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Abstract

Classical models of emotions consider either the communicational aspect of emotions (for instance the emotions
conveyed by the facial expressions) or the second order control necessary for survival purpose when the autonomy
of the system is an issue. Here, we show the interdependence of communication and meta-control aspects of
emotion. We propose the idea that emotions must be understood as a dynamical system linking two controllers: one
devoted to social interactions (i.e. communication aspects) and another one devoted to the interactions within the
physical world (i.e metacontrol of a more classical controller). Illustrations will be provided from applications involving
navigation among diɼerent goal places according to diɼerent internal drives or object grasping and avoidance.
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1. Introduction

Models and computational architectures of emotional systems can be
divided into two diɼerent families: on one side, the models devoted to
autonomous learning and meta-control and on the other side, the mod-
els devoted to the expression of an emotional state or more generally to
the control of the expressiveness or interactivity (mainly developed for
the purpose of Man Machine Interfaces). One can question the inter-
est of building dedicated models for each aspect of the problem since
the global dynamics (and the emergent properties) of an autonomous
system interacting with humans may introduce constraints that could
invalidate them [21]. For instance, if an animal flies, the other animals
in the neighborhood may imitate its behavior inducing a contagion ef-
fect allowing the whole group to escape from the danger. In this case,
the danger is perceived directly from the analysis of the congeners be-
havior. Hence, it is important to take into account the communicative
function of emotions and the circular interactions [74] that may appear
between the emotions as a meta-control system and the emotions as
a communication system.

To test our emotional architecture, we propose to use an autonomous
navigation paradigm since it is easy to measure the goal achievement
and the interest of introducing an emotional system1. Figure 1 shows
the robot and its environment. Following a behavioral approach [6, 17]
in the frame of an Animat system [60], the robot must maintain a set of
artificial physiological variables within safe limits to ensure its survival.
Thus, the robot must look for diɼerent resources to fulfill its various
needs (i.e. the robot must have goals that depend on its motivations
[57, 58]). However, sustaining a durably eɺcient behavior in a dynamic

∗E-mail: gaussier@ensea.fr
1 This paper is a synthesis of different results presented in IROS and
KEER 2010 conferences [22, 44]

and complex environment remains a diɺcult task [8, 49]. The varying
nature of the environment as well as the robot’s own imperfections will
lead to situations where the learned behaviors are not suɺcient and
might be end up with deadlocks [23]. Lacking the ability to monitor
their behavior, robots get no satisfaction from productive actions and
no frustration from vain ones. This is why most robots exhibit a very
counterproductive rigidity when facing unforeseen situations.

Figure 1. The robot in its environment (5m x 5m). A color detector is placed
under the robot. Colored squares on the ground represent simulated
resources.

The paper is organized as follows. In section 2, diɼerent models of
emotions are reviewed in order to define the diɼerent components and
variables present in our robot emotional system. The integration within
a single dynamical model of both aspects of emotions (metacontrol and
communication) and its interest for robotic systems will be discussed.
We defend a constructivist approach [59, 85] to try to capture the min-
imal features allowing bootstrapping emergent behaviors (study of the
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co-development between the sensory-motor capabilities and the emo-
tional capabilities on long term interactions). In section 3, we consider
a mobile robot that must satisfy two diɼerent drives (i.e. simulation of
water and food requirement) and uses two diɼerent kinds of strategies
based either on visual or odometric information to reach a given place.
Water and food resources will be symbolized by small pieces of pa-
per of diɼerent colors (only visible by an ad hoc sensor put below the
robot). The robot will be able to choose a given goal (the nearest place)
or an alternative solution when the desired resource is unreachable. A
simple self-monitoring system will be introduced to compute a ”frustra-
tion” level when one goal cannot be satisfied. This self-evaluation will
be used in a meta-controller to inhibit the current strategy, goal or drive
and allow the robot to behave in an autonomous way. Finally, in section
4, this metacontrol mechanism is coupled with some simple interaction
capabilities. The display of the robot internal state will be used to al-
low the robot to recognize the human facial expression first and next
to modify the robot behavior according to human partner expression
(building of a social referencing). We will conclude on the importance
of emotions as a dynamical system (see fig. 2) where an emotional
state is an area in the physical and social dimensions of the system.

Φ

Emotional
state

Ψ

Figure 2. Illustration of what could be an emotional state as a dynamical phe-
nomenon linking physical ϕ and social interactions ψ.

2. Drives, Self monitoring and emotions

Although many researchers agree that emotions involve ”physiological
arousal, expressive behaviors, and conscious experience” [64], or that
emotions are important for survival [26, 28, 54, 55], there is clearly no
agreements on the underlying mechanisms. For instance, from James
and Lange theory [47, 53], which considers emotions as direct con-
sequences of physiological modifications in reaction to the interactions
with the environment (peripheralist theory: the emotional state is the
recognition of a given physiological state) to the Cannon-Bard theory
[10, 24], which supports that emotion is the result of a brain processing
(centralist theory: physiological changes are the results of the trigger-
ing in the brain of a given emotional state), there is a wide spectrum
of models, mostly dedicated to address only one aspect of emotions.
For instance, if we focus on emotion expression then the opposition will
be between discrete models of emotions (FACS: Facial Action Coding
System [31]) versus dimensional/continuous models of emotions that
suppose any emotion may by expresses as a point in a low dimensional
space. Controlling the value of the diɼerent parameters would allow a
continuous move from one expression to another [77]. These models
are very appealing for engineers designing avatars or expressive robots
since the models provide a way to control, in an independent way, the
mood (from negative to positive values) and its intensity for instance.

Yet, there is no agreement on what must represent the diɼerent axis
(usually three or four dimensions) to obtain a really coherent model.
Sometimes, problems can arise when moving continuously from one
expression to another: the agent displays some non-existent expres-
sion or provides the feeling that it was not the natural way to move from
one expression to the next. At the opposite, the FACS supports the
idea of specific activation patterns are independent from social culture
[46] and is mostly used for facial expression analysis and to account
for any muscular configuration of the face.
At the neurobiological levels, the models focus more on a particular
emotion. For instance, the brain circuitry of pain [54] is much more de-
tailed than the circuitry of happiness. This is certainly due to the fact
that pain signals are managed by particular neurons and their associ-
ated neuronal circuitry. An important point here is the fact that emotions
can be related to extrinsic signals such as pain or pleasure while other
ones seem to rely much more on intrinsic variables like novelty for sur-
prise. In this case, there is no specific input related to the surprise. The
surprise can only be characterized by the inability to predict the current
system state from the previous states. Hence, it appears that even
what Ekman and Izard considered as basic emotions are perhaps the
results of a complex process involving both a combination of extrinsic
and intrinsic variables. Today emotional models, combining appraisal
theory [7, 80] and arousal theory [79] oɼer a means to combine both
physiological and cognitive components of emotions and show that one
of the diɺculty is also a vocabulary problem. If we consider the aɼects
as hardwired or preprogrammed biological mechanisms that can be ei-
ther positive (interest, excitation, satisfaction, joy) or neutral (surprise,
novelty) or negative (hunger, fear, shame, disgust...) then we see the
same vocabulary can be used to describe those aɼects and the emo-
tions.
Starting from the neurobiological substrate of the visceral brain [73]
(with the regulation loop connecting the thalamus, the hypothalamus,
the hippocampus and the cingular cortex), we would like to understand
how basic emotions [75, 83] can emerge and become complex cogni-
tive processes involving planning and inhibition of action [26, 42]. From
this literature[1–3, 12, 18, 27, 45, 70–72, 87], we know that a lot of
structures are involved even for the “basic” emotions. Yet, physical
and social interactions are certainly not governed by independent con-
trollers and must share some common substructures.
Following the animat approach, we start from a minimal homeostatic
regulator simulating physiological variables like hydration or glucose lev-
els. These variables levels constantly decrease as the robot consumes
its internal resources. It follows that collecting a simulated resource (i.e.
detecting a needed resource) results in an increase of the correspond-
ing resource level. However, the robot’s survival is only possible if it col-
lects periodically the resources it needs so their levels do not decrease
below a given critical threshold (simulated death). A low-level drive sys-
tem reacts to the physiological state perception. For instance, as food
level gets low, the hunger drive gets high. This physiological and drive
system is what gives a goal to the robot. A distinction is made between
the inner drives, drives as they are computed directly from the physi-
ological variables levels, and integrated drives, temporal integration of
the inner drives. The integrated drives oɼer the possibility to modulate
drives according to higher order source of information without manip-
ulating the actual physiological state of the system. The most active
drive dictates the robot’s behavior (competition mechanism). When a
needed resource is detected, the corresponding physiological variable
level increases (following the above equations) and the temporal inte-
gration of the corresponding drive is reset to 0. Figure 3 describes this
system.
In our case, an ad hoc sensor under the robot detects the presence
of a resource (red and blue pieces of papers pasted on the floor to
symbolize food or water) and induces the simulation of an eating
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Figure 3. Low level drive system : inner drives are computed from the physio-
logical variables levels, integrated drives are signals that can be ma-
nipulated without aɼecting the inner states of the system and the ex-
pressed drive is the most active integrated drive. Frustration inhibition
is described in section IV.

or drinking behavior. The height of the camera used for the visual
navigation guaranties the pieces of papers on the floor are not visible
from the robot ensuring the need for the robot to learn a visual strategy
to come back to the diɼerent sources (no direct goal detection is
possible from a remote place). According to the desired task, it should
be possible to change those basic sensors in order to guaranty the
algorithm can adapt to a large variety of applications.

Now, if we want to deal with both emotions as a meta-controller and as
a communication tool, one way to formalize the interactions between
two agents is to diɼerentiate two virtual channels even if they rely on
the same physical channels (see fig. 4). The first one corresponds to
the physical interactions with the environment such as object manipu-
lation or fighting another animal. The second one concerns the social
interactions and more specifically in our case the emotional interactions
(detecting the fear associated to the flight behavior from the visual or
auditory stimuli for instance).

Emotional
Env.

Env.
Physical 

social

Agent 1 Agent 2

Figure 4. Non verbal interactions between 2 agents can be either related
to physical interactions (for instance object manipulation, displace-
ments...) or to some social/emotional exchanges (for instance facial
expression or body language)

The interaction in itself has an emotional value. The appraisal of a given
situation [56] can either be related to the evaluation of the physical in-
teraction (capability to predict the interest of the current state or action)
or to the evaluation of the emotional interaction. The evaluation of a
physical interaction is an input of the social/emotional system: produc-

tion of a sound linked to the danger, the distress... or display of facial
expression or other morphological modification that can be correctly in-
terpreted by the other agents. Conversely, the evaluation of the social
interaction can be used to modulate the parameters of the controller
devoted to the physical interactions: fear perception can modulate the
responsiveness to external stimuli and reduce the reaction time for in-
stance. At another level, a human adult doing a still-face [65, 84] has
a very negative eɼect on infants. Other studies show that desynchro-
nized “interactions” are also associated with a negative feeling while on-
line interactions have a positive value (a reward). In the case of mother-
baby face to face interactions, a double video system has been used
to control the mother-baby interactions [63, 66]. The results show that
the introduction of a temporal delay disrupts the baby interest in her
mother. Contingency is essential to maintain the interaction and imita-
tion games between young infants have more a hedonistic value than
a learning value. A lot of examples show that children enjoy imitating
each other doing already known actions. The pleasure seems to be
linked to the fact of being imitated by the other and doing some unaf-
fordant (or unusual) behavior. From all theses diɼerent facts, we can
conclude that the rhythm and the synchrony are important elements for
the interaction [4, 5]. At the opposite end to reinforcement/punishment
learning which is well studied in the frame of the learning theory, very
fewworks focus on how the analysis of the interaction by the agent itself
can be used to build an internal reinforcement. We believe that using
the interaction as a way to self-generate a reinforcement/punishment
signal is an interesting paradigm for online learning in a cooperative sit-
uation. This should allow building robots that could develop new skills
in an open-ended perspective.
Our preliminary conclusion is that physical and social interactions are
certainly not governed by independent controllers and must share
some substructures. It can be interesting to try to complete some of
the simplest existing models of both aspects of emotions in order to
test the possibility to build a simple global model. In the following, we
propose a very simple integratedmodel allowing focusing on how to ob-
tain at least one global coherent dynamics taking into account the main
neurobiological and psychological data available. For an autonomous
robot, we suppose that a pain signal can be related to ad hoc recep-
tors sensitive to the lack of resources (lack of food or water) and the
collision with obstacles while pleasure can be associated to the refuel-
ing of necessary resources. Yet, to avoid the trap of using only ad hoc
physiological signals, non-modal emotional signals must be introduced.

3. Self monitoring and meta control for
navigation: a model of frustration

In this section, we first summarize two novelty detection mechanisms
that can bootstrap surprise feeling and then we propose a method to
measure the system frustration when it fails to reach a given goal. In
previous works, we used two diɼerent mechanisms for novelty detec-
tion. First, in each sensory modality, novelty can be seen as a recog-
nition threshold. If a given pattern is diɼerent enough from previously
learned or stored pattern then vigilance can be increased and allow the
learning of the new situation (see for instance Carpenter and Gross-
berg’s vigilance parameter in their ART model [25]). Next, novelty can
be a precise configuration of local categories (patterning). In more com-
plex cases, the states can be already known but their sequences or tim-
ing may vary. The inability to predict the timing of sensory-motor events
can be used to detect novelty and to modulate learning also[9, 41, 43]
in order to increase the system eɺciency.
Yet, as a given task or drive is concerned, states can be correctly recog-
nized but the behavior can fail because of some deadlocks or dynam-
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ical environment changes. To regulate the robot behavior in case of
persistent failures, we propose a generic frustration mechanism based
on the evaluation/monitoring of an unlimited number of signals, either
drives or goals or even strategies. The robot’s navigation abilities are
based on a bio-inspired learning system : the PerAc architecture [36].
This architecture allows the robot to learn the conditioning of an ac-
tion by a sensory input in order to define a dynamical perception state.
More precisely, the robot’s navigation system is derived from a model
of the rat hippocampus [48]. It consists of a simulated neural network
able to learn to characterize (and thus recognize) diɼerent ”places” of
its environment using place cells i.e. neurons that code information
about the location of visual cues of the environment from of a spe-
cific place in that environment [36, 39]. The activity of the diɼerent
place cells depends on the level of the associated visual cues recog-
nition (landmarks) and of their location (azimuth). A place cell will then
be more and more active as the robot gets closer to its learning loca-
tion2. The area where a given places cell is the most active is called its
place field. A conditioning neural network enables the learning of the
association[38, 40, 89] between a place field and an action. In paral-
lel, path integration is computed from odometric information [32, 62]
(return vector computing). Both navigation strategies are coupled to a
low level motivational system (using the simulated physiology as input)
in order to perform a survival task (for more details see the appendix).

To test the architecture, diɼerent perturbations have been successfully
introduced: unreachable resources, no more visual navigation (all lights
in the environment turned oɼ), wrong hodometric information after the
robot has been ”kidnapped” and placed in another place, ... All these
perturbations might get the robot trapped in a deadlock situation. Here,
we focus on two particular cases. The first case is the self-discovery
of the failure of a rule (or sensory-motor association) in a new situation
and the learning of a new context (and the inhibition of the problematic
rule). The discovery of the solution would induce the learning of a new
context and a new sensory-motor rule allowing satisfying a motivation.
The key point is the capability to monitor the evolution of the satisfaction
or unsatisfaction of some “drives” or “motivations” in order to control the
learning. The second case concerns the problem of the satisfaction of
conflicting goals. In the case of a single autonomous agent, we have
shown the possibility on the long term to discover and learn a solution
based on the building and use of a cognitivemap [34]. Yet, if the survival
of the agent implies to find quickly a solution or if two agents compete
for the same resources [20] there is a need for a fast mechanism able to
modulate the behavior in order to find quickly a stable solution for both
agent (dynamics with a bifurcation point allowing each agent to choose
a diɼerent solution). In both cases, the measure of the appraisal of the
situation activates an appropriate facial expression on a robot head.

3.1. Frustration measure and meta-control

Using two diɼerent sources of information (vision and proprioception),
the robot has access to two diɼerent ways of monitoring its goal dis-
tance. From the proprioception, the robot can monitor the fields used
for path integration. Each field can be seen as a working memory and
holds the information needed to represent the return vector to its corre-
sponding goal i.e. its direction (position of the maximum activity in the
field) and distance (value of the maximum activity). As the robot gets
closer to the goal, the maximum activity of the corresponding path inte-
gration field gets lower while the corresponding place cell activity gets

2 The details of the visual navigation architecture are described in the
appendix

higher. From vision, the robot can learn which place cell corresponds to
the goal and then monitor its activity. When a drive is active (e.g. when
it is hungry), until food is found, the robot might assume that everything
is all right as long as its predicted distance to the food decreases. But
if goal distance G(t) does not decrease, the robot behavior is ineɺ-
cient. And if this ineɺciency is lasting this means the robot is caught in
a deadlock and becomes frustrated. A binary frustration decision F(t) :

F (t) =
{

1 if [f (t)]+ > T
0 otherwise (1)

can be achieved from a frustration level f (t) :

f (t) = [f (t − ∆t) + R (t) − P(t) + ε − r − F (t − ∆t)]+ (2)

computed as the temporal integration of the instantaneous progress
P(t) = 1

τ [G(t) −G(t − ∆t)]+ and the instantaneous regress R (t) =
1
τ [G(t− ∆t) −G(t)]+ with ∆t is the duration of each calculation time-
step and the and and with [x ]+ equals x if x > 0 and equals 0 otherwise
and τ is a time constant (τ=∆t). ε is a small constant and r is a re-
set signal that equals 1 when the goal is satisfied (when the needed
resource is detected) and 0 otherwise. The threshold T (figure 5) de-
fines the robot tolerance to frustration. This mechanism diɼers from a
simple timeout because frustration is increased by the number of fail-
ures and not directly by the elapsed time. According to this view, solv-
ing a long problem should not be frustrating as long as progress can
be perceived. Furthermore, the frustration increase is not necessarily
regular since it relies on how much goal proximity approximation varies.
Detection of this failure situation gives the robot a way to escape from
ineɺcient repetitive behavior.
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proprioception)
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current strategy
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+
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Figure 5. Frustration mechanism: non linear integration of the goal distance
derivative over time. When the goal distance comes from vision, its
temporal diɼerence is computed the opposite way as when goal dis-
tance comes from proprioception (goal place cell activity increases
while integration field maximum activity decreases). A small constant
input added to this integration insures that although goal distance is
constant, frustration might arise. Above a definite threshold T , the
active strategy, goal or drive is inhibited.

The simplest way to escape a deadlock is to use failure detection to in-
hibit the underlying behavior. But there are many ways to alter the robot
behavior. Failure detection might inhibit the currently used navigation
strategy e.g. switching from path integration to visual navigation. But it
can equally inhibit the active goal to look for another similar goal. Failure
detection can also inhibit the active drive e.g. switching from hunger to
thirst. An example of this inhibition is shown in figure 3 but the same
kind of inhibition allows to switch from the active strategy or goal. Fig-
ure 5 shows the neural network used to detect failure situations and
the way it can regulate the robot behavior.
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3.2. Experiments involving a meta-control

In the first experiment3, the eɼect of the frustration regulation is tested
on the drives. The visual navigation strategy is used in an environment
containing one of each resource (colored square on the ground).
After having learned to reach the two resources, the robot alternates
between them according to its drive system. If an obstacle is put
on one of the resources, the robot cannot access it. According to
its drive system, the winning drive gets stronger with time and the
robot should be stuck between going to the resource and avoiding the
obstacle. When the frustration system is introduced, the robot gets
more and more ”frustrated” and inhibits the active drive allowing the
robot to escape the deadlock to satisfy its other drive. Figure 6 shows
the robot trajectories as well as its internal drive, failure detection and
frustration signals.

Figure 6. Up: robot trajectories with frustration of the active drive (visual nav-
igation). F stands for food and W for water. Down: goal distance,
failure detection and drive signals. In 1, the robot starts the experi-
ment with thirst as the most active drive. In 2, the robot satisfies its
thirst and hunger becomes the active drive. In 3, an obstacle ob-
structs the water resource. When enough failure detection has been
integrated, a frustration inhibition is sent to the active drive (thirst) and
in 4, the robot goes back the food location.

In the second experiment, frustration regulation is tested on the goal

3 Trajectories in all experiments are recorded from an onboard tracking
device that is not used by the robot.

level. The proprioceptive navigation strategy is used in an environment
containing two of each resource (2 goals for each drive). After having
learned to reach the four resources, the robot alternates between the
two closest goal places according to its drive system (determine the
active drive) and its motor working memory [44] (determine the closest
goal). Similar to the first experiment, an obstacle is placed under one
of the resources the robot regularly use. The inhibition of the active
goal allows the robot to escape from the deadlock to look for the other
resource corresponding to the active drive. Figure 7 shows the robot
trajectories as well as its internal goals, failure detection and frustration
signals.

Figure 7. Up: robot trajectories with frustration of the active goal (proprioceptive
navigation). F1 and F2 are the two food resources and W1 and W2
are the two water resources. Down: goal distance, frustration and
goals signals. In 1, the robot starts the experiment with hunger as
the active drive and its goal is F1, the closest food location. In 2, after
reaching F1, the robot is now thirsty. It is reaching W1, the closest
water location. In 3, the robot finds water and is now hungry. It is
heading toward F1, the closest food location. F1 is now obstructed
with an obstacle. In 4, when enough failure detection has been in-
tegrated, a frustration inhibition is sent to the active goal F1. In 5,
the robot heads toward F2, the new closest goal satisfying the active
drive. And in 6, the robot heads toward W2, the new closest water
location.

In the third experiment, frustration regulation is applied to strategy se-
lection. Both path integration and visual navigation are used in an en-
vironment containing one of each resource. After having learned to
reach the two resources with each strategy, the robot uses the proprio-
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ceptive strategy to alternate between each resource. Next, the robot is
”kidnapped” and placed in a diɼerent place of its environment. Because
this movement cannot be integrated by the proprioceptive strategy, the
return vectors all become erroneous. The robot then converges toward
a wrong location. Inhibition of the active strategy allows the robot to
switch from its proprioceptive to the visual navigation strategy that is
robust to this kind of perturbation. Similarly, proprioceptive navigation
is a good way to navigate in the dark thus oɼering a good alternative
to visual navigation. Figure 8 shows the robot trajectories as well as its
internal strategies, failure detection and frustration signals.

Figure 8. Up: robot trajectories with frustration of the active strategy. Down:
goal distance, frustration and strategy signals. In 1, the robot starts
the experiment with path integration. The active drive is thirst. In 2,
after having satisfied its thirst, hunger becomes the active drive and
the robot heads toward the food location. In 3, after having satisfied
its hunger, the robot is thirsty and head toward the water location
but the robot is ”kidnapped” along the way and put somewhere else.
This makes its proprioceptive strategy wrong. In 4, the robot follows
its path integration until enough failure detection has been integrated.
A frustration inhibition is sent to path integration strategy and in 5, the
robot switch to visual navigation.

To summarize, the robot can learn evaluations of the distance to its goal
from its diɼerent perceptions. Behavior eɼectiveness is viewed in terms
of reduction of the goal distance. Accumulation over time of the inability
to reduce goal distance (and reach satisfaction) gives rise to an inhibi-
tion potential that can be directed on diɼerent parts of the robot control
architecture : the used strategy, the active goal or the active drive.
This generic inhibition mechanism and the behavioral change it causes
can be viewed as an emotional regulation: i.e. the frustration. Using
a meta-control regulatory mechanism, the robot adapts its behavior to
changing conditions rather than getting stuck in a deadlock situation

where its learning is not suɺcient. It is clear the empirical frustration
regulation mechanism described here could be easily refined. In order
to allow failure detection to be robust to noise on the goal distance pre-
diction (mainly concerning vision), we intend to use a statistical version
of the proposed equation in future works. Yet, it is suɺcient for mon-
itoring the progress and allowing an eɺcient way to react to changing
conditions of a dynamical environment.
The frustration associated to the robot strategies, goals or drives
(through classical conditioning) can be seen as a prediction of the
robot success or failure for this particular strategy, goal or drive and can
then be used to select them accordingly. Our model thus bears strong
similarities with TD lambda [29, 82] and the possibilities of hedonist
neurons [52]. Our frustration regulation can also be compared to the
novelty detection and curiosity mechanisms described by [69]. While
curiosity regulates the robot behavior in order to stay in a state of
learning progress, frustration regulates the behavior in order to stay
out of failure states.

4. Emotional interactions and social refer-
encing

In the previous section, we illustrated how some internal prediction
mechanisms can be used for a self-monitoring and for modifying the
robot behavior. They can be seen as basic emotional mechanisms
even if one can discuss the reality of these signals for the system or
more exactly the capability of the robot to perceive these emotional
states. It is clear in the previous architecture that nothing has been
introduced to allow the categorization and the recognition of an emo-
tional state. Yet thesemechanisms are suɺcient at least to trigger some
reflex expressive behavior. Here, we focus on what can bring the ex-
pressiveness or the communicative function of emotions. We discuss
two complementary aspects. First, how can a robot or a baby learn
to recognize in an autonomous way the facial expression of a human
caregiver? Second, we show that a new object or place oriented be-
haviors can be learnt thanks to the emotional interactions. They allow to
close the loop between the meta-control and the communicative func-
tion of emotion in a triadic system involving one robot, one human and
one object or place allowing to bootstrap some kind of low level social
referencing.

Figure 9. Experimental set-up: a robotic head that learns facial expression
recognition and a mobile robot able of autonomous visual navigation
tasks learning. The room size is 7m x 7m, but the robot’s movements
are restricted to an area of 3m x 3m (to allow a good video tracking
of the robot’s trajectories).

Our experiments rely on two major systems : an emotional facial ex-
pressions interaction system that gives a robotic head the ability to learn
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to recognize and mimic emotional facial expressions and a navigation
system that gives a mobile robot the ability to learn navigation tasks
such as path following or multiple resources satisfaction problems (see
fig. 9).

4.1. Learning to recognize facial expression

To understand better how the coupling between the cognitive and emo-
tional capabilities co-develop, first we tried to model how babies can
learn to recognize facial expressions of their parents without having
a teaching signal allowing them to associate for instance an “happy
face” with their own internal emotional state of happiness [37]. In a
robotic viewpoint the question becomes us to close how a robotic sys-
tem (fig. 9), able to exhibit a set of emotional expressions, can learn
autonomously to associate expressions with those of others. Here,
”autonomously” will refer to the ability to learn without the use of any
external supervision. A robot with this property could therefore be able
to associate its expressions with those of others, linking intuitively its
behaviors with the responses of the others. Using the cognitive system
algebra [35], we showed that a simple sensory-motor architecture (fig-
ure 10) using a classical conditioning paradigm could solve the task if
we suppose that the baby produces first facial expressions according
to his/her internal emotional state and that next the parents imitate the
facial expression of their baby allowing in return the baby to associate
these expressions with his/her internal state [35]. Moreover, psycho-
logical experiments [30, 67] have shown that humans reproduce invol-
untary a facial expression when observing it and trying to recognize it.
Interestingly, this facial response has also been observed in presence
of our robotic head. This low-level resonance to the facial expression of
the other can be considered as a natural bootstrap for the baby learn-
ing (”empathy” from the parents). Because the agent representing the
baby must not be explicitly supervised, a simple solution is to suppose
the agent representing the parent is nothing more than a mirror. We ob-
tain an architecture allowing the robot to learn the ”internal state”-”facial
expression” associations. We also showed that, learning autonomously
to recognize a face could be really more complex than to recognize a
facial expression. We proposed an architecture (figure 10) using the
rhythm of the interaction to allow first a robust learning of the facial ex-
pression without a face tracking [15], and second, to stop the learning
when the visual stimuli (facial expression or absence of face) are not
synchronized with the robot facial expression.
We have experimentally verified that a robot can learn to recognize the
facial expressions of a human without any supervised learning. Basi-
cally, the robot produces facial expressions according to its own inter-
nal state and associates each perceived stimulus with this state. After
some time, the robot is able to learn if the objects in its environment
are not correlated with any of its emotional states. Conversely, if a hu-
man shows some empathy to the robot he/she may produce correlated
facial expressions (see [67]) that will be recognized and associated to
the robot state. Later, this learning allows the recognition of the associ-
ated emotional state. Yet, we have to face several problems. First, the
delay for the human (and robot) to recognize the change in the facial
expression of the other and the motor delay to produce a facial expres-
sion introduces complex transitory states that the neural network has
to filter. Second, to avoid long learning, it is important that the robot
modulates its learning according to the fact there is something inter-
acting with its own activity or not (for instance a human mimicking the
robot facial expressions).
After two minutes of real time interaction, the robot is able to rec-
ognize the human facial expression as well as to mimic its facial
expressions[13]. Fig. 11 shows the success rate for each facial expres-
sion (sadness, happiness, anger, surprise) and a neutral face. These
results are obtained during the natural interaction with the robot head.

Figure 10. Architecture used to associate a collection of local views around
feature points extracted from the visual flow with the expressed
emotion by the robot. If a human comes in front of the robot and
imitates the robot’s expressions, (s)he will close the loop between vi-
sion and proprioception and allows the system to learn to recognize
the facial expression of the human partner.

10 persons interacted with the robot head (32 images by facial expres-
sion by person). During the learning phase, each subject interacted
during a 2 minutes period.

Figure 11. Success rate for each facial expression (sadness, neutral face,
happiness, anger, surprise). These results are obtained during the
natural interaction with the robot head. 10 persons interacted with
the robot head (32 images by facial expression by person). During
the learning phase (only a 2 minutes period), these humans imi-
tate the robot, and then the robot imitates them. In order to build
statistics, each image was annotated with the response of the robot
head. The annotated images were analyzed and the correct corre-
spondence was checked.

One interesting result is that the face detection system usually used
for preprocessing facial expressions recognition is not really necessary
and can even be the result of the facial expression recognition. This
inversion in the classical way of learning to recognize facial expressions
with a robot head [68], would allow to show the power of the emotional
system to shape the individual development through the interaction
with another agent. Practically, it is also very interesting to suppress
the need to first detect the head since in our previous systems we
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were unable to use an autonomous learning for this step (the learning
was supervised since we had no way to find an autonomous criteria
to decide what is a face or not). In our architecture, the autonomous
recognition of face / non-face discrimination results from the facial
expression recognition. A human face is recognized as such because
his/her local views are associated to the emotion recognition and not
the opposite.

4.2. Social referencing for places and objects

In this section, we try to verify the postulate that in a social environ-
ment, the emotion communication participates in the shaping and the
triggering of more and more complex behaviors. Usually, robots which
are able to learn navigation tasks, are taught under supervision of an
experimenter [19, 78]. These techniques have the advantage of being
fast in terms of learning time but the experimenter has to know exactly
how the robot works and to be expert in order to use it. In other words,
the experimenter has to strongly adapt itself to the robot’s underlying
architecture to achieve satisfactory learning performances. The auton-
omy of a mobile robot can be more easily reached if the robot has
the ability to learn through emotional interactions. The social referenc-
ing is a concept issued from developmental psychology describing the
ability to recognize, understand, respond to and alter a behavior in re-
sponse to the emotional expressions of a social partner [51, 76, 86].
Besides, being non verbal and thus not needing high-level cognitive
abilities, gathering information through emotional interactions seems to
be a fast and eɺcient way to trigger learning at the early stages of hu-
man cognitive development (compared to stand alone learning). Even
not at their full extent, these abilities might provide the robot valuable in-
formation concerning its environment and the outcome of its behaviors
(e.g. signaling good actions). In that case, the simple sensory-motor
associations controlling the robot’s learning are defined throughout their
interactions with the experimenter. This interactive learning does not
rely on the experimentor’s technical expertise, but on his/her ability to
react emotionally to the robot’s behavior in its environment (both human
and robot have to adapt reciprocally with each other).
Social referencing can refer to an object, a person, an action, a place in
the environment and probably diɼerent other things. This means that
there are many ways for the recognition of an emotional facial expres-
sion to be interpreted and used by the navigation system. In our case,
when the experimenter displays an expression of happiness, the robot
can use this expression as a signal qualifying its behavior. In that case,
its action in a specific place must be learned as having a positive value.
But the robot could also use this signal to qualify its surrounding envi-
ronment indicating a useful place that the robot should eventually seek.
We studied these two diɼerent possible couplings between the naviga-
tion and the emotional interaction inside our architecture. We think this
approach can be useful for the design of interacting robots and more
generally, for the design of natural and eɺcient human-machine inter-
faces. Moreover, this approach provides new interesting insights about
how, in their early age, humans can develop social referencing capa-
bilities from simple sensory-motor dynamics.
The behavioral coupling refers to the situation where the recognition
of an emotional facial expression is used to qualify the behavior of the
robot. For instance, when the human displays a happy face, it means
the robot must reinforce its current behavior positively while an angry
face means the robot must reinforce its current behavior negatively.
In order to do this, the PerAc architecture [33, 36] learns positive and
negative action conditionings. To ensure this classical conditioning, the
least mean square learning rule [88] is used. The diɼerence between
the neural network output and the desired output is used to compute
the amount by which the connections weights have to be changed

(weight adaptation due to learning):

∆wij = ε.Ii.(Od
j −Oj ) (3)

∆w is the diɼerence between the old and the new weight, ε is the
learning rate (neuromodulation of the network), I is the input, O is the
output (of the conditioning network) andOd the desired output. A pos-
itive conditioning refers to a direction to head for (to reach the goal),
while a negative conditioning refers to a direction to inhibit (to avoid a
dangerous place). Instead of one sensory-motor neural network that
can only learn positive conditionings, we used one associative neural
network for positive and one for negative conditionings. A third group
of neurons is used to compute the sum of their two outputs (see figure
12).

Figure 12. Behavioral coupling model. When one of the ”conditioning” groups
of neurons using equation 3 receives neuromodulation from the
recognition of the corresponding facial expression (happiness in this
example), it learns the association between the current robot lo-
cation (perceived as a specific winning place cell) and its direction
(summed with what has already been learned by this group of neu-
rons). Happiness and Anger are neurons associated to the recog-
nition of an happy or an angry human face.

While the positive conditioning group of neurons has a positive connec-
tion with this integration group of neurons (activations), the negative
conditioning group of neurons has a negative connection (inhibition).
This solution allows much more information to be stored about what
is learned by the robot than outputs with positive or negative values
(and is also more biologically plausible). For instance, having learned
that one particular behavior is good and later that the same behavior
is wrong could mean that something has changed in the nature of the
environment or in the experimenter’s objectives. If both reinforcements
had been learned on the same group of neurons, they would have been
averaged and the conflictual nature of the learning would be invisible.
The model is described in figure 12. When the robot receives a social
interaction signal (the display of an emotional facial expression of anger
or happiness), it triggers the learning of a new visual place cell as well
as the learning of the conditioning between this visual place cells and
the current action. Nonetheless, if an existing place cell is too close
to the robot current position (defined by a threshold on the place cells
recognition level) the learning of a new place cell is inhibited and the
sensory-motor conditioning is learned according to the nearest place,
completing an eventually previously learned sensory-motor condition-
ing.
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Figure 13. a) Place cell signal. b) The experimenter’s facial expressions rec-
ognized by the robot. c) Current robot direction of movement. d)
Action learned by the robot (an arrow means a direction to activate
and a dot a direction to inhibit). The experimenter facial expres-
sions give the robot the information needed about its behavior to
learn the necessary sensory-motor associations between the visual
signal (recognition of the current place) and the learning of the acti-
vation or inhibition the current movement direction.

The robot is thus able to learn progressively which direction to avoid and
which direction to head at a given ”place” according to the goal of the
person interacting with it. We tested this architecture in the following
situation: the robot’s environment contains one place of interest and the
experimenter wants to teach the robot how to reach it. Each time the
experimenter thinks the robot’s behavior is wrong, he expresses anger
toward the robotic head and, conversely, he smiles for good behaviors
(happiness). Figure 13 is an illustration of the learning chronology (as
explained above). Figure 14 shows the robot’s trajectories after learn-
ing. The robot is dropped from diɼerent positions of the environment.
It is always able to reach the interesting place. Nevertheless, it is im-
portant to take into account the fact that the robot learns much more
information about the task when its behavior is qualified as ”good” by
the experimenter than when it is qualified as bad (although both are
needed). Knowing what is ”good” is a faster way to converge to a so-
lution than knowing what is ”bad”. The learning of the attraction basin
around the goal place (i.e. set of place-actions that ensure a converging
navigation dynamics) takes between three to five minutes.
If no reflex pathway is available, an instrumental conditioning can al-
ways work (and be superposed to the previous classical conditioning
mechanism). When the robot receives the social interaction signal, it
has to learn a new place cell characterizing its location and to learn to
predict the interaction signal (happiness or anger) which is considered
as a reward associated with this place (figure 15).
As the robot gets closer to the learned place, the place cell response
will increase, such as the associated predicted reward. The opposite
happens as the robot gets farther from the learned place. Instead of
using a conditioning learning between a perception (a place) and an
action (a direction), the derivative of the predicted reward (fig. 15) is

Figure 14. Robot’s trajectories from diɼerent starting points: the robot is able
to reach the place associated with the happiness facial expression.
The grey zone represents the goal place. These trajectories are
obtained by video tracking. The size of the experimental area is 3m
x 3m.

Figure 15. Environmental coupling model. Using the least mean square learn-
ing rule, the conditioning neurons allow the association between a
place cell (a zone of the environment) and an experimenter’s facial
expression (modifications of weights w+ and w- follow equation 1).
The predicted expression signal temporal derivate is used as a re-
inforcement signal (Sutton and Barto learning rule) to maintain or
change the direction on the motor group (modifications of weights
w follow equation 3). The bias on the conditioning groups allows
the learning of the frontier between the zone associated with a fa-
cial expression and the rest of the environment.

used as a reinforcement signal [11] :

∆R = (dPredHdt − dPredA
dt ) + (H − A) (4)

∆w+/− = ε.dRdt .
dOj

dt .Ij (5)

∆R is the reinforcement signal, dPredHdt is the predicted happiness sig-

nal derivate, dPredA
dt is the predicted anger signal derivate, H is the
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happiness facial expression recognition signal and A is the anger fa-
cial recognition signal. ∆w+/− is the diɼerence between the old and
the new weight, ε is the learning rate (neuromodulation of the network),
dR
dt is the temporal variation of the rewardR ,O is the output and I is the
input. A motor group only connected to a constant input is used to con-
trol the robot movements. Without any reinforcement, this motor group
basically produces random outputs (a small noise is added to the out-
put) allowing the robot to ”try” another action. A positive reinforcement
will make it reinforce its current output while a negative reinforcement
will make it inhibit its current output. We used the outputs to control the
robot actions. After the robot has learned by interaction that the place
at the center of its environment is dangerous (i.e. associated with the
anger expression), we assigned various fixed directions to the robot
in order to test the robot robustness of the robot learning. Figure 16
shows how directions that produce positive predicted reward derivative
(going away from the dangerous place) are reinforced positively while
directions that produce negative predicted reward derivative (going to-
ward the dangerous place) are reinforced negatively.

Figure 16. a) The reward prediction (positive with happiness and negative with
anger) informs the robot about its behavior outcome in the envi-
ronment. b) Derivatives of this value are used as a reinforcement
signal(see equation 5). c) when the derivative is negative, the robot
direction changes and when it is positive it is maintained and rein-
forced

Figure 17 shows the robot’s trajectories from diɼerent starting points
with diɼerent fixed directions while, at the same time, it has to avoid
the dangerous place of its environment. The referencing of that place
through interactions with the experimenter allows the robot to quickly
learn to avoid it (the first interaction already allows the robot to avoid
the ”dangerous” place). Nevertheless, the task would be much more
diɺcult if we wanted to teach the robot to reach one place instead of
avoiding it. Indeed, avoiding a place needs to be eɺcient at the vicinity
of the place in question. This is the role of the bias on the conditioning
groups shown in figure 15. Reaching a place means being able to use
variation of the corresponding place cell but far from the learning place.
Yet, the place cells dynamics are not meaningful when the robot is too
far away from the learning location.
One remaining diɺculty is related to the intrinsic ambiguity of the emo-
tional interaction signal. In our case, the same signal can be used
to learn two diɼerent information: ”this place is good” as well as ”this
place/action is good”. A solution to this problem could be the way the
system treats the interaction inputs. For a behavioral coupling (associ-
ating emotions to the robot’s actions) a phasic signal (the moment the
signal appears) should be used while for the environmental coupling
(associating emotions to the robot’s environment) a tonic signal (the
whole time the signal is present) is suɺcient. This way, both couplings

Figure 17. Robot’s trajectories from diɼerent starting points (with a fixed direc-
tion) after interactive learning of the association of the grey zone to
the anger facial expression. The robot is able to avoid the place
associated with the anger facial expression. The prediction of the
negative reinforcement is suɺcient to inhibit a movement in direction
of the dangerous zone (when it is near it).

could function with the same inputs but used diɼerently. Of course,
the question of the coherence of what is learned is asked : if the robot
is doing something wrong (e.g. going away from a resource it needs)
the experimenter will display an angry face and the robot will learn at
the same time that its behavior was wrong but also that the place it
is in has to be avoid. The problem is that, usually, the experimenter
intended only one of the two learning. Nonetheless, because of the
continuous nature of neural networks learning algorithms, the coher-
ence of the learning should not be reached at the early stages of the
interaction but rather for the more consistent ones. A place will have
a well-defined emotional value (given by the social referencing) only if
the reinforcement signal it receives is coherent over time.

5. Discussion and conclusion

In this paper, we have addressed three diɼerent aspects of the emo-
tional mechanisms. First, we have shown, a simple architecture allow-
ing a robot to self-monitor its success in a task completion, can be
used to modify the robot drives, goals or strategies in order to avoid
deadlocks. Next, we have summarized recent works performed with
a robotic expressive head showing how a robot can learn to recognize
the human facial expression of a person when he reproduces the robot
own facial expressions. Finally, we have shown the coupling of both
systems can be a simple way to teach a robot some arbitrary tasks like
going or avoiding a given place. In other works not presented here [14],
we have shown this strategy can be generalized to object reaching or to
obstacle avoidance using a robot arm that can bootstrap some simple
social referencing.
Following this, it is clear that the diɼerent parts of the proposed archi-
tecture can be easily improved by taking into account other emotional
mechanisms [11, 61, 69, 81] or the robot expressiveness [16, 50, 90].
An important practical issue for a routine use of our system is that the fa-
cial expression recognition from a distance more than one meter needs
the use of either a high resolution camera or a system with twin cam-
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Figure 18. Bidirectional interactions between abstract controllers devoted to
the physical interactions and the social interactions. In the real sys-
tems they can be merged together but the interplay between both
kinds of interactions is very important for the system autonomy and
its capability to interact with other agents.

eras (one with a small field of view to focus on the face and one with
a large field of view to find the partner in the room when he/she has
moved). As a result it appears that a powerful attentional mechanism
is necessary in such architectures to switch back and forth the atten-
tion between the navigation task and the human partner. Future work
will focus on the need of a more realistic interaction where a bidirec-
tional communication must exist between the human and the robot.
The robot head can express the robot internal state and it can mirror the
human facial expression. The problem is that currently, the robot head
always mirrors the human facial expression to allow the experimenter
to see that his/her mood has been well understood by the robot. Allow-
ing a real interaction could provide a solution for expressing something
related both to the expressive feedback of the experimenter and the
robot’s internal state. Control of the expression intensity and its dura-
tion is a lead we will explore. Moreover, some experiment have shown
the diɺculty in deciding which expression has to be displayed by the
robot when globally it fails to solve its initial task but, because the meta-
control succeeds, at least one goal can be satisfied. In this case, we
choose it is better for the robot to express the more recent change in
its emotional state (here for instance happiness while on the long term
the robot has no solution to satisfy its primary need). A mechanism
selecting the expression to be displayed according to some long-term
reinforcement or planning would allow displaying an expression diɼer-
ent from the robot internal state (faking an emotion or cheating) and
would be necessary to transform the network producing the facial ex-
pression in a real communication device able to build and categorize
complex emotional states.
Yet, a major question is: does the robot really feel the emotion or it is just
an engineering trick? One easy answer could be to take a purely be-
havioral point of view and to consider the emotions even in the human
perspective are nothing more than that. In the present state of the ar-
chitecture, this answer is not satisfactory since wemiss the capability to
categorize new emotional situations. The emotional states are directly
related to the emotional signals: pain would induce sadness, plea-
sure/happiness, surprise/surprise, and frustration/hanger. But what
should be categorized as an emotional state? We believe the diɺ-

Figure 19. Illustration of the path integration computation. Left figure shows a
simulated trajectory composed of two segments of diɼerent lengths
(the first is three times the length of the second) and orientations
(25�and 90�from an arbitrary absolute direction). Right figure shows
the two inputs (dotted curves) as bell shape centered on the abso-
lute direction of the movements (α and β) and their sum (the bold
curve).

culty to define the emotions is certainly related to the feeling emotions
could be defined as a static configuration of the diɼerent kind of inter-
nal variable. Fig. 18 proposes a simplified representation of the brain
where we enlighten the interactions between two kinds of controllers:
the controllers devoted to physical interactions and the controllers de-
voted to social interactions. Then, an emotion appears as something
more than the result to a particular stimulation. The emotion can result
from the interactions with another agent and from the interactions be-
tween diɼerent sub-controllers inside one agent. We can question the
existence of a locus for the emotion even in the sense of a distributed
network. The emotion may rely more on the network dynamics4 than
on the activation of particular neurons. Adding the capability to catego-
rize such internal dynamical states could be a way to provide the robot
a real perception or re-enaction of an emotional state.
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Appendix

Navigation strategies

Two diɼerent navigation strategies were used in order to study inhibitory
eɼects of the frustration regulation on the action selection process.
Proprioceptive navigation : path integration is the ability to deter-
mine the return vector (angle and distance) to an arbitrary reference

4 By extension, the network can or perhaps should be extended to the
network composed by the different agents in interaction.
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point using odometric information. We designed amotor working mem-
ory [44] to use path integration implementation presented in [32] (fig-
ures 19. The global movement vector orientation (ω) is coded as the
position of the maximum activity in a neural field and its norm is coded
as the value of the maximum activity. Here, a neural field only means a
group of neurons (no connections between each other) but the topol-
ogy is important since position in the field has a meaning (an angle in
our case). Fig. 20) shows the NN. used to compute the path integration
and to propose a homing vector (inverse vector of the path integration).
In the case of a multiple goal task, detection of a new goal allows the

Figure 20. Neural network for path integration : speed is coded as the activity
of one neuron and orientation as the most active neuron of a field
(i.e. a simple linear collection of neurons). At every time step, the
integrator takes as input the activity of the orientation field (convo-
luted by a bell shape curve e.g. a Gaussian or a cosine) multiplied
by the activity of the speed neuron. This input represents the orien-
tation and distance traveled since the last time step. Summing this
input with its own activity, the integration field computes the return
vector.

recruitment of a dedicated integration field. Every integration field com-
putes dynamically the return vector to its associated goal (figure 21).
A short term memory is used to store the relevant return vector. This
model is fully described in [44]. Recruitment reset is the recruitment
of a new integration field when a new goal is found. Recognition reset
is the reset of the field corresponding to a detected known goal. Field
selection is the selection of the integration field corresponding to the
closest goal satisfying the active drive.

Figure 21. Multi goals path integration navigation : return vectors to several
places (goals) are computed dynamically.

Visual navigation: The visual system learns place cells i.e. neurons
that code information about a constellation of local views (visual cues)
and their azimuths from of a specific place in that environment [38, 40]
(see figure 22).

Figure 22. Landmarks and their azimuths extracted from the raw visual flow
and learned by the visual system.

Figure 23. Sensory-motor visual navigation: a visual place cell is constructed
from recognition of a specific landmarks-azimuths pattern (tensorial
product) and an action (the return vector) is associated with this
place cell.

Next, the network system is able to learn to characterize (and thus
recognize) diɼerent places of the environment (see fig. 23). Activities
of the diɼerent place cells depend on the recognition levels of these
visual cues and of their locations. As shown in figure 24, a place cell
will then be more and more active as the robot gets closer to its learning
location.
The area where a given place cell is the more active is called its place

Figure 24. As the robot gets closer to each place cell learning location, the cor-
responding place cell (PCn) gets more active. the maximum activity
of a place cell corresponds to its learning location. And the area
where a place cell activity is the highest is its place field (PCnF).
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field. An associative learning group of neurons allows sensory-motor
learning (place-drive-action group on figure 23). Place-drive neurons
learn the conditioning between place cells and drives (Hebbian learn-
ing). They are associated with the return vector of the corresponding
goals to build a visual attraction basin around each goal.
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