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Abstract

In this paper, we summarize the main
properties of an algebra useful to describe
architectures devoted to the control of au-
tonomous and embodied “intelligent” sys-
tems. First, we use this formalism to pro-
pose a definition of perception as a poten-
tial function built from the integration of
the sensori-motor signals. Next, we demon-
strate the capability of a very simple archi-
tecture to learn to recognize and reproduce
facial expressions without the innate capa-
bility to recognize the facial expressions of
others. The solution relies on the impor-
tance of the interactions with another sys-
tem/agent knowing already a set of emo-
tional expressions. A condition for the
learning stability of the proposed architec-
ture is derived. The teacher agent must act
as a mirror of the baby agent (and not as a
classical teacher). As a result, the proposed
architecture is able to learn the task. Fi-
nally, we discuss the limitations of the pro-
posed formalism.

1. Introduction

Nowadays hardware and software technolo-
gies allow to build more and more complex
artifacts. Unfortunately, we are almost un-
able to compare two control architectures
proposed to solve one given problem. Of
course, one can try an experimental com-
parison on a given benchmark but the re-
sults focus on the optimality regarding the
benchmark (how to deal with unknown or
unpredictable events?). We should be able
to analyze, compare and predict the behav-
iors of different control architectures. For
instance, we must be able to decide if two

architectures belong or not to the same fam-
ily and can be reduced to a single architec-
ture. On another level, new design prin-
ciples are proposed to create more “intel-
ligent” systems (Pfeifer and Scheier, 1999)
but there is no real formalization of these
principles. The only way to correctly un-
derstand and use them is to have a long ex-
planation build on examples showing cases
of success stories (examples of good robotic
architectures). Our situation can be com-
pared to the period before Galileo when
people knew objects fall but were unable
to relate that to the concept of mass and
acceleration in order to predict what will
happen in new experiments. We urgently
need tools to analyze both natural and ar-
tificial intelligent systems. Previous works
have focused on mathematical tools to for-
malize pure behaviorist or reactive systems
(Steels, 1994). People have also tried with
no real success to measure the complexity
(in terms of fractal dimension for instance)
of very simple behaviors like an obsta-
cle avoidance (Smithers, 1995). The most
interesting tools are dedicated to specific
part of our global problem such as learn-
ing (see NN literature), dynamical systems
(Schöner et al., 1995) or some game theory
aspects (Ikegami, 1993). Yet, it remains
difficult to overstep the old frame of the
cybernetics (Wiener, 1961, Ashby, 1960).
Finding the fundamental variables and pa-
rameters regarding some particular cogni-
tive capabilities will be a long and difficult
work but we believe we have to try to start
it. After a short summary of our formal-
ism, we will use it for the learning of attrac-
tion basins that characterize place or object
recognition. A new formal definition of the
perception will be derived. Next, several



formal simplification rules based on the op-
timization of our perception criteria will be
proposed. They will be illustrated on a sim-
ple theoretical model of the development of
the capability to express and recognize more
and more complex facial expressions. We
will try to discuss, which are the basic mech-
anisms necessary to allow a naive agent to
acquire the capability to understand/read
the facial emotions of a teacher agent and
to mimic them (so as to become a teacher
and to allow turn taking in an emotion ex-
pression game).

2. Basic formalism of a CS

We summarize here the basis of our mathe-
matical formalism. Figure 1 shows a typical
control architecture for what we will call a
cognitive 1 system (CS). The input and out-
put of a CS are represented by vectors in the
“bracket” notation2. An input or output
vector x (column vector of size m) is noted
|x〉 with |x〉 ∈ R+m 3 while its transposed
vector is noted 〈x| . Hence 〈x|x〉 is a scalar
representing the square of |x〉 norm. The
multiplication of a vector |x〉 by a matrix
A is |y〉 = A|x〉 with |y〉 ∈ Rn for a matrix
A of size n × m. A CS is supposed to be

Actuators
Sensors

ENVIRONMENT

Figure 1: Typical architecture that can be manipulated by

our formalism.

made of several elements or nodes or boxes
associated with input information, interme-
diate processes and output (command of ac-
tions). We can consider that any element of
a CS filters an input vector according to a

1The term cognitive must be understood here in the
sense of the study of particular cognitive capabilities (cog-
itare - to think) and not as a positive a priori for any kind
of cognitivist approach.

2The formalism is inspired from Hilbert space used in
quantum mechanics. Nevertheless, in our case it is not an
Hilbert space since the operator is not linear...

3We consider the components of the different in-
put/output vectors can only be positive/activated or
null/inactivated. Negative activities are banned to avoid
positive effects when combined with a negative weight ma-
trix.

matrix of weights W and a non linear oper-
ator k. This operator represents the way to
use the W matrix and the pattern of inter-
actions between the elements of the same
block. It can be a simple scalar product
(or distance measure) or even a more com-
plex operator such as an “If...then...else...”
treatment (hard decision making), a pat-
tern of lateral interactions in the case of
a competitive structure, a recurrent feed-
back in the case of a dynamical system, a
shifting mechanism, a mechanism to control
a focus of the attention... Hence, we can
consider these elements as “neurons” even
if they can be more complex algorithmic
elements in other programming languages.
For instance, in the case of a simple WTA4

box, we can write the WTA output |y〉
is wta(A|x〉) with |y〉 = (0, ..., yj , ...0) and
j = ArgMax(qi) and qi = 〈Ai|x〉. In the
case of a Kohonen map, |y〉 = koh(A|x〉),
the main difference is the way the output is
computed: qi =

∑
j |Aij − xj |. To be more

precise, we should write |y〉 = koh(A, |x〉).
Because, in the general case, an opera-
tor can have an arbitrary number of in-
put groups, we will consider the recognition
of an input is performed according to the
type of its associated weight matrix. For
instance, “one to one” input/output con-
nections represented by the general identity
weight matrix I is considered as the signa-
ture of a reflex pathway (because there is
almost no interest to consider “one to one”
learnable links). Basically, we distinguish
2 main types of connectivity according to
their learning capabilities (learning possi-
ble or not): the “one to one” links (see
fig. 2a) and the “one to many” connec-
tions (see fig. 2b) which are used for pat-
tern matching processes, categorization...
or all the other possible filtering. “One
to many” connections will be represented
in general by a A. In the case of a com-
plex competitive and conditioning structure
with 1 unconditional (US) and 2 conditional
(CS) inputs, we should write for instance
|y〉 = c(A1, |CS1〉, A2, |CS2〉, I, |US〉). To
avoid too many commas in the opera-
tor expression, we simply write |y〉 =
c(A1|CS1〉, A2|CS2〉, I |US〉)

5. This allows

4Winner Takes All.
5In previous papers, it was possible to write |y〉 =

c(A1|CS1〉 + A2|CS2〉 + I|US〉) but many reviewers com-
plained about the risk of misunderstanding the meaning of
the operator +.



to be sure a particular matrix is always as-
sociated to the correct input vector but it
does not mean the matrix has to be multi-
plied by the vector (this computation choice
is defined by the operator itself). The main
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Figure 2: Arrows with one stroke represent “one to one”

reflex connections (one input connected to one output in

an injective manner). Arrows with labels and 2 parallel

strokes represent “one to many” modifiable connections be-

tween input and output nodes. a) Unconditional “one to

one” connections (used as a reflex link) between two groups.

Upper image is the graphical representation and lower im-

age is the formal notation. b) “One to many” connections

with a competitive group representing the categorization of

the input stimulus at the level of the output group.

difference with classical automata networks
is that most of our operators are supposed
to adapt or learn online new input/output
associations according to their associated
learning rule. For instance, in the case of
a classical Kohonen rule, we should write
dAij

dt
= koh learning (|y〉, |x〉). Hence, 2

equations have to be written for each ele-
mentary box: one for the computation of
the system output and another one for the
weight adaptation (modification of the box
memory). In this paper, we will not discuss
the interest or defaults of particular learn-
ing rules. We will simply suppose the exis-
tence of learning rules able to stabilize the
weight matrices in the case the system is in
a particular “perception state” (this notion
will be defined in the next section). So we
will not need to write explicitly the learn-
ing rule but it will be crucial to remember
our operators represent 2 different functions
and flow of information moving in oppo-
site directions. The first one will allow to
transform sensorial information in an out-
put code while the second one will act on
the group memory in order to maintain a
certain equilibrium defined by the learning
rule (Gaussier, 2001).

3. Stable state of perception

In previous papers, we have shown a
homing behavior can be obtained from

the competition between few sensori-
motor associations learned around a
goal location (see PerAc architecture
proposed in (Gaussier and Zrehen, 1995,
Gaussier et al., 2000)). For one position P
in a given environment (or state space),
we suppose 2 sensation vectors |Sr〉 and
|Sg〉 can be defined. First, |Sr〉 = f(P )

represents a coarse information about
the motor system “proprioception” (a
feedback information from the execution
of the motor command) or the direction of
the goal (if the goal is in the immediate
neighborhood). It can be considered as
a reflex or regulatory pathway linking a
proprioceptive sensor to the motor com-
mand |Ac〉. Second, |Sg〉 = g(P ) represents
a more global information on the environ-
ment allowing to build a local but robust
distance measure (metric). This measure
is learned and performed by a competitive
recognition group R (|R〉 representing its
activity). This sensori-motor architecture
for homing behavior can be defined by the
following equations:

|R〉 = c(A1|Sg〉)

|Ac〉 = c(A2|R〉, I |Sr〉) (1)

which can be represented by the diagram
fig. 3. The operator c represents a com-
petitive structure (soft-WTA) able to self-
organize itself according to one sensorial
data flow and/or to condition one input
data flow according to an unconditional flow
(both learning and output computation are
mixed in the single c notation). To illus-
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Figure 3: Diagram representing eq. 1: a simple network

that can be used to learn how to return to a given place or

to focus on a given object in a visual scene.

trate the system functioning and general-
ize it to object recognition, we simulate a
very simple visual system that must learn
to recognize a cross (see fig. 5b). We con-
sider our system is recognizing an object if
it is able to maintain the object in the cen-
ter of its fovea or to stabilize its focus on
this object. In our example, the system
need to learn how to return to the center
of the cross when it comes from the right
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Figure 4: a) Theoretical system actions after learning of

2 sensation/actions associations and their competition ac-

cording to the system position on the x axis. b) experi-

mental value of the action level in the 1D case of fig. 5.

Both max. and min. peaks are associated with the learned

locations (perfect correlation between learned and tested

views).

or from the left. Hence the system has to
learn at least two positions located sym-
metrically around the goal. In our simu-
lation, the learned locations were centered
at the cross extremities (see fig. 5b). The
recognition |R〉 of both learned positions is
performed by a simple point to point cross-
correlation between the learned local views
(centered around the learned positions) and
the current view centered on the gaze of the
artificial eye. After the competition, the
component R1 or R2 of |R〉 is activated ac-
cording to the level of the local view recog-
nition. The real decision is only taken at
the motor level (|Ac〉 vector 6) and must
be understood according to the global tem-
poral dynamic of the system. Let’s notice,
the system behavior does not directly de-
pend on the absolute level of recognition
of the learned views or places. Only the
rank in the competition process matters.
Because most of the visual perturbations
have the same effect on each elementary
recognition, the system will continue to be-
have correctly until the noise has an ef-
fect on the rank in the competition for the
view recognition (while classical systems fail
when the noise/perturbation oversteps an
absolute recognition threshold). Fig. 5
shows few robot trajectories of the gaze di-

6In the 1 dimension case, we suppose the robot eye can
only move on a horizontal line |Ac〉 vector need 2 compo-
nents: Ac1 associated to a movement from the left to the
right and Ac2 for a movement in the opposite direction. The
simulated robot actions are represented by the intensity of
the speed vector on the 1D axis (the sign representing the
direction of the vector - see fig. 4).

rection according to a random initial gaze
direction. We can see the system always
converges to the center of the object what-
ever its starting position is. Fig. 5 b)
presents a typical trajectory and the vec-
tor field in the 2D case (the system has
only learned the 4 cross extremities and
the associated actions to move in the di-
rection of the center of the cross). Learning
more places allows to produce a smoother
vectorial field but the global behavior re-
mains the same. Interestingly, in the pro-
posed architecture the goal location is not
learned in the N.N. Only the strategy to
reach that place is learned. We claim that
when our robot is going in the direction of
the goal location it is truly “recognizing”
that place. It is important to note that in

0 50 100 150 200 250 300 350 400

0

100

200

300

400

500

600

PSfrag replacements

T
im

e

Position

Trajectories of agent

Action 1 Action 2

a)

1DPSfrag replacements

Time

Position

Trajectories of agent

Action 1

Action 2 b)

Figure 5: a) Examples of trajectories in the 1D case. The

vertical line at position 200 represent the desired final po-

sition. b) Image used for the simulations (300x400 pixels,

256 gray-scale). Each small square is the position of the

learned local views (101x101 pixels). The arrows indicate

the orientation of the movement done at those locations.

The larger square is the desired final position (goal). The

line shows a sample of trajectory. In this figure only 4 views

are used by the agent (one for each extremity of the cross).

the dynamical systems theory, the action is
defined as the derivative of a potential field
(Kelso, 1995, Schöner et al., 1995). If the
field is defined according to a given position
~p in the environment, we will define7:

|Ac〉 = −
−−→
grad Per (2)

The perception Per can be seen as a scalar
function ψ representing an invariant of the

7We could define : m|Ac〉 = −
−−→
grad Per with m the

“mass” (real or virtual) of the considered system. We sup-
pose the Perception Per takes into account a “mass” linked
to the physical body.



system (a kind of energy measure). Hence,
the perception can only be defined for an ac-
tive system and is dependent of the system
dynamical capabilities (kind of body, sen-
sors and actuators). Of course, we can also
write: Per(~p) = −〈Ac|~p〉 = −

R

~p+δ~p
Ac d~r.

This corresponds to our intuition of the
recognition as an attraction basin. The
basin shown fig. 6 results from the mathe-
matical integration of the curves proposed
fig. 4 to represent the learned sensori-motor
associations and their effect according to
the system location. The obtained poten-
tial field defines an attraction basin with
a single minima guiding the agent towards
the goal location. The only important
constraint is to guaranty that the recog-
nition of the sensori information decreases
monotonously over a given neighborhood
when moving away from the learned posi-
tions. To sum up, the important change
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Figure 6: a) Theoretical perception and attraction basin

obtained after integration of the action. b) experimental

integration (after competition) of the 2 recognition levels

obtained from fig. 4.

from our previous works is to consider that
in the general case the sensations are not
the perception and that the perception is a
potential function defined by the conjunc-
tion of sensations and actions. Learning to
recognize an object or a spatial location can
be seen as building an attraction basin or
learning some particular affordances (for in-
stance on-line learning of few sensori-motor
associations). In this case, we will say a
system is in a stable state of perception if
it is able to maintain itself in the associ-
ated attraction basin. Hence, recognizing
an object (from visual, tactile, auditory...
informations) can be seen as maintaining
the system in a particular dynamical attrac-
tion basin (Gibson, 1979).

4. Formal simplification rules

Now, the problem is to be able to simplify a
CS architecture in another one (presumably
simpler to analyze and to understand). Two
architectures will be considered as equiva-
lent if they have the same behavioral at-
tractors. This means we cannot study a
control architecture alone. The interactions
with the environment must be taken into
account. After the learning of a first behav-
ior, the dynamics of the interactions with
the environment (the perception state) is
supposed to be stabilized. In the present
formalism, two types of diagram simplifica-
tions will be considered. Simplifications of
the first type can be performed at any time
and leave the fundamental properties of
the system completely unchanged (these are
very restrictive simplification rules). Those
of the second type only apply after learning
stabilization (if learning is possible!). They
allow strong simplifications but the result-
ing system is no more completely equiv-
alent to the departure system. We now
present a first example of a simplification
rule based on the existence of unconditional
and reflex links. If we consider a linear
chain of unconditional links between com-
petitive structures such as WTA, the inter-
mediate competitive boxes are useless since
they replicate on their output their input
information. Hence we can write for in-
stance that if we have: |b〉 = c(I|a〉) and
|d〉 = c(I|b〉) then |d〉 = c(I|c(I|a〉)) which
should be equal to |d〉 = c(I|a〉) because
a cascade of competitions leads to an iso-
morphism between the different output vec-
tors which become equivalent to each other
after the self organization of the different
groups. So we can deduce the following
rule c(I|c(.)) = c(.). Other static simplifi-
cation rules can be build in the same way
(Gaussier, 2001). Other simplifications can
be used to represent the effect of learning.
Except for robustness, these simplifications
can be introduced to compare different con-
trol architectures (or to build more complex
controllers). We will suppose that the sys-
tem is in a stable state of perception or in-
teraction with its environment. That is to
say, it exists a time period where the system
remains almost unchanged (internal modi-
fication must not have an effect on the sys-
tem behavior). Fig. 7 shows an intuitive
representation of the evolution of a system



behavior through time. The system behav-

time

behaviors

agent adapatation to
changing environment

stable behavior in
regular environment

Figure 7: Intuitive representation of what is a stable be-

havior allowing formal simplifications of the system.

ior can evolve to adapt itself to an envi-
ronment variation (or to the variation of
an internal signal). In this case, it moves
from a stable state to an unstable state or
transition phase. It is only during the sta-
ble phases that the following simplifications
can be considered as valid. Hence, we have
to highlight a “before learning state” and an
“after learning state” since some of the sim-
plifications can be made at any time while
some others must necessarily be made in the
“after learning state”. A very simple exam-

c c

c
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Figure 8: A cascade of competitive or unsupervised classi-

fication structures can be simplified in a single competitive

or classification box with a possible loss of performance but

without a change in the main properties of the architecture.

ple of such a simplification is the case of
strict self organized learning group or com-
petitive boxes (c operator) push-pully con-
nected, fig. 8. We have |y〉 = c(A1|x〉) and |z〉

= c(A2|y〉) with A1 and A2 the matrices to
learn the relevant input configurations. So
|z〉 = c (A2|c (A1|x〉)) = c(A|x〉) since it is al-
ways possible to create a bijection between
the activation of a given neuron in a first
group and the activation of another neuron
in a second group. Both sets of neurons
can be considered as equivalents. A more
interesting case corresponds to the condi-
tioning learning. The conditioning network
(fig. 9 a) should be equivalent “after learn-
ing” to the simple network shown fig. 9 b
and can be translated by the following equa-
tion: c (I|US〉, A|CS〉) ≈ c (A|CS〉) where
|US〉 represents the unconditional stimulus
and |CS〉 the conditional stimulus. The

simplification “before learning” considers
only the reflex pathway: c (I|US〉, A|CS〉) ≈

c(I|US〉) (functioning is equivalent in a short
time delay but there is no possible adapta-
tion) whereas the other simplification repre-
sents the equivalent NN in the “after learn-
ing” situation: not equivalent if the envi-
ronment changes too much and leads the
agent to be inadapted. We have shown

c

1)

PSfrag replacements

|y〉

|cs〉

|us〉

I

A

cc

before learning

after learning

2) 3)

PSfrag replacements

|y〉 |y〉

|cs〉

|us〉

I

A
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ditioning learning |y〉 = c(I|US〉,A|CS〉). Image 2 is the

graphical representation of the equivalent network before

learning and Image 3 after learning |y〉 = c(A|CS〉).

in (Gaussier, 2001) that maximizing the di-
mensionality (rank) of the perception ma-
trix

P

P |Ac〉〈S| can be equivalent to the
mean square error minimization performed
when trying to optimize the conditioning
learning between the action proposed by the
conditional link and the action proposed by
the unconditional link. Hence, learning can
be seen as an optimization of the tensor rep-
resenting the perception. In other words,
we can say the proposed simplification rules
are relevant if the system is adapted to
its environment or if the system perceives
its environment correctly according to the
capabilities of its own control architecture
(learning capabilities). We can notice that
Per =

P

P 〈Ac|S〉 = tr(
P

P |Ac〉〈S|) while the
“complexity” of the system behavior can be
estimated from rank((

P

P |Ac〉〈S|).

5. Application to social inter-
actions learning

In this section, our goal is to show how
our formalism can be applied to ana-
lyze a very simple control architecture
and justify some psychological models (see
(Canamero, 2001) for a discussion on the
importance of an emotional system in au-
tonomous agents). At the opposite to the
classical pattern recognition approach, we
will show that an online dynamical ac-
tion/perception approach between two in-
teracting systems has very important prop-
erties. The system we will consider is com-
posed of two identical agents (same archi-



tecture) interacting in a neutral environ-
ment (see fig. 10). One agent is supposed

Agent 1

Agent 2

Signal S1

Signal S2

Emotion E1

Emotion E2

Perception (P1) Facial expression (F1)

Perception (P2) Facial expression (F2)

Figure 10: The bidirectional dynamical system we are

studying. Both agents face each other. Agent 1 is con-

sidered as a newborn and agent 2 as an adult mimicking

the newborn facial expressions. Both agents are driven by

internal signals which can induce the feeling of particular

emotions.

to be an adult with perfect emotion recog-
nition capabilities and also the perfect ca-
pability to express an intentional emotion.
The second agent will be considered as a
newborn without any previous learning on
the social role of emotions 8. First, we will
determine the conditions for a stable inter-
action and show that in this case learning
to associate the recognition of a given facial
expression with the agent own “emotions” is
a behavioral attractor of the global system.
We suppose our agents receive some visual
signals (Pi perception of agent i). They can
learn and recognize them ( |Ri〉 activity).
Hence, the perception of a face displaying a
particular expression should trigger the ac-
tivation of a corresponding node in Ri.

|Ri〉 = c (Ai1|Pi〉) (3)

c represents a competitive mechanism al-
lowing to select a winner among all the vec-
tor components (see section 3). Ai1 rep-
resents the weights of the neurons in the
recognition group of the agent i allowing
a direct pattern matching. Our agents are
also affected by the perception of their in-
ternal milieu (hunger, fear etc.). We will
call Si the internal signals linked to physio-
logical inputs such as fear, hunger... “Emo-
tion” recognition Ei depends on the inter-
nal milieu. The recognition of a particular
internal state will be called an emotional
state Ei. We suppose also Ei depends on

8We will have to explain how our agent can recognize
and reproduce gestures it cannot see itself perform and by
what mechanism it connects the felt but unseen movements
of self with the seen but unfelt movements of the other
(Meltzoff and Moore, 1997).

the visual recognition Ri of the visual sig-
nal Pi. At last, the agents can express a
motor command Fi corresponding to a fa-
cial expression. If one agent can act as an
adult, it must have the ability to “feel” the
emotion recognized on someone else’s face
(empathy). At least, one connection be-
tween the visual recognition and the group
of neuron representing its emotional state
must exist. In order to display emotional
state, we must also suppose there is a con-
nection from the internal signals to the con-
trol of the facial expression. The connec-
tion can be direct or through another group
devoted to the representation of emotions.
For sake of homogeneity, we will suppose
that the internal signal activates through an
unconditional link the emotion recognition
group which activates through an uncondi-
tional connection the display of a facial ex-
pression (hence it is equivalent to a direct
activation of Fi by Si - see (Gaussier, 2001)
for a formal analysis of this kind of prop-
erties). Hence, the sum of both flows of
informations can be formalized as follow:

|Ei〉 = c (I |Si〉, A13|Ri〉) (4)

At last, we can also suppose the teacher
agent can display a facial expression with-
out “feeling” it (just by a mimicking behav-
ior obtain form the recognition of the other
facial expression). The motor output of the
teacher facial expression then depends on
both facial expression recognition and the
will to express a particular emotion:

|Fi〉 = c (I |Ei〉, A12|Ri〉) (5)

Fig. 11 represents the network associated
to the 3 previous equations describing our
candidate architecture. In a more realistic
architecture, some intermediate links allow-
ing the inhibition of one or another pathway
could be added but it is out of the scope of
the present paper, which aims at illustrat-
ing what can be done with our formalism
on a very simple example.

A 11

A 12

P1

S1 E1 F1

A 13

R 1

II

Figure 11: Schematic representation of an agent that can

display and recognize “emotions” (notations see fig. 2).



5.1 Condition for learning stability

First, we can study the minimal conditions
allowing the building of a global behavioral
attractor (learning to imitate and to under-
stand facial expression). Fig. 12 represents
the complete system with both agents in
interaction. It is considered as a virtual
net that can be studied in the same way
than an isolated architecture thus allowing
to deal at the same time with the agent “in-
telligence” and with the effects of the em-
bodiment and/or the dynamics of the ac-
tion/perception loops. The following sim-
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1
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Figure 12: Schematic representation of the global network

representing the interaction between 2 identical emotional

agents. The dashed links represent the connections from the

display of a facial expression to the other agent perception

system (effect of the environment).

plifications apply before learning and con-
cern only the unconditional links (see in
the previous section the simplification of a
conditioning structure before learning). We
simply consider the activation of S can in-
duce a reflex activation of a stereotyped
facial expression F before (and after) the
learning of the correct set of conditioning.
The resulting network is shown fig. 13.
Next, the linear chains of “one to many”
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Figure 13: Schematic representation of the simplified net-

work representing the interaction between 2 identical emo-

tional agents (modification of fig. 12)

modifiable connections and their associated
competitive learning structures can also be
simplified since c(A|c(.) ≡ c(.). We finally
obtain the network shown fig. 14 a). It is
much simpler on fig. 14 to see the condition
of the learning stability. Since, the chosen
simplifications allow to obtain a virtual net-
work with learnable bidirectional connec-
tions between F1 and F2, a condition for

S2 F2

1S F1

a) miror

S F

b)

Figure 14: a) Final simplification of the network repre-

senting the interaction between 2 identical emotional agents

(modification of fig. 13). b) Minimal architecture allowing

the agent to learn “internal state”-”facial expression” asso-

ciations.

the learning stability is that these connec-
tion weights remain stable. If S1 and S2

are independent, learning cannot be stable
since S1 and S2 are connected through un-
conditional links to F1 and F2 respectively.
The only way to stabilize learning is to sup-
pose S1 and S2 are similar enough. Other-
wise a lot of “energy” is lost to adapt con-
tinuously the connections between F1 and
F2 (see (Gaussier, 2001) for more details).
Because, the agent representing the baby
must not be explicitly supervised, a simple
solution is to suppose the agent represent-
ing the parent is nothing more than a mir-
ror. We obtain the network fig. 14 b) where
the architecture allows the system to learn
the “internal state”-”facial expression” as-
sociations. Hence, we show that from our
departure control architecture, learning is
only possible if the parent agent (supposed
to be the teacher) imitates the baby agent.
The roles are switched according to the clas-
sical point of view of AI and learning theory.
This shows how taking account the dynam-
ics of interactions between two agents can
change our way of thinking learning and
more generally cognition problems.

5.2 Learning the emotional value of

facial expressions

The first simplifications bring us to the con-
clusion that learning stabilization is pos-
sible if the teacher/parent agent acts as
an imitator of the baby agent. Now, we
will suppose these conditions are respected.
From the initial equations of the system, we
will derive another set of simplifications in
order to prove the beginner (or naive) agent
can learn to associate the visual facial ex-
pression displayed by the teacher agent to
the correct emotional state. We suppose the
agent 1 perceptive input P1 is the result of



a linear projection of the facial expression
(output) of the agent 2 and vice versa. We
will write |P1〉 = B1|F2〉 and P2 = B2|F1〉.
Hence, |R1〉 = c (A11|P1〉) = c (A11.B1|F2〉) =

c (A′

11|F2〉) (with A′

11 = A11.B1). We can
then replace in this new expression of R1,
|F2〉 by the result of the computation of the
second agent (using eq. 5). We obtain:

|R1〉 = c (A′

11|c (I |E2〉, A23|R2〉))

= c (A′

11|c (I |E2〉, A23|c (A21|P2〉)))

On the other side, we have |P2〉 = B2|F1〉
so:

|R1〉 = c (A′

11|c (I |E2〉, A23|c (A21 · B2|F1〉)))

= c (A′

11|c (I |E2〉, A23|c (A′

21|F1〉))) (6)

A′

21 is defined as the matrix resulting from
A21 · B2.

All the preceding simplifications could be
made at any time (here, it is before learn-
ing). The following simplification can be
done only after learning (and need the
learning stability condition ie the second
agent is a mirror of the first one). If the
obtention of learning is possible (the er-
ror between F1 and E2 can be minimized
in the means square sense), conditioning
learning in eq. 6 should result in: I|E2〉 ≈

A23.c (A′

21|F1〉). if both architectures are
identical, since there is no influence of learn-
ing on this simplification, we obtain by sym-
metry: |E1〉 ≈ A13.c (A′

11|F2〉). Then, we can
simplify eq. 6.

|R1〉 ≈ c (A′

11|c (A23|c (A′

21|F1〉)))

≈ c (A′

123|F1〉) (7)

(we also have |R1〉 ≈ c (A′

12|E2〉) but we
won’t use it.) Eq. 7 can be interpreted as
the fact the activity of agent 1 visual face
recognition is a function of its own facial
expression. If we replace the value of F1

obtained from eq. 5 in eq. 7, we obtain:

|R1〉 ≈ c (A′

123|c (I |E1〉, A13|R1〉)) (8)

Here again I |E1〉 is the reflex link and
A13|R1〉 the conditional information. The
conditional link can learn to provide the
same results as the reflex link. If E1 can
be associated to R1 then we obtain:

|R1〉 ≈ c (A′

123|c (I |E1〉))

and |R1〉 ≈ c (A′

123|E1〉) (9)

This result shows the activity of the face
recognition system is a direct function of
the agent emotional state (R1 can be de-
duce from E1). In conjunction with the re-
lation linking E1 to R1 (eq. 4) we can de-
duce the agent 1 (baby) has learned to as-
sociate the visual recognition of the tested
facial expressions to its own internal feeling
(E1). The agent has learned how to connect
the felt but unseen movements of self with
the seen but unfelt movements of the other.
It could be generalized to other movements
since we showed in (Gaussier et al., 1998,
Andry et al., 2001, Andry et al., 2002) that
a simple sensori-motor system is sufficient
to trigger low level imitations.

6. Conclusion and discussion

In this paper, we have improved a formal-
ism proposed in (Gaussier, 2001) to define
more correctly what perception can be in
a situated and embodied agent. The for-
malism has been used to simplify an “in-
telligent” system and to analyze some of its
properties. We have shown a very simple ar-
chitecture can learn the bidirectional asso-
ciation between an internal “emotion” and
its associated facial expression. To demon-
strate this feature, we have first proved that
learning is only possible if one of the agents
acts as a mirror of another. We have pro-
posed a theoretical model that can be used
as a tool not only to understand artificial
emotional brains but also natural emotional
brains. Let us consider a newborn. She ex-
presses internal states of pleasure, discom-
fort, disgust, etc, but she is not aware of
what she expresses. Within our theoreti-
cal framework, we can expect that she will
learn main associations between what she
expresses and what she experiences through
her partners’ mirroring of her own expres-
sions. Seeing what she feels will allow the
infant to associate her internal state with
an external signal (i.e. her facial expression
mirrored by someone else). Empirical stud-
ies of mother-infant communication sup-
port this view. For instance, two-month-
old infants facing a non contingent televised
mother who mirrors their facial expressions
with a delay become wary, show discomfort
and stop imitating the mother’s facial ex-
pressions (Nadel et al., 2004). The primary
need of mirroring is also demonstrated by
the progressive disappearance of facial ex-



pressions in infants born blind. Another
prospective benefit of the model is to give
a simple developmental explanation of how
facial expressions come to inform the grow-
ing infant about external events through
the facial reading of what those events trig-
ger in others (Feinman, 1992). Finally the
model leads to suggest a main distinction
between two processes of emotional match-
ing: matching a facial emotion without
sharing the emotion expressed: in this case
there is a decoupling (Scherer, 1984) be-
tween what is felt and what is shown, thus
it is pure imitation, and matching a facial
emotion with emotional sharing, that is to
say feeling what the other expresses through
the process of mirroring, a definition of em-
pathy (Decety and Chaminade, 2002).

In our team, we also use this formalism
as a programming language to describe dif-
ferent architectures for visual object recog-
nition, visual navigation, planning, visuo-
motor control of an arm, affordance learn-
ing, imitation games... Future works will
have to focus on how to manage different
learning time constants and how to rep-
resent the body/controller co-development.
What are the minimal structures that can-
not be simplified? What kind of really
different operators have to be considered?
What kind of invariant has to be added
to take into account all the ideas of the
animat approach and the embodied cogni-
tion? Computational models avoiding the
passive aspect of the architectures studied
in this paper should be the next step of our
work especially to study when internal re-
currences or loops in the system architec-
ture can be simplified or not.
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