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It is assumed that future robots must coexist with human beings and behave as their companions. Consequently, the
complexities of their tasks would increase. To cope with these complexities, scientists are inclined to adopt the anatomical
functions of the brain for the mapping and the navigation in the f eld of robotics. While admitting the continuous works
in improving the brain models and the cognitive mapping for robots’ navigation, we show, in this paper, that learning
by imitation leads to a positive effect not only in human behavior but also in the behavior of a multi-robot system. We
present the interest of low-level imitation strategy at individual and social levels in the case of robots. Particularly, we
show that adding a simple imitation capability to the brain model for building a cognitive map improves the ability of
individual cognitive map building and boosts sharing information in an unknown environment. Taking into account the
notion of imitative behavior, we also show that the individual discoveries (i.e. goals) could have an effect at the social
level and therefore inducing the learning of new behaviors at the individual level. To analyze and validate our hypothesis,
a series of experiments has been performed with and without a low-level imitation strategy in the multi-robot system.
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1. Introduction
In an unknown environment, interactions among robots can

be based on stigmergy [1] which ref ects indirect com-

munication through the environmental changes. To share

partial knowledge of this environment in a multi-robot sys-

tem, several benef ts can be expected from the imitation

capability.[2–6] The imitation strategy can be considered

as a powerful tool for autonomous robots based on a bio-

inspired architecture to learn and discover new tasks and

places. We believe that it is a step forward in bio-inspired

architectures (for the navigating robots) by introducing

imitation. For instance, RatSLAM algorithm designed by

[7] is a bio-inspired simultaneous localization and mapping

(SLAM) system based on computational models of rat’s

hippocampus orBatSLAM[8] (inspired byBat’s navigation

system), both algorithms provide the way to navigation and

mapping, andwe come upwith the idea on how to accelerate

this mapping process by associating hippocampus naviga-

tion with imitation strategy.

Modern robotics considers imitation as a powerful

behavior that enables learning by observation or imitation

[9–15] even if the imitation was not intentional (i.e. imita-

tion emerges from the ambiguity of perception in a simple
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sensori-motor system).[2] The idea of learning by imitation

for robots is inspired by the notion of imitation described by

developmental psychologists. According to psychologists,

[16] immediate or low-level imitation corresponds to the

ability of a child (fewmonths old) to imitate (spontaneously)

meaningless gestures. This low-level imitation may serve

to higher level functions. It is not only the tool for learn-

ing but also a way to communicate and to accelerate the

learning process. To highlight the role of the imitation, we

started with an experiment (see Figure 1) which describes

the success of interaction between a human and a robot.

The goal of this experiment was to allow a robot

to follow/imitate the human’s trajectory to discover the

positions of the goals in the environment. Indeed, Figure 1

from (a) to (l) shows the discovery of the f rst and the second

goals (G1 and G2) based on the imitation capabilities. The

arrows in Figure (e) and (l) show the trajectories of the

robot. At this level, the question is to know what would

happen if we replace the human by a robot? In this paper,

we study the effect of learning by imitation in a multi-robot

systemwhich is based on the cognitivemap 1 for navigating

and planning. Particularly, we analyze the association of the

concept of a very low-level imitation, with our bio-inspired
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Figure 1. The success of the human–robot interaction based on imitation capabilities. With the following of the trajectory of the human,
Figure (a)–(e) show the robot’s success to discover the f rst goal (G1) and Figure (f), (i)–(l) show the success in the discovery of the second
goal (G2). The video is available at http://persoetis.ensea.fr/neurocyber/Videos/Cognitive_Multi-Robot_System/Interaction_Human_
Robot.

architecture which allows the learning and the building of
the cognitive map.
This paper is organized as follows: inSection 2, the theory

and the bio-inspired architecture of our proposed cognitive

map are presented. Section 3 analyzes the impact of the
cognitive map’s adaptation in the context of a multi-robot
system. Section 4 describes the neuronal architecture for the
imitation process. Section 5 details experimental results and
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f nally, before concluding, Section 6 examines the positive
feedback of imitation strategy in a cognitive multi-robot
system.

2. A bio-inspired architecture for cognitive map
building
Starting from neurobiological hypothesis which highlights
the importance of the hippocampus in the spatial navigation,
[17] form a model of the cognitive map in the hippocampus
representing the entire environment and suggest the shortest
paths to a given goal. The model proposed by [18] provides
a complete neural architecture of the learning process. The
model uses a cognitive map and associates it with a mech-
anism of action selection.[19,20] Also propose a model of
cognitive embedded in a parieto-frontal network, which is
based on cortical columns. Based on the same research,
different authors [21–24] have disclosed special cells in
the rodent’s hippocampus that f re when the animal is at a
precise location. These neurons are called place cells (PC).
We do not directly use them to navigate, plan, or construct a
map, we rather use neurons called transition cells (TC).[25]
A transition cell codes a spatio-temporal transition between
two PCs that successively win the competition at time t and
t+δt , respectively.The set of the PCs and theTCs constitute
a non-Cartesian cognitive map. The reason behind using
TC is that their association with an action is univocal and
quite straightforward. Thus, there is no need for an external
algorithm to extract the action from the cognitive map.
Our architecture takes inspiration from the model pre-

sented in [26] which describes the role of the hippocampus.
Indeed, the entorhinal cortex which is the main input to
the hippocampus (EC) receives signals from associative
cortical areas then f lters and merges this multi-modal in-
formation in order to transfer it to CA3 pyramidal cells and
the dentate gyrus (DG). The DG puts the signals together
in a temporal hierarchy which later on is re-transmitted
to CA3 cells. This temporal hierarchy allows CA3 to be
aware of past events and put them in correspondence with
present events, therefore the temporal hierarchy behaves
like an associative memory through stocking possible tran-
sitions between these events.The recognition of the ongoing
sequence happens at the level of CA1 using EC and CA3
information. It also extends to the prefrontal cortex (PFC)
to serve higher levels of cognitive processes.
To create the PC, the robot takes a visual panorama of the

surrounding environment. A camera mounted on a pan sys-
tem allows to perceive the environment or the surroundings.
The visual images are processed to extract visual landmarks.
These landmarks are learned and a visual code is created by
combining the landmarks and their corresponding azimuth.
This conf guration serves as a code for PCs. The signals
provided by the EC are solely spatial and consistent with
spatial cells’ activities. In order to select (only) the cell with
the strongest response at a specif c location, spatial cells’

activities are submitted to awinner-take-all competition.We
subsequently speak about the current location by indicating
the spatial cell which have the highest level of activity at a
given location. The temporal function at the level of the DG
is reduced to the mere memorization of the past location.
The acquired association at the level of the CA3 pyramidal
cells is then the transition from a location to another besides
all information concerning the time spent to carry out this
transition. Once the association from the past location and
the new one is learned, every new entry will reactivate the
corresponding memory in the DG. A schematic view of our
architecture is shown in Figure 2.
During the discovery of the environment, the cognitive

map is gradually created when the robot moves from one
place to another. It is possible that multiple PCs (previ-
ously learned) are similar to the current location perceived
according to the f xed value of threshold of vigilance. To
select a single PC having the strongest response to a specif c
location, the activities of spatial cells are subjected to a
competition called winner-take-all. It allows the identif -
cation of the current location by the spatial cell having
the highest activity at a given location. The winning acti-
vated PC indicates the recognition of this place which is
already visited. If none of the PC activates, the current
location is considered as an unknown location and this
location is learned by another PC and it will be activated on
revisit the same location. The equations which govern the
learning process in the cognitive map are given below as
Equations (1) and (2):

dWCC
i j (t)
dt

= T (t).
!
(γ −WCC

i j

"
.XCi (t).X

C
j (t)

−WCC
i j (t).

!
λ1.XCj (t)−λ2)

"
(1)

dWMC
i j (t)
dt
= S(t) fori, j = arg_maxk,l

!
XCl (t).X

K
M(t)
"

(2)

T (t) is a binary signal (0 or 1) activated when a transition
occurs (moving from one place to another). This signal
controls the learning of recurrent connections on the cortical
map WCC . γ is a parameter less than 1 which regulates the
distributionofmotivation activity on themap.λ1 andλ2 are,
respectively, parameters of active and passive forgetting.
S(t) is a signal associated with the goal satisfaction. This
signal controls the learning of synaptic connections between
neurons in WMC motivations’ activity XM and neurons of
the cognitive map of activity XC .After having explored the
environment, the robots are in a position of predicting the
locations directly reachable in each situation and to perform
a gradient ascent according to their cognitivemaps and their
associated drives.
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Figure 2. From the construction of the visual code of PC to the creation of the cognitive map.

(b) (c)(a)

Figure 3. Simplif ed view of the cognitive maps of the robots based on TC. Figure (a) presents an unknown environment with a size of
x = 3.82m and y = 4m. Figure (b) and (c) present, respectively, the cognitive map of the f rst and the second robot. The construction
process is based on place recognition using PCs, activation of one PC and delayed activation of another and allows for transition
prediction (green transition) and the need for goals (G1 and G2) triggers maximum motivation for a given goals. The video is available at
http://perso-etis.ensea.fr/neurocyber/Videos/Cognitive_Multi-Robot_System/CMRS.

3. The adaptation capabilities of the cognitive map
In order to show the robustness of this architecture, we tried
to study initially the behavior of a cognitive multi-robot
system capable of learning several goals in an unknown
environment. Figure 3(a) presents the initial unknown
environment with its size of x = 3.82m and y = 4m. The
environment is composed of two goals (G1 and G2), two
obstacles (O1 and O2), and two identical robots (the robots
were equipped by the same tools) with an experiment time
frame equal to 30 min and a threshold of vigilance equal to
0.65. The threshold of vigilance (which has a value between
0 and 1) is a variable that controls the learning rate of the
neuronal network and in our case also controls the density
of PC on the cognitive map. In practice, a new place cell
is recruited when the winner cell activity is lower than the
vigilance threshold. Thus, when the threshold of vigilance
values is high, the robot learns more PC.
Figure 3 shows that our cognitive robots are able to avoid

the stable and dynamic obstacles, to navigate, learn, and
construct their own cognitive map online (at the same time)

in a unknown environment. The shape of the cognitive map
in Figure 3(b) or (c) proves that map construction is well
related to the robot’s own perception: the different robots
learn the environment and the position of the two goals in
a different manner, and the number of the PCs is not the
same (7 for the f rst robot, and 9 for the second robot with
the same threshold of vigilance).

3.1. Robustness to environment changes
In the previous part, the robots were able to construct their
own cognitive map which allows them to navigate and to
plan their path in f nding goals. To analyze the evolution
of the cognitive map, we kept the following parameters
unchanged: cognitive map for each robot, the threshold
of vigilance, and the duration of the experiment like in
the previous experience. Now, we change the structure of
environment by increasing its size (x = 3.82m and y =
7m) and by changing the positions of the obstacles (see
Figure 4(a)).
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(c)(b)(a)

Figure 4. The adaptive capability of the cognitive map induced by a changing environment where its new size is x = 3.82m and y = 7m
and G1 and G2 are the goals. Figure (a) and (b) presents, respectively, the evolution of the cognitive map for the f rst and the second robot.

Figure 5. The components of the RR and the cognitive robot.

Figure 4(b) and (c) shows that, taking into account the
new modif cations in the environment, both robots were
able to continue to adapt their own old cognitive maps
while learning the new environment through adding new
PCs and TCs. Thus, the changes of the environment did not
disturb the robots in their continuous learning of the new
environment. This validates the robustness of the cognitive
map and capacities to associate and dissociates drives with
specif c TC on the cognitive map.

4. The neuronal architecture for the imitation process
In order to share a partial knowledge of the environment,
direct communication between robots could be used. How-
ever, it implies the capability to build some abstract repre-
sentation of the world which is not present in our model.
The presented architecture is based on the stigmergy to
communicate between robots. Thus, imitation seems

like an interesting way to strengthen this architecture.
We describe here a very simple architecture for imitation
in a navigation perspective. The proposed model is based
on dynamical interactions among mobile robots. Let’s start
by showing the components of the reactive robot (RR) and
the cognitive robot that we used in our experiments (see
Figure 5). It’s important to note that to avoid obstacles
we used a Braitenberg mechanism. Indeed, our robots are
equipped with IR sensors for the detection and avoidance
of obstacles. They see obstacles with f ve binary sensory
inputs associated with f ve sensors (left, front left, front,
right front, and right). Robots are then able to know if they
are about to face obstacles with a rough indication of their
directions.
Our aim is providing limited capabilities to a mobile

robot to interact dynamically with other robots by follow-
ing their current direction of movement. Figure 6 shows
the architecture of our imitation model. As shown in
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Figure 6. The architecture of our imitationmodel. Figure (c) shows the neuronal architecture to imitate or follow the other robots depending
on the estimation of their velocity vectors (optical f ow). Figure (a) presents the optical f ow function shown by our neuronal simulator
Prometh when the two robots move at the front of the imitator robot. The+ve and the−ve are the apparent visual speed in pixel/s. The+ve
(move left) and −ve (move right) activities are shown, respectively, by black blocks and blue blocks. The intensity or strength of blocks
ref ects the speed of the respective moving object. Figure (b) describes how an imitator robot perceives the movements of the other robots.
We added the arrows to show the motion direction of two robots (presented by the right and left arrows) detected by the robot taking the
image.

Figure 6(c), perceived motions (by a camera) in the visual
f eld of the robot are estimated by a classical optical f ow
algorithm.[27] If the perceived motion is in the upward
direction, it is considered as a positive activity. On the
other hand, downward motion is accumulated as negative
activity. Similarly, motion on the left direction leads to
negative activity while movements on the right direction
are considered as a positive activity. Figure 6(a) and (b)
shows the snapshots takenduring the experiment illustrating
optical f ow functioning. There are two moving objects in
the optical f eld of the robot. One moves left to right and
that is transformed into negative activity by the optical f ow
(shown by blue blocks) while the other moves right to left
and that is transformed into positive activity (shown by
black blocks). To determine the correct motion direction
in following an interacting partner, optical f ow activities
are transferred to a short-term memory block, this block is
used to avoid the fast changes in the environment. Then, all
the pixels of short-term memory module are projected on
the x-axis (i.e. all pixels in each column are added).Winner-
takes-all (WTA) selects the highest activated column. This
selected column indicates the direction of the movement
and the robot can point and follow the interactor.
For this experiment, the resolution of the image is

32×24 (32 columns or location), these 32 possible locations
are realized in 60◦ (−30◦ to 30◦ ) circular angles which are
fed to the motor according to the corresponding columns
(column zero refers to−30◦ while 32th column corresponds
to 30◦ ) and 0◦ when the agent stands in front of a mobile
robot. If two ormore visual stimuli are presented at the same
time then our proposed imitation algorithm dynamically

locates and selects the interacting agent whose estimated
velocity vectors are the highest.

5. The positive effect of imitation in the behavior of a
multi-robot system
In this part, we try to study the feasibility of our experiments
in the multi-robot system. Indeed, we try to show, through
two experiments, the positive feedback of the imitation
which allows the imitator robot to discover both goals.
The f rst experiment is done with a simple RR which only
has an imitation capability. The second one is done with
a cognitive robot which has an imitation capability along
with the ability to create its own cognitive map. It is also
important to mention that in these experiments the imitated
robot is never aware of being imitated.

5.1. Imitation performed by a reactive imitator robot
To study the inf uence of imitation on the behavior of the
robots, we added two cognitive robots 2 along with one RR
which uses just an imitation strategy. Figure 7 shows at t0,
the RR tries to follow one of the two cognitive robots (CR1
and CR2) which are in navigation tasks. Indeed, at t1, the
RR detects CR1 and imitates it in its current direction of
motion consequently achieving the f rst goal at time t2. At
t3, t4, t5, and t6, the imitation strategy allows the RR to
f nd the second goal with the help of CR2. It is important
to note that CR1 and CR2 are faster than the RR. For this
reason, at t2, we see that CR1 changes its direction and
moves while RR still searches for the goals. Moreover,
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Figure 7. The inf uence of the imitation behavior in the multi-robot system. The experiment is done with three robots. RR is the reactive
robot; CR1 and CR2 are the cognitive robots; and G1 and G2 are the two goals. The Figure is presented with chronological order. The
trajectories of the robot show that RR is able to f nd the two goals by imitating the trajectories of CR1 and CR2. In the trajectories of
robots, the normal lines show the two cognitive robots’ trajectories when using their cognitive map. The bold lines show the trajectories of
the imitator RR. Indeed, for each step we noted the number of the followed robot (imitation of CR1 or CR2). The red dashed lines show
when the cognitive robots CR1 and CR2 were imitated by the RR. The video is available at http://perso-etis.ensea.fr/neurocyber/Videos/
Cognitive_Multi-Robot_System/Imitation_CRs-RR.

at t6, when the RR f nds the second goal, the CR2 is already
far from the RR. The trajectories of robots demonstrated in
Figure 7 allow to further explain the individual behavior of
each robot inmore details. Indeed, the normal lines show the
two cognitive robots’trajectorieswhen using their cognitive
map, the bold lines show the trajectories of the imitator RR,
and the red dashed lines show when the cognitive robots
CR1 and CR2 were imitated by the RR.

5.2. Imitation performed by a cognitive robot
After the discovery of the two goals by the RR through the
help of the cognitive robot, the RR is not able to return to the
goals on his own againwhile depending on its needs because
it didn’t learn their positions in the environment. The pro-
posal is to combine the imitation strategy with the creation
of the cognitive map. Thus, the cognitive imitator robot
could create its own cognitive map during the imitation.
Once it discovers both goals, it stops the imitation strategy
and then it can satisfy its needs by using its cognitive map.

For the sake of simplif cation, we use a minimal setup
(see Figure 8). It includes two goals, three obstacles, and
two robots: leader robot LR (which has already learned the
environment and the positions of both goals G1 and G2)
and the imitative cognitive robot IR (which is capable of
imitating and following the other cognitive robot LR and of
creating its cognitive map online).
Figure 8(a), (b), (d), and (e) shows that the IR tries to

construct its own cognitive map by following the cogni-
tive robot LR (when LR navigates towards the goals using
its own cognitive map). Figure 8(c) and (f) demonstrates
that the IR has succeeded in discovering both goals G2
and G1 during the imitation process or by following the
LR. Throughout the experiments, it was notable that the
IR also has the capability of learning and of constructing
its own cognitive map (online) independently, but if the
same task is performed by using imitation tactic it boosts the
performance (as a function of time) of discovering goals and
creating a cognitive map.After discovering the positions of
both goals, the IR will be able to return alone to the both
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(a) (b) (c)

(d) (e) (f)

Figure 8. The inf uence of the imitation behavior in a multi-robot system. The experiment is done with two robots: IR imitator cognitive
robot and a simple cognitive robot LR that have already learnt the environment and the position of the goals G1 and G2. The Figure is
presented with chronological order and proves that the imitator robot was able to f nd, learn the two goals G1 and G2, and create its own
cognitive map. Thus, it can satisfy its needs on its own by using its cognitive map. The video is available at http://perso-etis.ensea.fr/
neurocyber/Videos/Cognitive_Multi-Robot_System/Imitation_LR-IR.mov.

goals using its own cognitive map. This experiment proves
the importance of imitation in multi-robot system.
To further understand the robots behaviors, Figure 9

demonstrates the trajectories and the individual behavior
of robots in more details. The arrows are the initial positios
of the two robots in the environment.
The dashed line traces the trajectory of IRwhereas trajec-

tory of LR is shown by the continuous line. IR’s trajectory
shows that the robot tries to go to the position of LR when
IR detects it in its visual f eld. It is evident that when IR is
close to the LR, its trajectory tries to follow the trajectory of
LR (the two trajectories are confounded). The trajectories
of the robots show that IR is able to f nd the two goals G1
andG2 by imitating the trajectory of LR. It is noticeable that
the robots do not have localization tools. Thus, we used the
robots odometries in order to plot their relative locations and
their trajectories in the environment. Indeed, each point of
the trajectory is plotted after 4s which is presented by one
wheels’ tower.

6. Analysis of the effect of learning by imitation
In order to evaluate the effect of learning by imitation in the
multi-robot system, we introduced (i) the goal discovery
time (time taken by a robot to discover both goals) and (ii)

the number of the PCs. These parameters could characterize
the performance of our system.

(a) (b)

Figure 9. The trajectories of robots to reach the goals. The
cognitive map allows the LR to f nd the two goals. Thanks to
the imitation strategy, the IR is able to f nd goals when it follows
the trajectory of the LR. The IR has the capability to learn the
environment and the positions of the goals through creating its
own cognitivemap. Thus, after the f rst discovery of the two goals,
the IR is able to return alone to the goals. Figure (a) and (b) show,
respectively, the discovery of the goals G1 and G2.
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Figure 10. The average time of the goals’ discovery. The f rst curve (from the left) shows the time to discover the goals by an imitator
cognitive robot (with imitation capability) along with a leader cognitive robot which already knows the goals. The second curve (dotted
line) describes the time taken by a RR (without imitation capability) to explore the goals along the same leader cognitive robot as in the
previous case. The last curve demonstrates the average time needed to f nd the goals when a single RR explores the environment randomly.

Table 1. Fisher tests in f nding the average time of the goals discovery time.

Scenarios Total Fisher Test taken
tests value for Fisher value

Reactive robot 16 5.387 8
Reactive robot with cognitive robot 16 15.792 16
Imitator cognitive robot with cognitive robot 16 2.153 8

6.1. The effect of imitation on the goal discovery time
In order to compute the discovering time of both goals in the
environment, three different experiments have been tested
according to the following scenarios: (i) a single RR in the
environment without imitation capability, (ii) the same RR
without imitation capability along with a robot that already
knows the locations of the goals, and f nally (iii) a cognitive
imitative robot along with a leader robot that already knows
the locations of the goals in the environment.
To f nd the average time for the goal’s discovery in each

scenario, we conducted several tests with the change of the
robot’s starting position and also the location of goals. The
number of tests to take the average value is determined by
the Fisher exact test. It is a statistical test that compares
the difference between two variances of two sets of tests
(having the same number of observations) by taking the
ratio between them according to Equation (3):

F = S2x/S
2
y (3)

where S2x and S2y are the variances of two sets of tests. S2x is
the numerator and it always has the larger value
between two variances. If the ratio (F) does not exceed a
certain theoretical value (available in the table of Fisher),
it can be accepted. On the other hand, if F is greater than
the theoretical value, we reject the hypothesis of equality

of two variances, in this case we increase the number of
experiments to close the theoretical value of equality of
two variances.
For the f rst scenario, where a RR (without imitation)

looks for goals, we conducted two sets of tests (four tests in
each set) and computed the Fisher value (F=5.387), it is less
than 19 which is given in the table of f sher. For the second
scenario, where the same RR explores the environment
along with a cognitive robot, we conducted two sets of
tests (four tests in each set) and computed the Fisher value
(F > 100), it is greater than 19 and unacceptable. To reduce
the difference in variance, we conducted another set of tests
(4 tests in each set) and computedF= 15.79, it is less than 19
(does not exceed Fisher’s theoretical value). Finally, for the
last scenario, where the imitative cognitive robot imitates
the leader cognitive robot to f nd the goals, we applied two
sets of tests (4 tests in each set) and calculated the Fisher
value (F = 2.153), it is less than the theoretical value (19).
To have a better comparison, we summarize the results of
the Fisher tests by the Table 1:
The average time in f nding the two goals for each sce-

nario is plotted in Figure 10. Thanks to the learning by
imitation strategy, the imitative cognitive robot, which is
part of the third scenario, takes less time to f nd both goals
(G1 and G2), its accumulative average time is about 5
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Figure 11. The inf uence of the imitation on the creation of the cognitive map of an imitator cognitive robot. (a) Shows the cognitive map

of the LR which already learned the environment and the positions of both goals G1 and G2. (b) Shows the cognitive map of IR that is
created after applying the imitation strategy. (c) Presents the two cognitive maps in the same plan. The f gure proves the positive effects

of the imitation strategy which allows the IR to f nd the two goals and to create its own cognitive map where its shape is more simple than
the LR′s cognitive map.

Figure 12. Another aspect of the imitation process.

min (2 min for G1 and 3 min for G2). Once the imitator

cognitive robot discovers both goals, its own cognitive map

allows it to plan to the goals’ locations. Thus, the imitator

cognitive robot is able to better optimize its goals’discovery

time (less than 5 min). However, the RR of the f rst and

second scenarios takes much more time (about three times

more) to discover goals. Indeed, for the f rst scenario, the

accumulative average time is 22 min (6 min for G1 and 16

min for G2); similarly, the second scenario takes 19 min (6

min for G1 and 13 min for G2).

The results of the f rst and the second scenario shown in

Figure 10 allow us to analyze the inf uence of the presence

of multi-robot in the same environment. The difference

between these scenarios is the way of exploring and access-

ing the goals. Indeed, in the f rst scenario, the RR discovers

the goalswithout any diff culty of accessibility. However, in

the second scenario, it is not easy to discover them because

the cognitive robot (which has already learned the goals’

position) acts as a dynamical obstacle. It means that the

RR could lose or win its discovery time. Indeed, when both

robots are close to the goal, the RR, instead of heading to-

wards this goal, changes its direction to avoid the dynamical

obstacle. However, when both robots are far from the goals,

the RR can avoid the dynamical obstacle (the cognitive

robot) and f nds easily the goals which are available.

6.2. The effect of imitation on the cognitive map
The cognitive map is a way to describe the complexities

of the environment. By adding a simple imitation strategy,
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we allow the IR to share these complexities and to learn
the experience of the LR in order to achieve its goals. Since
the IR has the capability of creating its cognitive map, when
it follows the trajectory of the LR, its cognitive map will
be inf uenced by the LR. Figure 11(a) and (b) shows the
cognitive map of the LR and the IR, respectively. In order
to see the difference between the two cognitive maps, we
put them in the same plan (see Figure 11(c)).
It is noticeable that there is a similarity between the two

cognitive maps at the level of the PCs, TCs, and the shape
of the cognitive maps. This similarity shows the positive
effects and the success of the imitation processwhich allows
the IR to follow the LR and to discover and learn both goals.
As a quantitative measurement, we can analyze the number
of the PCs and the TCs. Indeed, we noted that the shape
of the I R′s cognitive map is more simple than the shape
of the LR′s cognitive map. Thus, the learning by imitation
allowed the IR to optimize its number of PCs (from 12 of
LR’s PCs to 8 PCs) and also to optimize its TCs (from 30
LR’s TCs to 19 TCs) with the same ability to reach both
goals G1 and G2, in the same environment as the LR. This
optimization could better optimize the I R′s planning time
and its goals’ discovery time due to the simplicity of its
cognitive map.

6.3. Situations that occurs in the imitation experiments
In the experiments with multi-robot, we noted several sit-
uations where the performance of the system decreases
regardless of robots used (reactive or cognitive). Figure
12(a) shows that besides the static obstacles, the LR can
be a dynamic obstacle in the environment, and instead of
following it, the IR has to change its direction to avoid it.
Another case appears when the IR tries to follow the LR
without knowing whether the LR goes to the goals or not.
In this case, the IR may follow the LR to f nd uninteresting
places (see Figure 12(b)). Finally, we can also have accessi-
bility problem (see Figure 12(c)). It occurs when the robot
is unable to satisfy its needs because the goal is occupied
by another robot. To resolve these situations, integration
of emotional mechanism seems necessary.[28] Indeed, the
facial expression could be another way of communication
which also respects the conditions of the stigmergy. For
instance, adding an expressive head on the LR could allow
the IR to know when to start the imitation and when to
expect the access of the goals.

7. Conclusion
In this paper, we started by revealing the adaptive capability
of the cognitive map based on the brain mapping strategies
that enable a multi-robot system to adapt in an unknown
environment in order to solve navigation tasks. We sug-
gested a set of experiments in real robots that shows how
each robot system is able to learn, adapt, and create online

cognitive map and how this architecture allows the robots
to learn various goals in an unknown environment. We also
highlighted the importance of the imitation strategy which
boosts the capability (as a function of time) of a cognitive
multi-robot system to adapt to an unknown environment.
It also allows to solve the navigation task among various
targets. Finally,weproved that combining the learning capa-
bility with a simple imitation strategy leads (in a real multi-
robot system) to a positive feedback both at the individual
and the social level. Moreover, it optimizes the time to
explore the goals, and it allows the imitator robot IR to
create a cognitive map (approximately in the same shape
as the Leader robot LR). Thus, to keep the rules of the
stigmergy, imitation strategy becomes the way for robots
to share knowledge without direct communication. Our ar-
chitecture which is based on learning by imitation could be
used in many areas. For instance, in [29] authors used this
architecture to learn trajectories of the robot’s arm. Indeed,
the model is based on some dynamical equations which
provide a motor control when exploring and converging
capacities.Avisuo-motor map is used to associate positions
of the end effector in the visual space with proprioceptive
positions of the robotic arm. It enables a fast learning of the
visuo-motor associations without needing to embed a priori
information. The controller can be used both for accurate
control and interaction.
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