, above all, it is crucial to merge
planning and sensory—motor functions in a single and
coherent system. A neural architecture embedding this
model has been successfully tested on an autonomous
robot, during navigation and planning in an open
environment.

1 Introduction

Since the initial observations of severe anterograde
amnesia following medial temporal lobe resection (Sco-
ville and Milner 1957), the hippocampus (Hs) has been
known as a very important structure for human and
primate memory. The main structures within the medial
temporal lobe are the hippocampal region (the hippo-
campal field, the dentate gyrus, and the subiculum) and
the adjacent entorhinal, perirhinal, and parahippocam-
pal cortices (Zola-Morgan et al. 1989; Suzuki et al.
1993). Electrical recording of neurons activity in rodent
Hs have also shown the existence of ““place cells” that
fire for specific places in the environment (O’Keefe and
Nadel 1978; O’Keefe 1991). O’Keefe and Nadel pro-
posed that the Hs works like a Cartesian map of the
environment, with each place cell coding for a very
limited and well defined area (O’Keefe and Nadel 1978).
Many experiments over the following two decades have
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confirmed the importance of the rat Hs in navigation
tasks, but the more precise experiments have also shown
a wide variety of sometimes contradictory results. First,
less selective and more noisy place cells have been found
in the entorhinal cortex (EC) just before the Hs. Second,
some spatial tasks are not impaired by hippocampal
lesions (Whishaw et al. 1995; Murray and Mishkin
1998). Third, the cell place fields seem to be less precise
during passive navigation, depending upon the task
context. All these points suggest that the idea of the Hs
as a Cartesian map must be revised, and that the Hs
contributes to diverse tasks.

Moreover, other studies concerning the understand-
ing of conditioning mechanisms have shown that the Hs
was also activated during the acquisition of classical
conditioning (the rabbit’s nictitating membrane condi-
tioning, for instance), and that lesions of the Hs disrupt
acquisition of long-latency conditioned responses
(Berger and Thompson 1978; Solomon et al. 1986;
Thompson 1990). In rats, the Hs has also been shown to
be implied in encoding some learning aspects of instru-
mental conditioning (Han et al. 1995; Baxter et al.
1997). Lesions to the dorsal Hs selectively impair the
ability of rats to represent the causal relationship
between an action and its consequence (Corbit and
Balleine 2000). More puzzling is the fact that hippo-
campectomized rats are modestly but significantly im-
paired only for long delays in nonmatching to sample
tasks (Dudchenko et al. 2000). More generally, Hs le-
sions seem to impair nonspatial relational tasks (Bunsey
and Eichenbaum 1996) as well as nonspatial condition-
ing tasks involving long temporal delays. But the Hs is
only one of the many circuits for the elaboration of
conditioned responses (Berger and Thompson 1978;
Thompson 1990). The Hs may be critical in situations in
which the relevant stimuli do not occur contiguously
in time (Thompson 1990). These works on the role of Hs
in memory processes have also enlighted the importance
of the memory capacities of the perirhinal cortex (Pr)
and parahippocampus (Ph) (Aggleton and Brown 1999),
which are directly connected to the EC. Therefore, a
strict opposition between rodent Hs solely devoted to a
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spatial representation of the environment (O’Keefe and
Nadel 1978; Burgess et al. 1994; Wan et al. 1994; Arleo
and Gerstner 2000) and primate Hs mostly involved in
declarative memory (Milner et al. 1968; Reiss and Tay-
lor 1991; Grossberg 1996) is not tenable anymore. There
is clearly a need to overcome the limitations of these
models and to deal with the complexity of the whole
problem. Indeed, if place-cell-like activities can be ex-
plained as a side effect of a memory system, it is also
possible that nonspatial task impairments are a conse-
quence of an underestimated spatial component of the
behavior.

In Sect. 2, we propose a model in which the Ph is used
to build and store a robust and invariant representation
of the visual environment. Prehippocampal ““visual place
cells” or “directional place cells” appear at the level of
the EC as the result of the recognition of particular Pr—
Ph configurations merging, for example “what” and
“where” information: the Ph is used to store experienced
configurations while the place recognition is performed
in the EC and the dentate gyrus (DG). The robotic ex-
periments in a simple open area will show that visual
information are sufficient to build neurons with a very
large place field that is useful to return to the vicinity of
their associated location without the need to learn a map
of the environment.

In Sect. 3, the outputs of the prehippocampal place
cells modeled in Sect. 2 are used for planning according
to a ‘“‘cognitive map”. Considering robotics and bio-
logical constraints in complex action-selection problems,
we will show that it is impossible to associate a node
representing a place with the action to be performed in
the context of a multigoal problem using a single map.
We will propose that the Hs learns the transitions
between states defined by the merging of multimodal
information.

In Sect. 4, we detail a model of hippocampal predic-
tion cells in which the Hs participates in the selection of
a transition state allowing to choose the correct action
during planning. More precisely, we suppose a sharp
place recognition with strong competition and a short-
term memory storage can be performed by the DG from
the large and/or directional place cells of the EC (see
Banquet et al. (1997) and Banquet (1998) for more de-
tails). Next, CA3 pyramidal cells can learn to predict the
next places that can be reached according to the recog-
nition of the current location (DG activity). Hence, CA3
pyramidal cells express transitions between places and
CAl pyramidal cells try to select the most appropriate
transition according to a particular motivation (infor-
mation coming from the prefrontal cortex through EC
medial connections, for instance). The selected transition
can easily be associated with an action by means of the
nucleus accumbens or by a back projection to the pos-
terior parietal cortex (PPC) via the EC or the subiculum
and the EC. Moreover, the selected transition can also
be used in the subiculum to update the memory of the
previous head direction. The presence — in the Hs — of
neurons that react when the animal is at a particular
place does not contradict this model. Place-cell activity
results of a snapshot of a system dealing with transitions

between multimodal states, related to navigation since
the animal is performing navigation task. The plausi-
bility of the model will be discussed in Sect. 5. The two
parts of the model have been simulated on a real mobile
robot using a two-dimensional CCD camera [see
Gaussier et al. (1999a) for a complete description of the
visual place recognition system].

2 Prehippocampal place cells

The nature of the visual information used by animals for
place recognition or homing behavior is at the center of
an old debate. Two main theories are proposed. In the
first one, the panorama is supposed to be recognized as a
whole and matched directly to some memorized panora-
ma (model of insect navigation, Wehner et al. (1996)).
This theory is opposed to a second one in which
panoramas should be decomposed into objects and
relations between objects matched to a learned model
(model of human vision, for example Oram and Perret
(1994)). These two points of view can be reconciled if we
consider that several simple low-level features can be
extracted in parallel, and that a sequential scene analysis
is also important for high-level discrimination. For
instance, it appears that the whole field luminance is
not used much by normal rats (nor primates) (Goetsch
and Issac 1983; Kolb et al. 1983). Rats must be able to
use some kind of landmark identification but ““it is not
clear, however, how these distant cues are processed.
They might be fixated sequentially or processed in
peripheral vision...” (Kolb and Tees 1990, p 293).
Indeed there are also some suggestions that the rat
temporal cortex may be involved in peripheral and not
central vision (Kolb and Tees 1990). But there exists in
the rodent lateral posterior cortex an area called Te2
(Krieg’s area 36, Zilles’s area Te2) that has some
resemblance to the inferotemporal cortex of the monkey.
It projects to the perirhinal region (Deacon et al. 1983)
and receives projections from the EC (Kosel et al. 1982).
In the monkey, the perirhinal area receives a large input
from higher visual areas, while the Ph receives larger
input from the parietal and cingulate cortices (Suzuki
et al. 1993). A similar topography of inputs distinguishes
the perirhinal and the postrhinal areas of the rat (Deacon
et al. 1983) (equivalent to primate Ph; in rats, some of the
memory-processing properties of cells in Tel (anterior
inferotemporal cortex) area are very similar to the
features of cells in the parahippocampal region, suggest-
ing that at least part of this area may be more reasonably
considered as an adjunct to the parahippocampal region,
with its role limited to visual memory processing
(Eichenbaum et al. 1994)). A major similarity between
perirhinal and parahippocampal (postrhinal) areas is
that both project heavily to parts of the EC. These
structures are a major intermediary in communication
between the hippocampal formation and the neocortex.

Lesions to the PPC involve a deficit in perceiving the
spatial relations between objects, such that the animals
do not orient themselves accurately with respect to
spatial information. This deficit is reminiscent of similar



deficits in humans and nonhuman primates (Kolb and
Tees 1990). The PPC deficit is likely to be dissociable
from the frontal or hippocampal deficits in that there is
no additional memory deficit after PPC lesions. From
the anatomical data, it is not possible to say that com-
plex object recognition cannot be used for navigation,
but the ablation of the Te2 region does not perturbate
navigation tasks like those in the Morris swimming pool.
On the contrary, it suppresses the capability of associ-
ating the recognition of a complex object with an action,
like jumping in the direction of the object or avoiding it.
It is thus possible to conclude that there are in rodents —
like in monkeys — two distinct visual processing routes:
one for spatial guidance and one for the kind of visual
analysis required for object recognition (Mishkin et al.
1983; Kolb and Tees 1990). Obviously, all these features
can be much more complex in the primate or human
brain, with the possibility of more cognitive function in
the PPC (e.g., spatial rotation and map visualization). In
conclusion, animals such as rodents and primates can
use — at the same time — more or less complex (or inte-
grated) visual information. We will consider that visual
place recognition is the result of a more or less complex
merging of visual information including “‘object” rec-
ognition (“‘what” pathway in mammals) and ‘“object”
location (“where” pathway). Obviously the notion of
“object” may be supposed to be more complex for pri-
mates than for rodents, but our model suggests that it
may not be fundamentally different (Lashley (1938) for
neurobiological and behavioral justifications). In our
model, low-level visual treatments are simply “object/
feature” detectors using features such as gradient in-
formation to detect a transition between two areas. The
useful information is the azimuth of the “object/feature”
according to a given absolute direction. The proposed
model considers the parietal and temporal cortical areas
as inputs to the Pr and Ph. In fact, the Pr or the Ph could
be the place where local configurations of different kinds
of information (like “what” and “where” information;
Mishkin et al. (1983)) are merged and memorized for the
time of the visual scene exploration. The merging of the
“what” and “where” information requires some kind of
units calculating the product between the recognition
level of a given landmark and information about its
angular displacement from the learned configuration
(sigma — pi units, for example Rumelhart and Zipser
(1985)). The same holds if we suppose that other con-
textual information can be used — they will have a
modulation effect on more spatial information.

Next, Pr—Ph areas are connected to and from the EC,
which is itself the input of the Hs proper. The EC is also
connected to other cortical structures such as the pre-
frontal cortex, which is known as a very important
component of planning capabilities (Goldman-Rakic
et al. 1984). Hence, the EC seems to have an important
role in the filtering and integration processing of the
hippocampal inputs and outputs (Jones 1993; Rolls and
Treves 1998), and could correspond to a first level of
place cells.

In the present model, the activity of the “place cells”
is computed by the neural network proposed in Fig. 1.
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The activity of a Pr—Ph neuron is the product of the
recognition level of a given feature (distant landmark,
for instance) and its angular distance to the learned az-
imuth. The activity of a place cell is a normalized sum of
Pr—Ph cells which were activated during place learning
[see Gaussier et al. (1999a) for more details]. Our
merging and place recognition models have been
implemented on a mobile robot in order to test their
efficiency. This system allows to build a panoramic im-
age up to 300° wide (1200 x 288 pixels).

The interest of these experiments for our under-
standing of animal visual navigation lies in the oppor-
tunity to record the response of each neuron that codes
for a particular place (we may consider them as artificial
“place cells” — see below) in a completely controlled
situation. Figure 3 shows the activity of 25 neurons
associated with 25 different places according to the
recognition level of the landmarks and the information
about their azimuths. Learning was supervised with each
neuron associated with a particular location in a 5 x 5
grid of the room used for the experiments (see plan,
Fig. 2). The different level lines show that a neuron may
be activated even if the current view is far from the
learned one, and that there are no local minima.
Figure 4 shows what happens after a strict competition.
For a given location, only the winner neuron remains
activated (it keeps its previous value while the others are
reset to 0). This activity looks very much like the shape
of place-cell activity recorded in the rat hippocampus
(O’Keefe and Nadel 1978) (we will come back to this
kind of comparison in Sect. 5). The results show the
model allows segregation of the place locations in a real
environment from solely visual information.

The most interesting result is that the gradient of the
place recognition level can be used for homing behavior
very far away from the learned location — more than
2-3 m in our case — without local minima problems. In
previous works, we presented a simple conditioning
network which allowed our robot to return to a given
location without the need to learn a map of the envi-
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Fig. 1. Merging of “what” and “where” information for place
recognition in the case of an high-level visual system. The lateral
diffusion allows measured of the difference between the learned
azimuth and the current azimuth
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Fig. 2. The room in which the experiments are performed. The
crosses represent the places where the robot has learned (see Figs. 3
and 4)
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Fig. 3. Twenty five neurons, 25 places, 5 measures averaged per place,
and a diffusion of 35°. Neurons are considered to be isolated
(activation only comes from the direct input). Learning was
supervised: each neuron is associated with a particular location in a
5 x 5 paving of the room in which the experiments have been carried
out. Each rectangle is a map of the room. The curves show the activity
of the neurons corresponding to the crosses of Fig. 2

ronment in the case when the starting position belongs
to the same open visual environment as the goal. These
results confirms the experimental results of Whishaw
(Whishaw 1991; Whishaw et al. 1995; Whishaw and
Jarrard 1996), showing that rats do not need a cognitive
map to solve the Morris swimming pool.

A last robotics experiment can be useful for under-
standing some differences between rodent and monkey
perception of their visual environment. In this new ex-
periment, the visual field of the system is limited to 180°.
Then, the activity of the neurons associated with the
recognition of the “what and where” representation are
no longer place cells (see Fig. 5), but have very similar
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Fig. 4. Same setup as in Fig. 3. A competition between neurons is
introduced. Only the winner neuron remains activated while the
others are set to 0 (no activity enhancement used)

properties to the “view cells” recorded by Rolls (Rolls
and O’Mara 1995; Rolls and Treves 1998) in the monkey
Hs when the monkey perceives a particular view. The
cell responses are relatively invariant of the distance and
location. This experiment shows something that was
already true in the previous experiment but was more
difficult to see: our place cells are directional and their
directionality depends on the field of view. For large
fields of view (about 300°) and for a given location, the
activation of a place cell decreases a little when the robot
orientation is at 180° to the orientation used for learning
(if the landmarks are uniformly distributed). For smaller
visual fields, it happens more easily that landmarks
disappear from the field of view which reduces the cell
activity more.

But it remains striking that the place cells found in the
rat Hs are restricted to an area of about 10-20 cm, while
we insist on the possible availability of a continuous
place recognition information that can be used over
several meters (at least 2 m — 10 times the diameter of the
observed place fields). In a simple open environment, the
sole use of the discrete place recognition performed in the
Hs means that the animal is only able to recognize its
actual location and cannot have any idea about its dis-
tance to a particular location like a goal, or the platform
in the case of the Morris swimming pool. As a result,
models of rat navigation based on hippocampal place
cell always involve internal maps (Burgess et al. 1994;
Trullier et al. 1997; Arleo and Gerstner 2000). Unfor-
tunately to come back to a goal location, an animat using
these models will have to already know a path linking the
current location with the goal location. A priori gener-
alization is then not possible, and if mammals were all
using only this kind of strategy they would have less
navigation insight than insects (no latent learning for
instance). On the contrary, using a perception—action
architecture is sufficient to learn a minimum of three
place-cell/action associations in the immediate neigh-
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Fig. 5. Record of two “view cells” according to the robot location
and orientation in our experiment room (arrow represents the position
and direction of the learned view). The black bars represent the neuron

borhood of a goal, allowing the robot to come back to
the goal from any location in the open space around the
goal (even if the robot never experienced this location
before — see Gaussier and Zrehen (1995)).

3 Using cognitive maps

For more complex tasks, each set of place/action
association can be linked with a basin of attraction,
and is thus potentially reachable (provided it is recog-
nized, and that there is an open space between the place
where the animat actually is and the one it wants to
reach — see Gaussier et al. (1999a). Therefore, if some of
those places are associated with specific motivations
(“hunger” or “thirst” for instance — see Fig. 6), the
modulation of the recognition by the motivation level
allows the animat to reach the appropriate place. This
simple action-selection mechanism still works even if
there are obstacles on the trajectory, provided a reflex
obstacle avoidance system competing with the goal
attraction mechanism (Gaussier et al. 1999a).

The main difficulties arise when the animat cannot
perceive directly where the goal is, for example when
there is a wall or a huge object. As the animat is not in
the goal visual environment, it cannot generalize the
“good” movement to perform from what it has learned
next to the goal. An intermediate step consisting of
learning how to reach places from where it is possible to
see the goal is necessary. Behaviorists have proposed
that it could be performed by learning what they call
“conditioning chains’’: they suggest that from place to
place, the movements leading to the goal could be re-
inforced (it is interesting to notice that this mechanism is
similar to Q-learning techniques and has been applied in
hippocampal model (Arleo and Gerstner 2000)). This
explanation can still stand even if, at given places, there
are several possible routes (but a single motivation). For

or “view cell” activation in the direction of view. The robot uses the
same algorithm as for place recognition. The robot field of view is
simply reduced from 300 to 180°
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Fig. 6. Example of a complex environment showing the need for a
planning mechanism. Circles (and the associated letter) represent
learned places and arrows show the movement leading from one place
to another. Two goals G/ and G2 associated with two different
motivations are also present. Conditioning alone cannot explain the
capacity of the animat to choose between two possible movements in
B (the dotted arrows represent the alternative movements): a planning
or anticipation mechanism must be added

instance, if in Fig. 6 the animat finds a new goal G2
which is closer than G1, the route can be reinforced
more efficiently since it is closer (shorter delay between
reinforcement signals). Yet, in the case where G1 and G2
are activated simultaneously, the ‘“‘conditioning chain™
explanation does not work anymore. For instance, if G2
is associated with ““thirst”, links BC and BD will be re-
inforced (maybe link BD will be reinforced more since
G2 is closer) and there would be no way to distinguish
the action leading to G1 from the action leading to G2.
One can think of using a modulation mechanism, but in
this case there should be as many place cells or action
coding as motivations.

In fact, the ultimate problem of the above model is
that it does not explain latent learning. Indeed, in the
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1930s, Tolman performed a maze experiment with rats,
which consisted of comparing the results of rats that
were always rewarded with another group of rats that
was only rewarded after 11 days (Tolman 1948). Ac-
cording to the behaviorism paradigm, rats of the first
group should have had much better results than rats of
the second group. Yet, after the 11th day, the rats of the
second group had results equivalent to those of the first
group. Thus, it seems that although they were not re-
warded before the 11th day, rats have learned (“latent
learning”) an internal representation of the maze (called
a ‘“‘cognitive map’’). The definition of the ‘“‘cognitive
map” is controversial. In particular, some consider that
this kind of map must be in Cartesian coordinates
(Gallistel 1993). Schmajuck proposed a definition which
is, in our opinion, more appropriate (Schmajuk and
Thieme 1992):“... The cognitive map ... is a topological
map, i.e., it represents only the adjacency, but not dis-
tances or directions, between places... The cognitive
map allows the combination of information about spa-
tially adjacent places, and thereby the inference of the
connections to remote places.”

3.1 Building a cognitive map

Let us come back to our “place cell” model: how is it
possible to learn a “cognitive map”’ starting from our
implementation of the recognition of places? In fact, this
is rather easy if we consider that neurons of the place
recognition map are fully interconnected. Then, when a
place is recognized, it is coded on a neuron i. When a
new place appears it is coded on j, and a simple Hebbian
rule allows the learning of the time relationship (and
thus the topological relationship) between these two
situations. If x; is the activity of neuron i and X; its
corresponding short-term memorization (time constant
7), X; can be computed as follow:

dx; (¢
S = 0+l (1)
The Hebbian learning rule is given by:
dw;; dR _
d—t’:—iWUJr<C+E>~(1—%)-x,~xj (2)

where C is a positive constant (speed of the associative
learning) and A is the decay factor. The weight
modification also depends on the variation of the
reinforcement signal R. If the reinforcement decreases
while the robot is moving from one place to the other,
then the associated link will be less reinforced than in the
normal case. (1 — ;) is a saturation term to ensure
W; < 1. By generalizing the mechanism, a graph of the
spatial relationships between places is constructed.
Planning also requires learning of the link between the
recognition of a given place and the satisfaction of a drive
(that will be used as a goal). For this purpose, it must be
considered that the recognition of this place is associated
with the activation of a given “motivational” neuron.
The links between the motivational neuron and the

recognition of the situation can be reinforced using a
Hebbian rule. Then, a solution for the planning process
can be the back-propagation of the motivation activity
within the map (as for resistive grids — Bugmann et al.
(1995)). For a proper functioning of the planning process,
the activity of a neuron in the cognitive map (x;) must be a
function of its topological distance (number of interme-
diate places, for example) to the goal. We propose:

s = max (¥ ) ®)

We assume that neuron activity is bounded by 1 and that
the values of the weights are bounded by a value W.x
which is lower than 1 (see above). Before stabilization of
the algorithm, there must be several iterations (if spiking
neurons are used, the max operator can be replaced by a
simple turn-off mechanism such as proposed by (Thor-
pes et al. 1996)). The two phases of planning algorithm
are:

1. Initialization: i, is activated by a drive, x;,(0) < 1 and
xi(0) « 0, Vi # .

2. Back-propagation of the drives: Do Vi, x;(t + 1) <
max (W; - x;(¢)) while the net activity is not stable.

The use of the cognitive map could be the following:
after back-propagating the motivations from the goals
to all the subgoals or known places, the system tries to
recognize its current location (the most activated ““place
cell” is the nearest learned place from the current robot
location). Then, it selects as a subgoal the most activated
node on the ‘“‘cognitive map” directly linked with its
current location. To reach that place, a gradient-
following technique can be used (moving in the direction
that maximizes the activity of the place-cell coding for
the subgoal that the system wants to reach). When the
system enters in the vicinity of the next subgoal, the
process is repeated (selection of the next subgoal) until it
reaches the nearest goal relative to its starting location.
This neural algorithm is formally equivalent to Bell-
man’s shortest-graph-distance algorithm (Bellman
1958), and it has been shown to be very efficient in
simulation to solve complex action-selection problems
including opportunistic choices and contradictory
motivations (Gaussier et al. 1999b; Quoy et al. 1999).

If the place-recognition neurons were directly con-
nected to each other with recurrent connections so they
can be also used as a cognitive map, the meaning of the
neuron activity would become ambiguous: the neuron
activity would represent a mixing between the distance
to the associated learned places and the distance to the
goal (the feedforward and backward computations
would be mixed together).

A solution consists of separating the process into two
functional levels so as to separate the two information
flows: one corresponding to the “‘goal” level, another
corresponding to the recognition of the current place.
During learning, the information must flow “bottom-
up” from the recognition level (P(x,y) activity) to the
“goal” level, so as to allow cognitive map learning (one-
to-one connection between the neurons of the two lev-
els). Conversely, during planning, the information
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Fig. 7. Building of a “cognitive map”. During learning, the informa-
tion goes from recognition to “goal” level to allow the learning of the
map (topology learning between 4, B, C, G1, etc). During planning,
the activation of a motivation is back-propagated on the map

coming from the ‘““goal” level must go “top-down” in
order to select the action to perform (see Fig. 7). Inter-
estingly, this functional organization corresponds to the
neurobiological model of cortical columns proposed by
Burnod (1989).

3.2 Transition cells and action selection

We have not yet considered action learning and selection
aspects. Animal studies have shown that rats are able —
at “‘strategic locations” (T-junctions of a maze for
instance) — to try for a short distance the different
possible ways, and come back to the junction, and finally
choose the more appropriate action to reach the goal
(Tolman 1932). This mechanism, known as “‘vicarious
trial and error”, can be understood as a way of
estimating the local gradient on the cognitive map
(Schmajuk and Thieme 1992; Scholkopf and Mallot
1995). But these systems have to rely on an external
mechanism to analyze the cognitive map activity and to
decide the correct movement. In fact, in these systems
the action only results from a gradient descent and
cannot be controlled willingly. To overcome this prob-
lem and the limitations of gradient-descend techniques
(need for vicarious exploration) it is important the
system can learn to select a particular movement in a
given situation. Our problem is then about the “‘em-
bodiment” of the cognitive map in the sensory—motor
system; i.e., the problem of connecting it correctly to the
“place cells” and to the movement-selection mechanism.

A first idea could be to decide that each place-rec-
ognition cell has to be linked with the movement to the
next place. Yet, during planning, the system must use
the information coming from the goal level to perform
the action sequence allowing reaching this goal. If one
place is linked to several actions, the correct action
cannot be selected. For instance, if the animat starts
from A on Fig. 6, when it arrives in B there is no way to
choose which action must be performed (B is linked with
two movements — see Fig. 8).

As there are action-selection problems due to the
association of two movements with a single place rec-
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Fig. 8. Planning is impossible by using only steady states recognition.
Indeed, a situation can be linked with two different movements, and it
is thus impossible to decide which action must be selected
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Fig. 9. Use of the transitions for actions planning. At a given place,
there are several possible transitions which are likely to be recognized
by the recognition system. Thanks to the back-propagation of the
motivation activity, the recognition can be biased in order to propose
the appropriate movement to reach the goal (impossible with steady
states; see Fig. 8)

ognition, the solution is to build a representation which
can disambiguate movement selection. Besides, this
representation must take into account both the start and
end points. A solution consists of building a represen-
tation of the transition between two situations (see
Fig. 9). Let AB be the internal representation of the
transition between A and B. The associated action is the
movement allowing to go from A to B (learned using a
conditioning rule). In situation B, for instance, the ani-
mat may turn left (arrives in C) or turn right (arrives in
D). Transitions BC and BD will be created and respec-
tively associated with “turn left” and “‘turn right”
movements.

During exploration, the “recognition” level creates an
internal representation for each transition between
places and associates the movement from one to the
other. At the “goal” level, connections between repre-
sentations are learned so as to create a graph of the
topological relationships between the transitions. When
the animat reaches the goal, it learns the association
between the recognition of the last transition and the
motivation satisfaction. During planning, the motiva-
tion back-propagation towards the current state allows
the activation of the graph nodes, thereby indicating the
movement that is necessary to perform in order to reach
the goal. The planning mode requires (at variance with
the exploration mode) deciding what movement must be
performed to reach the goal. Therefore, the system must
allow a prediction of the place(s) which can be reached
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the learning of one neuron in the transition prediction group (CA3).
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from the current location. The idea of this representa-
tion has been inspired by a neurobiological model of
timing and temporal sequences learning in the Hs
(Banquet et al. 1997; Banquet 1998; Gaussier et al.
1998b). As the internal representation is elaborated from
transition recognition and not only from scene recog-
nition, an internal representation is necessarily linked
with only a single movement. The neural implementa-
tion (see Fig. 10) consists in a group of neurons which
are, on the one hand, linked with the derivative of the
current place recognition and, on the other hand, with
the memory of the previous input. The activity of tran-
sition—prediction neurons is simply obtained by adding
the activity of each input and then thresholding the re-
sult. The initial weights and the threshold must be
chosen so that the activity of a single input cannot ac-
tivate the neuron, whereas both can. The prediction of
transitions can easily be achieved assuming that the link
between the delayed input and the map can be reinforced
enough (by Hebbian learning, for instance), in order to
be able to activate the neuron when only the delayed
input is presented (simulation results can be found in
Revel et al. (1998)). This model has a lot of points in
common with the model developed by Grossberg and
Merril to explain precise timing capability of the Hs in
classical conditioning experiments (Schmajuk 1991;
Grossberg 1996), and extends it to sequence learning
and navigation tasks.

4 Hippocampal prediction cells

In the Hs, the information coming from the superficial
layers of the EC projects to the granular cells of the DG
as well as to the pyramidal cells of the CA3 region. The
mossy fibers connecting DG granular cells to CA3
pyramidal cells can force the activation of the pyramidal
cells and are known as a fundamental element of the Hs
learning and memory capabilities (long-term potentia-
tion of the mossy fibers has been widely studied (Derrick
and Martinez 1996)). CA3 recurrent connections are
supposed to be very important for pattern completion

available, the same group (CA3) predicts all the possible transitions.
Finally, these transitions are proposed to the transition recognition
group (CAI) and the planning system can bias the recognition so as to
perform the relevant movement

(Marr 1971), but since this property is not crucial for our
problem, it will not be simulated here (Mizumori et al.
1989). CA3 pyramidal cells project to CAl pyramidal
cells which also receive connections from the median
layer of the EC. In our model, we suppose the direct EC-
to-CA1 connections provide activations that can be used
to control CALl cell learning and bias CA1 competition
in order to select one transition according to the drive
back-propagation on the cognitive map (from the
parietal and prefrontal cortex).

CAI1 pyramidal cells are themselves connected to the
nucleus accumbens (belonging to the basal ganglia and
presumably involved in action modulation) and to the
subiculum in which head-direction cells have been
found. The subiculum also receives direct information
from the median layers of the EC (that could be also a
relay from the prefrontal information used to select the
most interesting transition according to a given moti-
vation) which back-projects information to the deep
layers of the EC (for more details of Hs anatomy, see
Amaral and Witter (1989)).

It has been shown that rats with medial prefrontal
lesions have impaired performances for a variety of de-
lay-type tests including a delayed response (Kolb and
Tees 1990). They have also difficulties performing spatial
maze tasks (Becker et al. 1980; Kolb et al. 1983; Herr-
mann et al. 1985) Thus, it seems that the prefrontal
cortex plays a major role in planning abilities. Our pro-
posal is that the cognitive map could be elaborated in the
prefrontal cortex but that the internal representations of
transitions could be coded in CA3/CALl. Indeed there is
neurobiological evidence that CA1l has extensive direct
connections to the prefrontal cortex and indirect back-
connections via the EC (which is consistent with our
model (Ferino et al. 1987)). However, it has also be
shown that rats with medial perfrontal lesions succeed in
solving Morris swimming pool experiments. It does not
contradict our model, since navigation in the Morris pool
can be explained simply by a direct association between
“prehippocampal place cells” and actions (Gaussier and
Zrehen 1995; Gaussier et al. 1997, 1998a, 1999a). After
hippocampal damage, monkeys and rats are also unim-
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Fig. 11. The robot path during the exploration and the latent learning
of the cognitive map. Curved lines indicate the real robot trajectory
and straight lines represent learned transitions linked to the path
integration between the two successively recognized or learned places

paired when required to remember two locations over a
20 s delay (Mumby 1992; Murray and Mishkin 1998).
Moreover, rats with fimbria—fornix lesions display a
place response in a swimming pool with a dissociation
between “getting there” and “‘knowing where” (Whishaw
and Jarrard 1996). These results are confirmed by the
experiments of Dudchenko et al. (2000) suggesting that
hippocampectomized rats could recognize — but could
not inhibit — their approach to previously visited loca-
tions. The capability of reaching the platform even after
DG granular cell degeneration (even if the rats perfor-
mances are impaired) could be explained by the existence
of some kind of place cells in the EC (Armstrong et al.
1993) (DG granular cells degeneration induces an im-
pairment in intramaze cue rotation). The impairment of
the performances could result from the incapacity either
to merge odometric information and/or to plan a short
trajectory, because of an inability to predict the possible
transitions from the current state. We have tested this
architecture in the open environment detailed in Fig. 11.

In a first phase, the robot explores the environment at
random and, at the same time, learns the places A, B, C,
D, and E when the activation of the already learned
places becomes smaller than a given threshold (vigilance
level). The cognitive map is elaborated over time, cre-
ating a new node for each new transition and linking
nodes as they are consecutively encountered. In the
present experiment, the robot learns and links together
the transitions AB, BC, CD, DC, and CE (see Fig. 12).
The movement associated with a given transition is ob-
tained after path integration of the robot movements
from the previous activated place to the next one. The
path integration is reset when the robot discovers a new
place or arrives at a known place.

It can be noticed that a single path has been
learned in this very simple experiment. Nevertheless, it
appears to be a very interesting case to show the ca-
pability of opportunistic behavior of the algorithm.
Indeed, according to the graph, there is no reason for
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Fig. 12. Cognitive map built after the exploration of the environment
shown Fig. 11. Note that there is no direct connection between the
neuron coding the transition BC and the neuron coding the transition
CE (because it was not experienced by the robot during the
exploration). With the transition prediction system, the robot can
nevertheless choose the transition CE after the transition BC because
of its opportunistic behavior (recognition of C allows it to predict CD
and CE)

the robot to go directly from C to E — it should go
first to D.

After this short exploration of the room, the robot
is brought back to the starting point and the motiva-
tional neuron is activated. Because of the learning, the
motivation is back-propagated on the cognitive map.
At the same time, the robot recognizes from the sole
visual panorama its current location (the most acti-
vated place cell). This recognition is used to “‘predict”
all the possible transitions from the current location.
When several transitions are possible the goal back-
propagation on the cognitive map allows biasing the
competition between the predicted transitions (through
the top-down connections). The best transition
according to the planning system is then selected.
When the robot starts from A, only the transition AB
is possible so the robot moves in the direction AB until
it recognizes B. Then, the transition BC is proposed
and the robot moves in that direction. Later, when the
robot arrives in C, it predicts from C the transition CD
but also the transition CE. Because the planning node
CE is activated more than the node CD (since it is
nearer to the goal), the recognition of the transition
CE wins and the robot triggers the movement in the
direction CE (top-down bias of the planning system on
the transition recognition system). Hence, it performs a
“shortcut” in the graph. This new path (the link be-
tween BC and CE) is learned on the cognitive map
after the robot arrives in E.

The current robot experiments deal with navigation
between several rooms. In simple cases, like moving
from room A to the corridor and selecting room B or C
according to a particular motivation, the system works
quite correctly. But a lot of work remains to be done:
first, to select correctly the places to be learned (for in-
stance to learn to pass correctly through a door) and
next, to deal with visually ambiguous locations that
appear in long corridors or in dark conditions (the place
recognition has to take into account odometric infor-
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Fig. 13. Sequence of actions when the robot starts again from 4 and
uses the diffusion of the motivation on the cognitive map to plan its
actions

mation). Finding a low-cost way to introduce odometric
information in the planning system will also be very
important for enabling real short cuts such as going
directly from A to E in the experiment presented
Fig. 13.

5 Discussion

In this paper, we have proposed a model of the
processing stages of the hippocampal system with a
functional distinction between prehippocampal regions
and the Hs proper.

First, we have shown the idea of “prehippocampal
place cells” is supported by some theoretical consider-
ations but also by electrophysiological recordings and a
model based on anatomical data. The possibility that
animals directly use the perceived panorama as a whole
cannot be discarded, but the limitations of such a global
comparison between stored and perceived panoramas
prohibits its use in decision making when the distance to
the learned location is large (due to a very low tolerance
to object displacements, and variations in lighting and
shadows and object scale). According to our model,
“place cells”” might react over very long distances and
would not appear at first sight as place-specific because
of their wide range of responsiveness. This is confirmed
by experimental results showing that receptive fields of
neurons in the EC are spatially selective but that these
neurons are more active and noisy than CA neurons
(Quirk et al. 1990) where the classical ““place cells” are
usually recorded. Our model is also consistent with the
idea that rats with hippocampal damage are able to
recognize previously learned locations but are unable to
avoid their approach to them (Dudchenko et al. 2000).
Moreover, our model also accounts for “‘view cells”
found in the monkey Hs if the system field of view is
reduced from 320 to 180°. Hence many data support the

way that information is merged in our model to account
for place or view recognition. Other information such as
apparent size or landmark distance (Burgess et al. 1994)
could also be used to improve the system performances.
But, as pointed out by Zipser (1985) the sole distance
information cannot be used to distinguish between
mirror situations. Information about the relative loca-
tions of the objects from each other is very important.
Moreover, distance information obtained from vision is
less precise than azimuth information. One of the main
arguments of the Burgess, Recce, and O’Keefe model in
favor of the use of distance information for place rec-
ognition was accounting for the results showing that an
expansion in a single direction of the experimental setup
induces a splitting in two of the place fields (Brugess
et al. 1994). Their explanation is that if a neuron takes
distance information from two different walls and if the
distance between the two walls increases, then the neu-
ron will have two maxima of activation from the two
locations associated with the learned distances. If place-
cell activation is computed according to our model, it is
not possible to account for the place-field splitting. If the
distant landmarks are the corners of the box then one
place field remains robustly associated with the same
location even after an anisotropic dilatation of the box.
The robustness is due to the way angles (“‘where” in-
formation) are measured. (Note that the place field also
remains robust if a given landmark is taken as the ref-
erence to measure the angles. This kind of robustness of
place fields in our model is interesting for robotics ap-
plications but disagrees with the biological data). If the
model is modified so that the angles are measured from
one landmark to the other then the robustness disap-
pears and a splitting in 2 of the neuron place field can be
observed (see Fig. 14).

Next, in the second part of the paper we have pro-
posed that the Hs is mainly devoted to the learning and
the prediction of transitions between steady states which
are crucial when planning abilities are required (navi-
gation in a maze-like environment, for instance). The Hs
must not be thought of as devoted only to navigation. It
rather seems to be a structure involved in a more generic
function of integration of spatiotemporal information
and transition detection. This view is consistent with
models of the Hs as a novelty detector (Kohonen 1984;
Knight 1996) — an error in the prediction can be detected
and the input considered as a novelty. In the same way
as in the model of Hasselmo et al. (1995), if an unpre-
dicted event appears when CA3-CAl neurons try to
predict the possible futures, there is a mismatch on CA3
and CA1 that could be detected by septal neurons and
thus modifies the cholinergic (ACh) modulation and
express novelty detection (it also provides learning sta-
bilization). These results are also consistent with the fact
that lesions to the medial septum destroy both the theta
rhythm and the ability of rats to solve a spatial task
(Wilson 1978).

Figure 15 summarizes the second part of our model
(the Hs as a prediction system). DG granular cells
integrate information linked with the directional place
cells of the EC to build place cells with no preferen-
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tial orientation (classical place cells). CA3 pyramidal
cells build transition—prediction cells. The model pre-
diction is that place fields associated with neurons in
the DG are smaller than these associated with CA3
neurons. Indeed, in our model CA3 neurons react not
only when the animat is at a particular location, say
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B, but also when it moves from B to C or from B to
D (see Fig. 15). If transition selection really happens
in CAl, it should also be possible to notice smaller
place fields in CA1 than in CA3 (because of transition
selection according to the goal). These properties
seems to be confirmed by experimental results. The
place/direction specificity of complex spike cells is
significantly higher in CAl than in CA3 [twice as
selective on average — McNaughton et al. (1983)] and
DG cells have a very limited place field (Jung and
McNaughton 1993).

What is the role of the recurrent CA3 connections?
Are they used as an auto-associative memory (for the
completion of distributed patterns)? Or are they used as
an hetero-associative memory that could predict a
sequence of possible transitions? In the present model,
both solutions are possible but it would be simpler to
imagine the CA3 recurrent connections as an auto-
associative memory. Otherwise, the problem would be to
control the diffusion of activation, first during the
learning phase and then during the exploitation phase.
This is complex to manage but not impossible to imag-
ine. Models such as those of Jensen, Sharp, or Trullier
are very interesting in the sense that they try to use the
theta rhythm as a form of short-term memory (Sharp
1991; Jensen and Lisman 1996; Trullier and Meyer
1998). But do their results justify the complexity of their
system (eg., the difficulty of getting back the stored in-
formation or of adding new information on-line)? The
fact that recurrent CA3 connections code for the cog-
nitive map may not be incompatible with our model
since ACh modulation can allow different kinds of
functioning modes on the same physical map (Hasselmo
et al. 1995). In any case, an important unsolved question
in that case would be understanding how the prefrontal
cortex and the Hs really interact, and what are their
respective roles in planning and action-selection process.

In contrast to the previous models, our model can
explain Whishaw’s statement (Whishaw et al. 1995)
that: “the hippocampus is necessary for navigation
between spatial location (“‘getting there”) but not for
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the remembering the spatial location of reinforcement
based on ambient cues, or for the recognition such as
spatial location (“knowing where”).”” Our model is also
confirmed by recent experimental studies showing that
the Hs has the ability to represent the causal relation-
ship between an action and its consequence (Corbit and
Balleine 2000). An important aspect concerns the re-
cording in rodent Hs of a regular theta rhythm during
voluntary movements which is very low or non-existent
if no movements (such as grooming activities) are
present. The phase precession of neuron spikes during
the theta rhythm suggests that hippocampal unit ac-
tivity predicts the animal’s future location on a short
(about 120-ms) time scale (Muller and Kubie 1989;
Armstrong et al. 1993) and this is also coherent with
our model. More detailed simulations should be per-
formed to test all the consequences of phase precession
in our model.

Another interest of the present model is that it ac-
counts correctly for the implication of the Hs in condi-
tioning, as reported by Thompson (1990): “Neuronal
unit activity in the hippocampus increases markedly
within trials early in training. These increases in unit
activity in region CAl and CA3 form a predictive
‘model’” of the amplitude time course of the learned be-
havioral response (CR) and happen before the CR in
trials, but only under conditions where behavioral
learning occurs”.

The meaning of the robotics results presented here
opens many questions if we compare them to animal
visual navigation. First of all, our results — like others
obtained in neurobiology these last years — confirm that
visual information is very important for place recogni-
tion. In contradiction to McNaughton and others
(McNaughton 1989; Wan et al. 1994), it appears to us
simpler to imagine a model of place cells based mainly
on visual information but where the idiothetic infor-
mation would be used to improve the performance, or to
maintain a consistent activity when the light is off or
when the environment is visually nondiscriminant (cor-
ridor situations or very poor visual environments like
those used for most of the neuropsychological studies
about navigation). Another argument in favor of the
pre-eminence of visual information is the fact that ro-
dents reset their odometric information according to
visual information if there is a strong contradiction be-
tween them (Etienne et al. 1998). To go further, a more
detailed study is required into how integrating condi-
tioning and planning systems is achieved. We will face
the problem of understanding the respective roles of the
prefrontal cortex and the basal ganglia for the control of
action selection and motivated planning. Robotics ar-
guments will be very important in deciding between the
different possibilities and testing the coherence of these
complex cognitive models.
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