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In this letter we describe a hippocampo-cortical model of spatial process-
ing and navigation based on a cascade of increasingly complex associa-
tive processes that are also relevant for other hippocampal functions such
as episodic memory. Associative learning of different types and the re-
lated pattern encoding-recognition take place at three successive levels:
(1) an object location level, which computes the landmarks from merged
multimodal sensory inputs in the parahippocampal cortices; (2) a sub-
ject location level, which computes place fields by combination of local
views and movement-related information in the entorhinal cortex; and
(3) a spatiotemporal level, which computes place transitions from con-
tiguous place fields in the CA3-CA1 region, which form building blocks
for learning temporospatial sequences.

At the cell population level, superficial entorhinal place cells encode
spatial, context-independent maps as landscapes of activity; populations
of transition cells in the CA3-CA1 region encode context-dependent maps
as sequences of transitions, which form graphs in prefrontal-parietal
cortices. The model was tested on a robot moving in a real environment;
these tests produced results that could help to interpret biological data.
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Two different goal-oriented navigation strategies were displayed depend-
ing on the type of map used by the system.

Thanks to its multilevel, multimodal integration and behavioral imple-
mentation, the model suggests functional interpretations for largely un-
accounted structural differences between hippocampo-cortical systems.
Further, spatiotemporal information, a common denominator shared by
several brain structures, could serve as a cognitive processing frame and
a functional link, for example, during spatial navigation and episodic
memory, as suggested by the applications of the model to other domains,
temporal sequence learning and imitation in particular.

1 Introduction

In recent years, the understanding of the hippocampo-cortical connectivity
(Witter et al., 2000; Lavenex & Amaral, 2000; Amaral & Witter, 1989) and
evidence from a variety of experimental approaches indicate that each of
the component fields of the hippocampal system (parahippocampal region,
entorhinal cortex, hippocampus proper) may serve different yet comple-
mentary functions. Both anatomical and experimental results suggest the
existence of at least three main processing levels of complex temporospatial
information: a first level in the perirhinal and postrhinal cortex for pattern
location association, a second level in the entorhinal cortex for the integra-
tion of visuospatial and self-motion information into a coarse spatial code,
and a third level for temporospatial and contextual integration in the trisy-
naptic loop, which forms a major input to the subiculum. Moreover, two
parallel streams (conveying respectively “what” and “where” information)
have been delineated by tracers all the way through parahippocampal and
entorhinal systems. Local connections within and between these streams
potentially lead to increased associativity and integration of the informa-
tion that reaches the different rostrocaudal or mediolateral regions of the
hippocampal system (Lavenex & Amaral, 2000). Yet contrasting with these
latter partial connections, a layered projection of the “What” and “Where”
streams leads to a considerable convergence and a loss of anatomical topol-
ogy at the level of the dentate gyrus (DG) and the CA3 fields (Witter et al.,
2000; Lavenex & Amaral, 2000; Amaral & Witter, 1989). These two struc-
tures are also in receipt of important modulating signals from the septum
of the basal forebrain cholinergic system and the dopaminergic system. The
functional meaning of these structural characteristics is poorly understood.
A biologically realistic and functionally integrated model should help to
clarify the properties of the different subsystems and their contribution to
global functions attributed to the hippocampus, such as spatial processing
and navigation, or episodic memory.

The hippocampus of the rat has been hypothesized to host a spatial rep-
resentation of the animal’s environment (O’Keefe & Nadel, 1978). The main
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evidence in support of this theory is the existence of hippocampal place cells
(PC, pyramidal neurons whose firing is strongly correlated with the location
of a freely moving rat in its environment) (O’Keefe & Dostrovsky, 1971). The
activity of each cell is selective of the current location of the animal. This
cell-specific region of intense discharge is named the firing field, by analogy
to the receptive field of cortical neurons. The firing fields of PCs can be seen
in all parts of the environment accessible to the rat, so that collectively, active
PCs and their specific firing profile provide a potent signature of the environ-
ment and, plausibly, the components of a map. If the shape of the apparatus
(Muller & Kubie, 1987; Lever, Willis, Cacucci, Burgess, & O’Keefe, 2002), the
color of the objects within the apparatus (Bostock, Muller, & Kubie, 1991;
Kentros, Hargreaves, Kandel, Shapiro, & Muller, 1998), or the orientation
of the apparatus relative to background (Cressant, Muller, & Poucet, 2002;
Skaggs, Knierim, Kudrimoti, & McNaughton, 1995; Tanila, Sipila, Shapiro,
& Eichenbaum, 1997) are changed, “remapping” takes place: some cells
active in one apparatus become silent, and inversely. The fields of the cells
active in both apparatuses are unrelated. This phenomenon suggests that
the hippocampus learns and holds distinct maps for distinct environments.

The hallmark of our hippocampal model was a dynamical spatiotempo-
ral (and not just spatial) representation of the space and task environment
through the computation and encoding of transitions in the CA field (transi-
tion cells), the inclusion of this hippocampal structure into a larger cortical-
subcortical network, and the storage of the maps at cortical level. These
characteristics provided for a straightforward solution to the theoretical
difficulty to switch from a spatial cognitive map to its motor implemen-
tation during goal-oriented navigation (Banquet, Gaussier, Quoy, Revel, &
Burnod, 2004; Gaussier, Revel, Banquet, & Babeau, 2002; Banquet, Gaussier,
Revel, Moga, & Burnod, 2001). Even though different implementations of
neural fields (Amari, 1977) and chaotic attractors (Tsuda, 2001) were used
(Quoy, Banquet, & Dauce, 2001; Dauce, Quoy, & Doyon, 2002), the model
presented here differs from a classical attractor model in that no recurrent
connections were implemented in CA3.

Our main goal in this letter is to delineate within a coherent frame
the distinct complementary contributions, in spatial processing and nav-
igation, of the parahippocampal region (perirhinal, PR; parahippocampal,
PH; and entorhinal, EC cortices) and of the hippocampus (HS) proper,
based on anatomical and experimental observations, and to make testable
predictions. Our model comprises successive levels of association of dif-
ferent types and of increasing complexity. These associative neural nets,
functionally paired to pattern-encoding and recognition networks, pro-
vided increasingly multimodal and abstract representations of the inputs.
The differences between the associations performed by the local recurrent
cortical circuits of pyramidal cells and the extensive, global CA3 associa-
tions (Cohen & Eichenbaum, 1993) were attributed to the distinct structures
of hippocampal and cortical networks. Object-location associations (here
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landmarks), encountered in the parahippocampal cortex (Rolls & Treves,
1998), combined to form local views; in conjunction with idiothetic inputs
(here, idiothetic information means all direct self-motion information, includ-
ing optic flow, vestibular signals, corollary discharge, and somatosensory
feedback), these views created position-dependent activity in the medial
EC (Quirk, Muller, Kubie, & Ranck, 1992; Sharp, 1999) and HS. The wealth
of experiments on spatial and navigation tasks in rodents and primates
provided a test bench for model development and analysis.

The recording of at least two types of PCs (hippocampal and entorhinal-
subicular) suggests the encoding by distinct neural populations of two types
of maps for the same environment. Classically, PCs with well-delimited
place fields have been recorded in CA3-CA1 pyramidal cells and DG granule
cells (Jung & McNaughton, 1993). More recently, place cell–like activity has
been recorded in the superficial (Quirk et al., 1992; Sharp, 1999) and deep
layers (Frank, Brown, & Wilson, 2000; Mizumori, Ward, & Lavoie, 1992) of
medial entorhinal cortex (MEC), as well as in the subiculum (SUB) (Sharp &
Green, 1994). The firing fields of these pyramidal neurons have no clear-cut
boundaries but a graded decay starting from spatially stable maxima. No
remapping of these fields takes place when the geometry of the environment
is changed; rather, there is a topological adaptation to the shape of the
environment (Quirk et al., 1992; Sharp, 1999). The relatively weak and coarse
place codes found in superficial EC are refined in the hippocampus proper
to create a finely grained representation of position in DG, transformed into
larger, overlapping place fields in CA3-CA1, and further embedded in the
context of a trajectory in deep EC (Frank et al., 2000). Our model reproduced
two types of place fields, entorhinal and hippocampal, starting from real
views taken from the environment by the camera of a moving robot and
also provided mechanistic and functional interpretations and predictions.
The hypothesis of a hierarchy of associativity allowed us to consider the
spatial information precoded in EC as the source for both a DG refined
spatial code and a CA3-CA1 temporospatial code. Recent results confirmed
the main assumption of our model (Banquet et al., 1997; Revel, Gaussier,
Leprêtre, & Banquet, 1998) of two distinct functions of EC-DG and CA3-CA1
for the processing of spatial and temporal order information. After selective
DG or CA1 lesions, a double dissociation in the separation of respectively
small-grain spatial patterns and temporospatial patterns (Gilbert, Kesner,
& Lee, 2001) supported this view.

Collectively, the corresponding two types of place cells encoded two
types of coexisting hippocampo-cortical maps, associated with distinct nav-
igation strategies during robotic experiments. The first was a “universal”
context-independent map (Sharp, 1999) computed by superficial entorhi-
nal neural populations with weak position-dependent activity, based on
“landscapes” of PC potentials proper to each location. The classical con-
cept of spatial map was extended here to the acquisition of a coarse yet
specific location-action mapping, close to the concept of cognitive map.
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The second type was a context-dependent map computed by the CA3-CA1
association networks based on place field transitions encoded by transition
cells. A transition cell or set (representing a population in the model) was a
minimal representation of changing subsets of active CA3 neurons during
navigation. The transition cells formed the building blocks of the neural
representations of temporospatial sequences, graphs, and contextual maps
putatively stored in parietal or prefrontal cortex. While the first type of map
could be characterized as spatial and stable, this second type could be char-
acterized as temporospatial and dynamic. Universal and contextual maps
were both modulated by the “head direction system,” thus achieving exter-
nal coherence aligned to the external world, as well as internal coherence
by the alignment of views from multiple directions.

Our model built on previous models of place cells (O’Keefe, 1991;
Sharp, Blair, & Brown, 1996; Burgess, Recce, & O’Keefe, 1994; McNaughton,
Knierim, & Wilson, 1994; Touretzky & Redish, 1996), and yet made several
original contributions. First, the use of transitions to guide actions provided
a straightforward transition between spatial representation and navigation.
Second, a theoretical analysis of the process of place field and map learning
resulted in a single analytical equation (equation 2.10) that summarized the
spatial properties of the network and was useful to understand the relations
between the landmarks and the geometrical properties of the place fields.
Third, visual information was automatically extracted from the environ-
ment by a biologically inspired vision system combined with path integra-
tion to provide a mechanistic and functional integration and interpretation
of the two types of place fields. Stable invariant but coarse spatial codes
were combined with context- and task-dependent dynamic codes (transi-
tions) to produce robust and flexible temporospatial representations. At the
population level, the map concept was extended to a mathematical mapping
between the spaces of representations and actions, which could be shared by
both spatial and cognitive maps. Finally, the most significant subsystems
of the parahippocampal region and the hippocampus proper were func-
tionally integrated in order to implement, beyond the simple simulation of
a model, a robot control system during navigation experiments that were
more recently conducted in parallel in rat and robot (Paz-Villagran, Save,
& Poucet, 2003, 2004).1 This letter emphasizes the anatomical and phys-
iological support and detailed mathematical formulation of the different
model subsystems and the corresponding experimental predictions; it also
proposes a functional significance for the different types of PCs and corre-
sponding maps by establishing a link between map types and navigation
strategies. Nevertheless, the letter focuses on the input stages (PR, PH) and

1 Koala robot built by K-team, equipped with a CCD camera mounted on a servomo-
tor to take panoramic views of the environment; the visual field varied from 60 to 300
degrees with a maximal resolution of (256 x 1200) pixels. A magnetic compass simulated
the vestibular system.
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the early stages (EC, DG) of hippocampal processing, which form a sound
basis for the development of the whole system. The functions of CA3, CA1,
and subiculum are only sketched here. In spite of its apparently limited
scope, the further developments of the model proved its general relevance
for hippocampal and brain processing, since the same architecture receiving
different input modalities was successfully used for learning purely tem-
poral or spatiotemporal sequences (Banquet, Gaussier, Revel, et al., 2001;
Banquet, Gaussier, Quoy, Revel, & Burnod, 2002), as well as learning by
imitation (Gaussier, Moga, Banquet, & Quoy, 1998; Banquet, Gaussier, Revel,
et al., 2001; Andry, Gaussier, Moga, Banquet, & Nadel, 2001) and could be
adapted to any type of information in different formal spaces (e.g., word list
learning). This result is in agreement with the detection of spatiotemporal
information in a large variety of brain structures more or less directly related
to the hippocampal system. This information could help to monitor the spe-
cific processing performed by these structures and provide a functional link
between them.

We first outline the anatomical and physiological bases, the architecture,
and the functioning of the model in the methodological section, before pre-
senting the results and a discussion.

2 Methods

2.1 Anatomical and Physiological Basis of the Model. The parahip-
pocampal region, first level in the hierarchy of associativity of the
hippocampo-cortical loop, receives convergent inputs from neocortex
unimodal and polymodal association areas, and yet preserves some modal
segregation (Lavenex & Amaral, 2000; Suzuki, Zola-Morgan, Squire, &
Amaral, 1993; Witter et al., 2000). Selective lesions of PR and PH induced
mild navigation deficits (Wiig & Bilkey, 1994, 1995; Liu & Bilkey, 1998),
qualitatively different from hippocampal deficits, or no deficit at all
(Kolb, Buhrmann, McDonald, & Sutherland, 1994; Glenn & Mumby, 1998;
Bussey, Muir, & Aggleton, 1999). Conversely, PR and PH removal disrupted
the animal’s ability to detect the changed position of a specific object in
a familiar environment (Aggleton, Vann, Oswald, & Good, 2000).
Accordingly, these lesions enduringly impaired DMS/DNMS (delay
match/nonmatch to sample) tasks based on object-location associations in
monkey (Suzuki et al., 1993; Zola-Morgan, Squire, Amaral, & Suzuki, 1989;
Zola-Morgan, Squire, & Ramus, 1994) and equivalent navigation tasks in
rats (Eichenbaum, Otto, & Cohen, 1994; Wiig & Bilkey, 1994). These tasks
can be considered to depend on a simple stimulus-response strategy. The
PR lesions induced more severe visual recognition deficits than EC lesions,
and their effect was doubly dissociated from that of HS (Aggleton et al.,
2000). The PH and posterior EC lesions produced a more severe spatial
deficit than lesions of the rostral PR and EC (Parkinson, Murray, & Miskin,
1988). PR-PH areas remain cortically oriented because stimulus responsive
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cells are more frequent there than in EC. In the model, these two structures
were represented by two one-dimensional layers representing pattern and
direction that combined in a landmark-encoding two-dimensional array.

A second wave of association and pattern encoding was hypothesized to
take place in EC superficial layers that receive inputs from PR, PH, and other
polysensory areas. EC deep layer V receives, via subiculum, hippocam-
pal backprojections that close the major hippocampal loop (see Figure 1)
through a unidirectional internal projection to superficial EC layers (Kohler,
Eriksson, Davies, & Chan-Palay, 1986; Jones, 1993; Witter et al., 2000). EC
deep layers also send external projections to the cortex, thus closing the
hippocampo-cortical loop. Preferentially, layer II projects to DG and CA3
and layer III to the CA3-CA1 region. The direct EC projections on the CA3-
CA1 region are at least as strong as the projections relayed through DG
(Yeckel & Berger, 1990). An inhibitory barrier on EC layer II prevents any
important traffic in the trisynaptic loop except for high-frequency (7 Hz)
firing (Jones, 1993).

Like PR or PH lesions, selective EC lesions induce more severe deficits in
DNMS than selective HS lesions (Eichenbaum et al., 1994). More important,
extensive EC lesions reduce the fraction of hippocampal cells presenting
location-specific firing, and the stability of the place fields after maze rota-
tion (Miller & Best, 1980) causes spatial deficits comparable to hippocampal
deficits (Miller & Best, 1980; Olton, Walker, & Wolf, 1982; Goodlett, Nichols,
Halloran, & West, 1989; Schenk & Morris, 1985), thus confirming the impor-
tance of EC spatial information in hippocampal spatial processing. In an
attempt to overcome the limitations of lesion studies, Vann (Vann, Brown,
Erichsen, & Aggleton, 2000) found a highly significant increase in C-fos ex-
pression in all HS and SUB subfields, in proportion to the (radial maze) task
demands on spatial capacities for self-location and navigation. The parahip-
pocampal region showed a lower yet highly significant increase in the C-fos
label, with the exception of PR, which reacted only to novel stimuli. Simple
spatial rearrangement of familiar icons increased C-fos expression in PH
and parts of HS. Finally, place cell–like activity has been recorded in the
superficial (Quirk et al., 1992; Sharp, 1999) and deep layers (Frank et al.,
2000; Mizumori et al., 1992) of MEC, and in SUB (Sharp & Green, 1994).
Furthermore, prospective and retrospective coding and path equivalence
(tendency to fire at same relative locations along different paths) in deep EC
suggest a coding by these neurons of the similarities between different tra-
jectories at the same relative location with respect to a starting point (rather
than precisely coding locations per se), thus relating location and behavior
(Frank et al., 2000), and suggesting a dominance of path integration–related
information in deep EC layers. In the model, EC (superficial) cells generated
place-specific activity by implementing an unsupervised pattern learning
on PR-PH inputs.

The role of the dentate gyrus (DG) in spatial processing is ambiguous.
DG is essential for subtle (but not coarse) spatial pattern discrimination, and
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a double dissociation exists between DG lesions associated with deficits
in fine spatial discrimination and CA1 lesions associated with deficits in
temporospatial sequence learning (Gilbert et al., 2001). Selective destruc-
tion of the DG granule cells preserves the spatial selectivity of CA3 cells
but induces a spatial learning deficit (McNaughton, Barnes, Meltzer, &
Sutherland, 1989). Some coherence emerges from these results if two facts
are emphasized: the presence of a weak spatial code in EC and the di-
rect and indirect connections of EC to downstream structures CA3, CA1,
and SUB, susceptible to functioning independently (Yeckel & Berger, 1990).
Accordingly, our model assumed that EC weak spatial code is used for a re-
fined spatial localization by DG (orthogonalization) and also for spatiotem-
poral sequence learning by CA3-CA1. This hypothesis predicts that selective
bilateral EC lesions should impair both a fine spatial discrimination by DG
and a temporal spatial sequence learning by CA1. At present, it is known
that deficits in maze performance follow bilateral EC lesions but not bilateral
DG lesions in rats (Jarrard, Okaichi, Steward, & Goldschmidt, 1984). Other
relevant spatiotemporal characteristics of DG processing are implemented
in the model:

1. The anatomical topography reflected by the LEC-MEC subdivi-
sion is lost at the DG-CA3 stage due to the laminated projection
(Amaral, l993) of superficial EC neurons on the distal DG-CA3 den-
drites. The highly convergent EC projections on DG granules and their
divergent widespread distribution on the DG field were believed to
further foster intermodal integration.

2. The dominance of feedforward DG activation, in the absence of any
significant direct recurrent connectivity between granule cells, was
thought to be responsible for the sharp delimitation of DG place fields
(Jung & McNaughton, 1993) and was implemented in the model by a
full feedforward convergent EC-DG connectivity and a winner-take-
all (WTA) long-range competition between active neurons (orthogo-
nalization).

3. Excitatory interneurons (mossy cells), modeled by a local recurrent
activation of granule cell assemblies, implemented a delay in DG cell
activity that created a sliding window of activation, including past
and present events, encoded as an event transition by CA3.

4. The convergence onto CA3 of the direct distal inputs from the per-
forant pathway and the indirect spatially restricted proximal DG pro-
jections onto CA3 (each granule cell contacts at most 15 CA3 pyrami-
dal cells) enforced a pattern of activation on CA3.

Temporal processing and delay activity believed to take place in DG are
also a part of HS function:
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1. During single stimulus response, an initial monosynaptic activation
of the pyramidal cells in CA3-CA1 through direct EC projections was
followed by a weaker activation of the same cells through the DG-CA3
trisynaptic route (Yeckel & Berger, 1990). Thus, with spatially close
place fields corresponding to temporally overlapping subsets of active
PCs, coding for sequentially visited locations could also support the
coding of place transitions at the level of neural populations (Banquet,
Gaussier, Revel, et al., 2001).

2. A remarkably long time constant of the CA3 NMDA receptors
(150 msec) and their capacity for short-term potentiation endow CA3-
CA1 with a memory range adapted for learning transitions or short
event sequences.

3. A familiarity-dependent, increasing place field overlap in the CA3-
CA1 region (Mehta, Barnes, & McNaughton, 1997) could correspond
to an earlier anticipation of upcoming fields, when the rat is at the
border of the current field.

4. Some hippocampal cells discharge according to the stage of a
task, independent of the animal’s location (Eichenbaum, Kuperstein,
Fagan, & Nagode, 1987; Wiener, Paul, & Eichenbaum, 1989; Wiener &
Korshunov, 1995).

5. Recent developments (Gilbert et al., 2001) in pattern separation
paradigms (Chiba, Kesner, & Gibson, 1994; Gilbert, Kesner, &
DeCoteau, 1998) confirm a double dissociation between a DG finely
grained spatial pattern separation and a CA3-CA1 (spatial) temporal
order pattern separation.

2.2 Network Model. The network architecture includes two one-
dimensional input layers. A PR “What” layer, receiving pattern codes from
temporal areas TE, and a PH “Where” layer, receiving object direction and
location codes from posterior parietal cortex (plus V4 in primates), are
dedicated, respectively, to the recognition of novel items and their spatial
arrangement. These input layers converge on a merging module PR-PH,
coding landmark constellations. Pattern selection-recognition in an EC mod-
ule results in a weak place code that combines visual and movement-related
information. A DG module performs a feedforward self-organizing, com-
petitive separation of patterns (orthogonalization) and their transient stor-
age in working memory. Current direct and delayed indirect inputs to CA3
allow the computation of transitions. These transitions are associated with
their corresponding movement vector by convergence of place information
and path integration on SUB. An analytical formulation of place coding and
recognition, based on a comparison (match-mismatch) between current and
memorized views of an environment, summarizes the performances of the
different networks.
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2.2.1 Network Input. This letter does not aim at a detailed presentation of
the process of visual pattern learning (Gaussier, Joulain, Banquet, Leprêtre,
& Revel, 2000). In the first visual processing stages, the identification of
focal features at the center of subareas partitioning a scene resulted from
gradient and curvature extraction, end stop, and corner detection, among
others. The gradient extraction was followed by a convolution with filters
(e.g., difference of gaussians) for the detection of corners. A serial search
resulted from the emergence of a new winner feature-coding neuron after
the inhibition of the previous winner. Typically, the pattern and location of
20 to 30 areas were extracted from a panoramic scene.

In mammals and more so in primates, ocular saccade and pop-out at-
tention play an important role during scene exploration. In our model,
sequential snapshots of a scene identified separately “what” (a significant
feature and its context) and “where” (azimuth) information, which was then
recombined into landmarks. A localization-navigation paradigm (visually
based in particular) involves a similarity measure between learned and cur-
rent views. Such a match mechanism at the level of features allowed a more
robust scene recognition than a global correlation (without feature extrac-
tion) because the recognition level depended only on the correct recognition
of the selected features in their context and on their relative displacement
compared to the learned image (see the analytical equation of the model,
equation 2.10).

A one-shot learning of the patterns took place within the connections
between input pathways and “What” layer, where the pattern was recog-
nized or a new code recruited. The absence of identification of symbolic
objects avoided the binding problem related to this process. A given con-
figuration of landmarks (constellation) allowed the recognition of a place.
The whole process simulated a spotlight mechanism, whatever its nature
(attention, saccade, head direction), performed by the rotation of the camera.

2.2.2 Model of Perirhinal-Parahippocampal Cortices: “What” and “Where”
Input Association. In the model (see Figure 2), for a given landmark l,
the effect of lateral diffusion on activity � j of neuron j on the “Where”
PH layer was expressed as a nonnormalized gaussian activity profile:

� j = exp −
((θ l

k−
2π
N j)mod2π)

2

2σ 2 where θ l
k represents the azimuth of the lth land-

mark and 2π
N j the preferred direction of neuron j . N represents the number

of neurons (120) on the PH “Where” network. The influence on � j of the
activity related to lth landmark decays exponentially as a function of the
angular distance between neuron j preferred direction and the azimuth of
the lth landmark. If this difference is nil (the direction of lth landmark cor-
responds to the preferred direction of neuron j), � j = 1. The activity level
of each “Where” neuron represented an internal measure of the angular
distance between the azimuth of the current head gaze direction and the
preferred direction of this neuron.
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The lateral diffusion of activation to neighbor neurons implied that a neu-
ron did not need to be precisely tuned to the direction of a given landmark
in order to become active. Neurons Njk belonging to the j th neighborhood
and projecting to the PR-PH cells of the k column are defined by

Njk =

{

j :

∣

∣

∣

∣

k.
jmax

kmax
− j

∣

∣

∣

∣

< d Nθ

}

.

|k.
jmax

kmax
− j | < d Nθ determined the neighborhood of the j th “Where” neuron

that projected to neuron lk in the PR-PH network; jmax

kmax
was the ratio between

the number of neurons in the “Where” layer and the number of columns
in the PR-PH network; d Nθ determined the size of the neighborhood of
“Where” cells that project to a single PR-PH cell.

This encoding of object direction is consistent with a polar coordinate
system. Ultimately, object direction was referred to the body axis orienta-
tion, which itself referred to an external reference. This external reference
allowed that landmark information be aligned with the environment and
also independent of the orientation of the agent. In vivo, the head direction
system, scattered in different brain structures and integrated into the hip-
pocampal system in the subiculum (Sharp, Blair, Etkin, & Tzanetos, 1995)
or in a HS-SUB-EC loop (Redish & Touretzky, 1997), is believed to perform
this function.

The activity of pattern-encoding PR and direction-encoding PH con-
verged on the PR-PH two-dimensional array that merged “What” and
“Where” streams to code landmarks by a product (pi, AND operator). PR-
PH is a “necessary” zone of convergence for “What” and “Where” infor-
mation. This convergence has been proven by the recording of neurons in
different structures (PH, EC, CA3) that respond specifically for one object in
a given location (Rolls & Treves, 1998). Therefore, several possible structures
or neuron populations could correspond to the PR-PH network. It could be
PH since strong connections exist between PR and PH or even a subpop-
ulation of neurons in EC superficial layers that include both stellate and
pyramidal cells. AND operations in biological networks can be performed
by the staged merging of excitatory synapses on dendritic trees (Shepherd,
1993). All the cells of a column of the PR-PH matrix received inputs from
the same neighborhood in the “Where” layer. These neighborhoods par-
tially overlapped. In summary, four characteristics of the network deserve
to be emphasized:

1. Although full feedforward connectivity between “Where” and PR-
PH networks led to accurate performance, PR-PH units received only
a fraction of “Where” units in order to increase the capacity of the
network.

2. Only maximally active inputs were learned by the PR-PH neurons.



1350 J. Banquet, Ph. Gaussier, M. Quoy, A. Revel, and Y. Burnod

3. Due to input codes, the level of activation of product neurons reflected
the angular distance of the corresponding landmark to the current
head gaze direction.

4. Assuming that the visual system cannot recognize several patterns in
parallel, we use an automatic spotlight system to explore sequentially
the visual scene according to a saliency map. This sequential explo-
ration makes “What” and “Where” information temporally correlated
and bound. The time-sliced sensory sweep performed by the visual
system is corrected by the PR-PH working memory, which bridges
the temporal gap introduced by the sequential exploration (EC de-
lay neurons). A similar mechanism has been demonstrated for visual
saccades in posterior parietal cortex.

The discrete equation of the PR-PH neurons activity Xpr ph
kl is

Xpr ph
kl (t + dt) =

[

Xpr ph
kl (t) + Ikl − Xpr ph

kl .
∑

m

I nm.WI n−pr ph
m,kl

]+

(2.1)

[x]+ =

{

x if x > 0
0 otherwise

The excitatory component of equation 2.1 includes Ikl , a global input to

neuron kl detailed below, and Xpr ph
kl (t), a memory term allowing the buildup

of a landmark constellation and fluctuating between 0 and 1.
The inhibitory term in equation 2.1 induces a reset of the represen-

tation of a learned landmark constellation. I nm represents the activity
of mth inhibitory interneuron triggered by a sensorimotor reset signal at
T, 2T, 3T, . . . , nT , where T is a constant period for a visual panoramic ex-
ploration of the scenery; WI n−pr ph

m,kl represents fixed weights between the
inhibitory interneuron m and a PRPH pyramidal cell kl.

Ikl , the global input to neuron kl of the PR-PH matrix, is computed as a
product:

Ikl =

(

max
i∈Nli

L i .W
pr−pr ph

i,kl

)

.

(

max
j∈Nl j

� j .W
ph−pr ph
j,kl

)

. (2.2)

Wpr−pr ph
i,kl (Wph−pr ph

j,kl ) are the connection weights between any ith land-
mark ( j th azimuth) input to the kl PR-PH neuron; L i and � j represent the
“What” and “Where” network inputs, respectively. The synaptic weights
between input unit j and PR-PH neurons learn in one trial, in the absence
of inhibitory reset and only for maximal input lines:

Wph−pr ph
j,ki = (L i ) . (� j ) . f (I − In). (2.3)
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i = arg(maxp∈Nli L p), j = arg(maxq∈Nk j �q ); In is an inhibitory reset activity
that prevents learning in case of reset; I is:

I =
(maxi∈Nli L i ) + (max j∈Nk j � j )

2
. (2.4)

f (x) = 1 if x > 0.99 and 0 otherwise; this thresholded Heaviside function
corresponds to a learning modulation common to all active neurons.

The Max operator in equations 2.2 through 2.4 expressed a competition
between “Where” neurons belonging to the same neighborhood of inputs
to PR-PH neurons. Thus, the optimally tuned “Where” neuron could get
control of PR-PH neuron activation and learn the corresponding pattern-
azimuth conjunction.

In summary, the PR-PH network has two functions: to bind the “What”
and “Where” information in order to create a landmark and to bridge the
temporal gap between successive landmarks (working memory) in order to
create a landmark constellation or view that is directly learned or recognized
as a place by EC.

2.2.3 Entorhinal Cortex and Place Coding. In the second wave of integration
and association—between sensory (visual) inputs and path integration—
the emergence of place cell–like activity in EC is accounted for in the model
by a summation (OR operator) that complements the AND operator of the
PR-PH network to globally perform a sigma pi. The activity Xec

j of an EC
pyramidal neuron j coding for places is given by

Xec
j = fD j

(

∑

kl∈Nkl

Wpr ph−ec
kl, j .Xpr ph

kl

)

, (2.5)

where fD(x) represents an output function that performs a learning-
dependent tuning of EC neuron response such that the response, which is
weak and mildly specific before learning, becomes larger for specific inputs
after learning:

fD j
(x) = D j .r.e

(−Vig+0.01).(1−x/r )2

σ j .(Dj −1.01)2 . (2.6)

The three parameters (D, r , Vig) modulated height, width, and slope of
the gaussian function: (1) D, a neuron tuning factor increased with learning;
(2) Vig, a vigilance parameter was the inverse of the activity level resulting
from the comparison between memorized and new input patterns; and
(3) r , a scaling factor, allowed the output integration on EC to work at
constant energy in spite of the fluctuations in input levels.
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A local competition was implemented:

Xec
j =

{

Xec
j if Xec

j = maxi :|i− j |<d1 max Xec
i

0 otherwise.

d1 max is a parameter determining the distance on which neurons compete
on EC.

The learning equation at the synapses between PR-PH and EC neurons
implemented a pseudo-Hebbian rule:

dWpr ph−ec
kl, j

dt
= −λ1.W

pr ph−ec
kl, j . f

(

Xpr ph
kl

)

+ λ2

(

1 −
∑

kl∈Nkl

Wpr ph−ec
kl, j

)

. f
(

Xpr ph
kl

)

.Xec
j . (2.7)

f (Xpr ph
kl ).Xec

j is the product of pre- and postsynaptic terms of the Hebbs

rule; weight normalization is Wpr ph−ec
kl, j =

W
pr ph−ec

kl, j
∑

kl∈Nkl
W

pr ph−ec
kl, j

; λi is the gains of

depression or potentiation; and f is the PR-PH output function, as defined
in equation 2.1.

2.2.4 DG Delay Cells versus CA3-CA1 Transition Cells. DG has already
been simulated as a neural network performing spectral timing and pattern
learning (Banquet et al., 1997), which can function independent of the global
architecture.2 The solutions of the dynamic equations of the model provided
a family of bell-shaped curves. In order to spare computing resources, this
part of the architecture modeled the temporal function of the DG network
by a basis of radial functions (gaussian),

Xdg
j,l (t) =

m0

m j
exp −

((t − τl ) − m j )
2

2σ j
, (2.8)

where m j denotes the particular time constant of neuron j , with standard
deviation σ j , mo being the faster referential time constant; l the label of the
recognized input pattern that triggers its associated neural cluster including
neurons with different time constants; and τl the instant of activation of the
lth cluster. In navigation tasks, precise timing is usually not necessary. Then
m j , τl , σ j were the same for all cells, and σ j was large. DG neurons were
combined with excitatory mossy cell interneurons to form delay loops. The

2 Spectral timing is a weighted decomposition of time by a neural population endowed
with a whole spectrum of neural time constants (Grossberg & Merrill, 1992)
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pattern separation function (orthogonalization) of DG granule cells uses
the same computations as EC neurons except that a winner-takes-all (WTA)
competition encompassed the whole DG field.

In this model, the CA3-CA1 region computed a third type of asso-
ciation besides the association of object and location in PR-PH and of
visual-allothetic (landmark) and movement-related-idiothetic (path inte-
gration) information in EC-SUB. This association learned transitions be-
tween events (in this case, visited places). This temporal-sequential aspect
was implemented thanks to the hetero-association capacities of the CA3-
CA1 network between direct and indirect pathways, combined with a DG
delay memory due to local excitatory loops between mossy cells (excita-
tory interneurons) and granule cells (see Figure 4A) that created a sliding
memory window (Banquet, Gaussier, Revel, et al., 2001; Gaussier et al.,
2002). Encoding transitions does not preclude the simultaneous coding
of places in the CA3-CA1 region (a place can be viewed as a transition
from a place to itself). In further developments of the model, these transi-
tions formed the building blocks of place field chunks, akin to Worden’s
(1992) fragment fitting embedded in different trajectories as recorded in
deep EC neurons (Frank et al., 2000), and of spatiotemporal sequences
(Banquet, Gaussier, Quoy, Revel, & Burnod, 2004; Banquet et al., 2002;
Banquet, Gaussier, Revel, et al., 2001; Banquet, Gaussier, Quoy, & Revel,
2001). These transitions simplified the Hebbian learning of the temporospa-
tial sequences and the implementation of the corresponding cognitive graph
maps in the sensorimotor system, thanks to an appropriate and unambigu-
ous association between a transition and a movement vector. Whatever the
trajectory between two places, path integration computed a single displace-
ment vector.

The neural implementation (see Figure 4A) featured a group of CA3
neurons combining information on the current place recognition from EC
(distal dendrite inputs) with information on the previously stored input
(proximal dendrite inputs). The activity of transition-prediction neurons,
XC A3

i, j , resulted from a summation of the activity of the two inputs, separately
insufficient to trigger the activity. The transition prediction was achieved
by reinforcing (Hebbian learning) the link between the DG delayed input
and the CA3 assembly coding the transition, such that the delayed activity
became sufficient by itself to activate CA3 neurons. Correct predictions re-
inforced learning; otherwise weights were depressed, and another (learned
or new) node became active.

XC A3
i, j is the activity of CA3 TCs:

XC A3
i, j =

[

∑

k

(

Wdg−C A3
k,i j .Xdg

k

)

+ Wec−C A3
j,i j .Xec

j

]+

(2.9)

[x]+ is as defined in equation 2.1.
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Table 1: Model Parameters.

Description Symbol Value

Number of neurons in “Where” layer N = 12 (simulation); N = 180 (robot)

“Where” layer diffusion range σ 2 = 15
2. log(0.1)

Saturation point of sigma pi neuron ac-
tivity

BX = 1

Number of inhibitory interneurons m = 1/20 principal neurons
Decay factor of sigma pi activity 0 < λ0 << 1
Decay factor of sigma pi activity λ1 = 0.99
Sigma pi to EC weights decay factor λ2 = 0.001
Sigma pi to EC weights learning gain λ3 = 1
Number of input pathways to a sigma pi

neuron
mmax = 10

EC neuron tuning factor D j = 0.1 before learning, D j = 0.9 after
Novelty detection tuning factor Vig = 1 in novel situation, Vig = 0.1

otherwise
PR-PH neuron population size Nkl = 90 (simulations)
PR-PH neurons competition range d1max = 10 (simulations)
EC neurons competition range d1max = 10 (simul), d1 max = 120 (robot)
DG neurons competition range d2 max = 40 (DG group size)
� to PR-PH neuron neighborhood d Nθ = 2 (simulation), d Nθ = 30 (robot)
PR-PH to EC neuron neighborhood d Nkl = 20 (simulation)

Wdg−C A3
k,i j is the strength of the link between the k DG neuron and the (i j)

CA3 neuron; Xdg
k is the activity of the k DG cell; Xec

j is the activity of the
EC neuron j connected to an (i j) CA3 neuron; and Wec−C A3

j,i j is the strength
of the link between them. The weight modification rule between an i DG
granule cell and an i j CA3 pyramidal cell is:

Wdg−C A3
i,i j =







X
dg
i

∑

i (X
dg
i )

2 ifXec
j �= 0

unmodified otherwise.

Direct EC-CA3 inputs are unconditional and not learned in the model.
The parameter values used during the simulation and robotic experiments
are listed in Table 1.

2.3 Functioning of the Network and Experimental Paradigms. Our
model combines an abstract mathematical analysis of the overall network
properties, a simulation of these principles by a realistic neural network
architecture (see Figure 1), and an implementation of the model as a con-
trol system for robot navigation. We now describe the functioning of the
network during navigation and then establish a correspondance between
the analytical and simulation levels. The neural network implemented four
steps.
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Step 1. Visual scenes of an environment were automatically extracted
by the single CCD mobile camera of the robot visual system. This part of
the model is not detailed in this article (Gaussier et al., 2000). The pan of
the camera varied in different experiments from 180 to 300 degrees. For
each landmark extracted, a compass measured the azimuth of the head
gaze direction relative to an absolute reference as a substitute for the robot’s
vestibular system. In a landmark-bounded area, as in navigation experi-
ments, the angle between these landmarks and a stable and salient distant
landmark could be used as an absolute reference. Thus, the angular measure
of the different landmarks refering to the body axis and to the absolute refer-
ence remained stable regardless of the agent’s orientation. At any position, a
given pattern in the current head gaze direction (fixation point) of the agent
was encoded and learned by a neuron i with activity li in the “What” layer.
Simultaneously, a neuron j in the “Where” layer optimally tuned to this
direction presented directional activity θ j . The same pattern also activated
(to a lesser degree) related “Where” cells tuned for neighboring directions
because of their bell-shaped tuning curve.

Step 2. The activity of the “What” and “Where” layers was then combined
in an Nl × Nθ multimodal layer PR-PH (see Figure 2) by a product opera-
tion. In our model, the temporary memory buffer capacity of PH and EC
neurons (Suzuki et al., 1993; Zola-Morgan, Squire, Clower, & Rempel, 1993;
Egorov, Hamam, Fransen, Hasselmo, & Alonso, 2002; Fransen, Alonso, &
Hasselmo, 2002) served to transiently store sequential snapshots that built
up constellations of landmarks forming local views. Two indices identified
each PR-PH unit. Unit ik received input from pattern unit li and preferred
direction unit θk (including its neighborhood) (see Figure 2).

Step 3. A population of EC neurons summed up the neural activities of a
landmark constellation, thus computing a sigma pi operation (sum of prod-
ucts) in collaboration with the PR-PH multimodal layer. This integration of
a set of landmarks was sufficient to generate place-dependent activity in
superficial EC. The diffuse overlapping EC place fields let several EC nodes
encode simultaneously, albeit at different degrees, for a single place. In the
model, a movement induces a reset of the previous landmark constellation
in PR-PH nodes. However, a new place was encoded only if the mismatch
between the previous and new view was sufficient. In a more recent version,
path integration combined continuously with PC information at the level
of the subiculum and fed back this combined information to deep EC layers
(Banquet et al., 2004).

Step 4. Distribution of information to the whole DG field and strong con-
vergence on DG granule cells allowed a WTA competition over the entire
DG field, providing a single winner for a given location. Excitatory coupling
between mossy cells and granule cells implemented a working memory on
DG used to compute transitions on CA3. When a temporal derivative on the
EC output (or novelty detection, more recently) detected a novel pattern, the
temporal conjunction of the delayed input in the indirect pathway and of
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the current input through the direct pathway encoded a transition pattern
in CA3 pyramidal cells that was learned in the proximal connections be-
tween mossy fibers and CA3 pyramidal cells. The convergence-divergence
of connections between the different processing stages was parametrically
determined by the size of the input neighborhoods of the principal neurons.
This convergence was a factor 4 between the “Where” map and PR-PH net-
work, a factor 5 between PR-PH and EC, and from all-to-one between EC
and DG, so that both the high degree of convergence of EC inputs on gran-
ule cells (a factor of 400 in animal) and the extensive receptive field of DG
neurons could be accounted for.

Training and performance were simultaneous. In rats, the incentive to
explore their environment prevails over the immediate satisfaction of basic
drives. During an exploration phase, independent of any reward, Hebbian
learning of places (by conjunction of inputs and EC place cell activation),
and also of maps (by spatiotemporal contiguity between successive loca-
tions) made an environment familiar and also eventually located the goal
objects. Learning modified the synaptic strength of the connections and also
induced an increased selectivity of the output function of the PCs. Spatial
tuning of PCs is suggested by the increased response of PCs within a sin-
gle session in the same environment (Mehta et al., 1997), or an increase in
reliability across sessions. Goal-oriented navigation in maze or open envi-
ronments depended on the cortical map of this environment learned during
an exploration phase. Goal-reaching paradigms confirmed the learning of
reward location (place-reward association) and reinforced the trajectories
leading to the goal. Robotic experiments were preceded by simulations in
artificial setups.

During the exploration or recognition of an environment, the shift
between successive PCs was monitored by a novelty-dependent septal
modulation (Hasselmo, Schnell, Berke, & Barkai, 1995). The system was
confronted with continuously drifting visual inputs. Septal modulation
favored either a network reconfiguration in the presence of novel inputs or
associative learning and pattern storage when no novelty was detected. The
decrease in EC and DG activity triggered by a mismatch between stored and
novel inputs raised a vigilance level. This increase in vigilance sharpened
the EC-DG output functions, favoring the emergence of a new activation
pattern, thus avoiding the system’s being trapped in the same PC attractor
(see Figure 6). A progressive degradation of the PC firing occurred when
the robot moved from the center of the field to the periphery, and then a
sudden change when a low-activity threshold was crossed. This PC switch
is comparable to the map switch hypothesized by other authors (Redish,
Rosenzweig, Bohanick, McNaughton, & Barnes, 2000; Samsonovich &
McNaughton, 1997). This drift-and-shift process (degradation of the views
and takeover of a new PC population) provided for a coherent partitioning
of space into distinct place fields during exploration. In a familiar environ-
ment, the same process implemented a successive activation of PCs during
the transition from one place field to the next. NMDA receptor blockade
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or selective knock-out mice have recently permitted a dissociation between
short-term (NMDA-independent) and long-term (NMDA-dependent) place
field stability (Kentros et al., 1998; McHugh, Blum, Tsien, Tonegawa, &
Wilson, 1996; Rotenberg, Mayflower, Hawkins, Kandel, & Muller, 1996).

As a theoretical formulation of the model, analytical equation 2.10 is not
used in the simulations, unlike other network equations. It summarizes the
spatial properties of the PR-PH-EC-DG network processing, with a loss of
dynamical and online learning properties. Nevertheless, this equation is
useful to understand the relationships between the landmarks and the geo-
metrical properties of the place fields. Each term of the equation corresponds
to a fundamental property of one of the network equations that support the
simulations. In this equation, the activity of the place cell i when the agent
is at the location (x, y) is analytically given by

Pi (x, y) = 1 −

∑Ni

k=1 Vi,k . f (|��| , vk(x, y))

π Ni
. (2.10)

PC activity is expressed as the complement to one of a mismatch fac-
tor between stored views and the current view. |��| is computed as the
minimum between |�i,k − θk(x, y)| and 2π − |�i,k − θk(x, y)| and is always
smaller than or equal to π ; π Ni is a mismatch normalization factor, π being
the maximal angular mismatch for a given landmark and Ni the number of
visible landmarks when the agent is at the place field i , which corresponds
to place cell activity Pi . All the angles are measured in radians from an
absolute direction (the north for instance). �i,k represents the azimuth of
the landmark k from the learned place i ; θk(x, y) is the azimuth of the same
landmark k for the current robot location (x, y); Vi,k (respectively, vk), an
all-or-none weighting factor depending on the landmark visibility and/or
recognition from learned i (respectively current (x, y)) location, is set to 1
when the landmark k is seen from the learned (respectively, current) loca-
tion i , and 0 otherwise. When learned landmarks are not recognized, we can
have Vi,k = 1 and vk = 0. f is a nonlinear function that accounts for landmark
recognition:

f (θ, vk) =

{

θ if vk = 1
π if vk = 0.

Three of the four possible combinations of the pair (Vi,k, vk) are relevant
for mismatch computation:

1. (1, 0): Landmark k was seen from learned place i but is not seen or
recognized from the current place; f (θ, 0) = π . The mismatch π asso-
ciated with this landmark is maximal.

2. (1, 1): Landmark k was seen from learned place i and is recognized
from the current location. The contribution to mismatch is |��|.
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3. (0, 1): Landmark k is seen from the current place, but was not seen
from the learned place i . It does not contribute to the mismatch term
(Vi,k = 0). Equation. 2.10 gives a function Pi that tends asymptotically
to 1 when the azimuths θk(x, y) associated with the current location
are close to the stored �i,k .

The network implementation complies with equation 2.10. Landmarks
are learned in the connectivity patterns between visual inputs and the
“What” layer. Therefore, match-mismatch is reflected in the activity level
of “What” nodes that results from the dot product between the input
and the learned weight pattern. The landmark node with maximal activity
in the “What” layer identifies the input. This network operation implements
the (Vi,k, vk) pair in equation 2.10. If no stored landmark corresponds to the
input, a new node is dedicated to this novel landmark, and its azimuth is
also learned. Only the connection weights between the maximally active
“Where” nodes and PR-PH nodes are learned, for the sake of simplicity.
Thus, after learning, the dot product between a bell-shaped activation
pattern in the “Where” layer and the weight pattern on an active PR-
PH neuron (determining the activation level of this neuron) reflects the
azimuth difference between learned and recognized landmark. This net-
work step implements the |��| term in equation 2.10. In this way, the level of
activity of a PR-PH landmark node reflects the level of similarity between
the learned and the current view for this landmark. A landmark constella-
tion is encoded in a few EC nodes and learned in the synaptic weights of
the PR-PH to EC pathways. This network step implements the summation
in equation 2.10.

3 Results

Some results derive from simulations with artificial inputs (see Figures 2
and 6), yet most of them come from robotic experiments conducted with
real visual inputs in natural indoor environments (see Figures 3, 4, 5, 7,
and 8). They express the functions of the different hippocampal subsys-
tems (see Figure 1), which are presented incrementally, going from land-
marks to local views, place fields, and transitions. Two paradigms were
used. In self-localization paradigms, the robot was passively moved in dif-
ferent locations of an open environment, where different place fields could
arise from panoramic views of the environment. In goal-oriented navigation
paradigms, within open or maze environments, or a combination of both,
random exploration allowed the buildup of cortical maps and the discovery
of the goal(s) locations on these maps.

3.1 Landmark Constellations and Local Views. Visual patterns L i au-
tomatically extracted from the environment by the single CCD mobile cam-
era of the robot visual system during exploration or artificially provided at
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Figure 1: Schematic representation of the hippocampal circuits. Superficial lay-
ers of lateral (L) and medial (M) entorhinal cortex (EC) receive information from
the perirhinal (PR) and parahippocamapl (PH) cortices, respectively. EC layer
II transmits information to the dentate gyrus (DG) granule cells, and CA3 pyra-
midal cell distal dendrites, through the perforant pathway. The CA3 proximal
dendrites receive mossy fibers from the DG granule cells. CA3 pyramidal
neurons connect to other CA3 neurons by recurrent collaterals and to CA1 by
Schaffer collaterals. Distal CA1 dendrites also receive direct connections from EC
layer III. CA1 connects to subiculum (SUB) and directly to deep EC layers. Subic-
ular connections to EC layer V close both the intrahippocampal loop through a
one-way connection from layer V to EC superficial layers, and the hippocampo-
cortical loops through indirect connections to the same associative cortical areas
that send inputs to EC layer II. Direct connections link subiculum to prefrontal
cortex (PF) and accumbens (AC). Septal modulatory inputs (not represented on
this figure) target mostly DG, CA3, and CA1. Semicircular connections represent
modifiable synapses.

time T0 to the system during preliminary simulations (see Figure 2) were
learned by a neuron i with activity li in the “What” layer PR representing
the perirhinal cortex. For each landmark extracted, a compass (a substitute
for the robot’s vestibular system) measured the azimuth � j of the land-
mark relative to the head-body axis of the robot referred to a stable external
reference, thus making the measure independent of the robot orientation.
This azimuth was encoded by a neuron j optimally tuned to this pattern
direction with directional activity θ j in the “Where” PH layer, representing
parahippocampal (posthippocampal in rat) cortex (see Figure 1). The same
pattern also activated (to a lesser degree) “Where” cells with a bell-shaped
tuning for neighboring directions. The activity of the “What” and “Where”
layers was then combined in an Nl × Nθ multimodal layer PR-PH with units
kl (see Figure 2) by a product operation.
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Figure 2: (A) Simplified model architecture representing “What” (PR) and
“Where” (PH) inputs merging (AND operator) in a PR-PH layer with a short-
term memory capacity (recurrent loops). Only active links have been displayed.
Several landmark-encoding cells simultaneously active in the PR-PH layer cor-
respond to a constellation of landmarks collected by visual exploration, and
form a view of the environment from a given place. (B) Simulation results of
these first three networks of the architecture. Pattern L i and azimuth � j merge to
form a landmark in the PR-PH network. During the exploration of a scene from
a particular place at times T0, T01, T02, T03, and T04, PR-PH working memory
allows the buildup of a landmark constellation correponding to a view.

At times T0-T04 (see Figure 2), a landmark constellation forming a local
view representing the visual configuration of the environment from the
current location was incrementally stored in the PR-PH working memory,
which is a property of PH and EC neurons (Suzuki et al., 1993; Zola-Morgan
et al., 1993; Egorov et al., 2002; Fransen et al., 2002). The population code of
these views was next decoded in EC.
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3.2 Entorhinal Location-Dependent Activity. A specific location is de-
fined by the configuration and orientation of the landmarks corresponding
to this location. This information from the PR-PH network was integrated
in the EC network (see Figure 3A) and learned in the synaptic connections
between PR-PH and EC. A remarkable property of this system resides in its
built-in generalization capacity. A neuron coding for a location A responds
when the robot is precisely in A, but also to a lesser degree for a neigh-
borhood of A. In this way, a field is created around each learned location,
providing continuity and also overlap in the space code.

When the robot visually explored the experimental room from differ-
ent locations (similar to a rat passively moved from place to place), place
fields corresponding to each location covered the space of the room. With
a short-range, soft competition among pyramidal cells, large, overlapping
place fields represented a weak place code, similar to that of EC neurons.
Nevertheless, as for hippocampal place fields, the firing maxima were sta-
ble and evenly distributed. The learning of several locations led to a paving
of the space, where neurons reactive to different locations coded for differ-
ent areas of the environment (see Figure 3B). The shape of the place fields
adapted to the geometry of the environment (Gaussier et al., 2002).

3.3 Hippocampal Dentate and CA3 Transition Cells. The coarse spatial
information computed in several EC cells converged on DG granule cells,
where it underwent a sharp competition. Then the elaborated spatial infor-
mation was transmitted to proximal dendrites of CA3 pyramidal cells; EC
information also reached CA3 neurons through direct connections to distal
dendrites (see Figure 4A). CA3 connected to CA1 pyramidal cells (Schaffer
collaterals) and CA1 to subiculum (SUB).

In DG, place fields became clearly delimited (Jung & McNaughton, 1993),
evenly distributed in space, and comparable to place fields recorded in HS
proper (see Figure 4B). In CA3, the temporal conjunction of a delayed DG
place cell activity (maintained through recurrent activation of granule cells
by the mossy cells) and of the current PC activity provided by the direct
connections to CA3 gave rise to transition cells, which encoded the transition
between two place fields in relation to transition-dependent direction and
self-motion information (path integration). Once learned, these transitions
helped to prime and predict accessible locations from the current one and
to detect novelty as a violation of expectations.

The following key features of PC firing were reproduced:

� Typical place cell firing patterns were elicited in the first moments (Hill,
1978) of the exposure of the robot to a new environment. In agree-
ment with Redish and Touretzky (1997, 1998), we did not need any
preconfigured reference frame as in the CA3 charts hypothesized by
McNaughton (McNaughton et al., 1996; Samsonovich & McNaughton,
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1997). A weak and randomly distributed initial set of weights in the
network synapses was sufficient to get this result (see Figure 4B).

� The place field pattern stabilized during the first instants of explo-
ration and was reproducible from session to session provided that the
environment was not changed.

� Little directional specificity of place fields was found in an open field
(Muller, Kubie, & Saypoff, 1991) when the system was configured with
a large visual angle (300 degrees). Yet, with a smaller visual angle as in
frontal vision (180 degrees), view cells were obtained, as in monkey.

� In these natural indoor experiments, about 15 to 30 landmarks were
identified and used by the system in a typical panoramic image, al-
though not all of them were necessary. In theory, either two cor-
rectly recognized landmarks referring to an absolute direction or three

Figure 3: (A) The neurons coding for a landmark constellation in PR-PH con-
verge on EC superficial layers, where they activate position-dependent cells.
In a first approximation, EC superficial layers sending inputs to DG and CA3
and EC deep layers receiving subicular inputs have not been dissociated. Their
functional integration is granted by the existence of a one-way link from deep
to superficial EC pyramidal cells. (B) Examples of firing rate maps of typical
EC cells. The upper maps represent an overhead view of square and cylindrical
recording chambers in which the rat’s position is correlated with the firing rate of
MEC cells (darker spots represent locations of higher firing rate) averaged over
the recording session. When the shape of the recording chamber was changed
from a square to a cylinder, MEC firing patterns topologically transformed (as by
compression). Reproduced from Quirk et al. (1992, Figure 13) with permission.
The lower maps result from experiments where robots were passively moved
to different locations of a room. They represent activation patterns of simulated
MEC pyramidal neurons with positional firing, induced by real visual inputs
sampled by the vision system of a robot at different locations in an experimental
room. A diffuse but stable place cell–like tuning of the 25 EC cells covers the
whole space. Each rectangle represents an overhead view of the experimental
room. The numbers on the x- and y-axes represent the distances in meters. The
cues available were composed of the usual furniture of a laboratory room (for
example, desks, chairs, shelves). As in experimental data, each PC presents focal
stationary maxima corresponding to a particular location in the experimental
room but no clear-cut boundaries and a progressive graded decay.

Figure 4: (A) The complete, simplified architecture of the hippocampal model
is represented. DG forms a pattern-encoding network with a working mem-
ory that maintains a delayed representation of the previous input. The CA3
heteroassociative net associates previous and current input transmitted respec-
tively through indirect and direct perforant path connections to CA3 in order
to compute event transitions. CA1-SUB performs a pattern-encoding and
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recognition of these transitions and closes the intrahippocampal loop through
its connections to deep EC layers. This loop closure is not simulated here, but
see Banquet et al., (2004). (B) The experimental firing-rate maps illustrate that
the firing pattern of hippocampal place cells changed when the room shape
changed. (Reproduced from Quirk et al., 1992, Figure 13 with permission.) The
lower maps represent activation patterns of simulated hippocampal neurons
with positional firing, induced by the same conditions as in Figure 3B. When
a sharp competition between PCs was implemented by a WTA network, the
activity of the PCs did not present a large overlap anymore. Clearly separated
place fields still covered the entire space.
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landmarks referring to a relative direction (given by a landmark) are
sufficient for unambiguous place recognition. Environment perturba-
tions such as suppression or occlusion of some landmarks did not
affect the spatial distribution of the place fields (Knierim, Kudrimoti,
& McNaughton, 1995; McNaughton et al., 1996; O’Keefe & Speakman,
1987).

3.4 Primates’ View Cells. Cells with view and/or object rather than
place-dependent activity are most often recorded in monkey (Rolls &
O’Mara, 1995). Figure 5 compares recordings of monkey view cells (A) with
results (B) obtained by reducing the angle of the robot vision from 300 to
180 degrees. The previously isotropic, orientation-independent response of
place cells became dependent on which particular part of space (and/or
object) the robot was looking at. Simultaneously, cell activity became rel-
atively independent of the location of the animal, as found for view cells.
Thus, a frontal vision in primates, compared to the panoramic vision of
rats, could partially account for the preeminence of view cells in monkey
and the difficulty in recording PCs. This does not imply that a one-eyed
rat, with a reduced field of vision, will present view cells rather than PCs,
due to the compensation by idiothetic information. This result was obtained
from robotic experiments implementing a biologically realistic vision sys-
tem separating frontal from panoramic vision (Gaussier, Joulain, Banquet,
& Revel, 1998; Gaussier et al., 1999, 2000, 2002). On the basis of the same
principles, Rolls’s group developed a similar model using simulated visual
inputs that also accounted for the spatial field specificities of primate view
cells and rodent place cells (de Araujo, Rolls, & Stringer, 2001; Stringer, Rolls,
& Trappenberg, 2004).

3.5 Maps and Navigation Strategies

3.5.1 Shift Between Places During Simulated Random Navigation. Au-
tonomous learning and performance were not dissociated. A vigilance
parameter (active during both stages) depending on the match-related level
of PC activity featured ACh septal modulation (Hasselmo et al., 1995). This
parameter decided whether a new panorama was different enough from
the stored ones to be learned as a new place, and favored either novel
event encoding or expression of previously learned patterns in the absence
of novelty detection. It also induced the shift between place fields during
navigation by tuning a PC output function. This spatiotemporal contiguity
between successive place fields was at the basis of Hebbian latent learning
of a contextual map, during exploration.

In Figure 6, the same local view (landmark constellation) and the asso-
ciated place field (PF1) were learned or recognized through times T1-T2, in
spite of the decreased amplitude of neural activity at T2 due to a drift of
landmark azimuths, or even a drop of some landmarks. Conversely, a shift
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Figure 5: Place versus view cells. (A) View cell recordings in monkey’s hip-
pocampus. (Reproduced from Rolls & O’Mara, 1995, Figures 3–4, with permis-
sion.) (B) Results from an experiment where the pan of the camera of the robot
was reduced from 300 to 180 degrees in order to replicate the frontal view of the
primates. Activity was recorded from two model view cells responding to ori-
ented views of a scene. Circles represent positions where the views were taken
from. An arrow inside a circle indicates the learned position and direction. The
length of the bars represents cell response amplitude as a function of the head
(camera) orientation. The responses of the model view cells, as in the monkey
experiment, were relatively independent of the location where the view was
taken from, but depended on the view captured by a particular direction of
gaze. Bars represent not spike frequencies but average activities of the cells.

from PF1 to PF2 occurred at T3. In fact, at the end of T2, the activation (SUM)
of the PC corresponding to PF1 decreased below a threshold, triggering a
burst of activity in the vigilance (VIG) module, a reset of the current EC-DG
pattern, and the selection of a new code corresponding to PF2, at T3-T4-T5.
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Figure 6: Results from a simulation with artificial inputs. Identification by EC
and DG of two place fields (PF1 at T1,T2,T6 and PF2 at T3,T4,T5). After PF1 learn-
ing or recognition at T1, the landmarks recognition decreased (weaker output
at T2 in EC-DG and in the activation-integrator, SUM). As a consequence of an
increasing mismatch between the current constellation and the memorized con-
stellation corresponding to PF1, the activation of the neural population coding
for the PF1 constellation crossed a threshold at the end of T2. A phasic vigilance
burst (VIG) induced an output function modulation in EC-DG and a different PC
was learned or recognized at T3. When the simulated animal crossed back PF1
border at T6, the landmark constellation corresponding to PF1 was reactivated
due to its prior learning during exploration.

Later, at T6, long-term learning ensured the activation of the PC coding for
PF1 and the recognition of the place when the animal moved back to the
former place field (PF1). Thus, a progressive degradation of the PC firing
occurred when the robot moved from the center of the field to the periphery,
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and then a sudden change when a low-activity threshold was crossed. This
PC switch is comparable to the map switch hypothesized by other authors
(Redish et al., 2000; Samsonovich & McNaughton, 1997).

At variance with random navigation, which is a simulation result, the
navigations with maps, presented next, are behavioral results obtained from
experiments with the Koala robot.

3.5.2 Universal Maps and Route Navigation. A collection of coarse and
weak EC place codes (see Figure 7A) formed a landscape of overlapping
PC potentials resulting from the variable coactivation for each location of
a specific subset of neurons. We consider this landscape of potentials as a
generalization of the classical concept of map, tested in the following unsu-
pervised learning paradigm. When a goal was discovered during random
exploration, the robot associated a few places around the goal with specific
actions leading to the goal. Thus, a local behavioral attractor was learned
around the goal, supporting a gradient-descent strategy toward the goal
(see Figure 7B). A capacity to generalize permitted reaching the goal from
a novel (unlearned) place in the open environment. The large size of PCs
in EC verified in a robotic experiment, combined with a graded decrement
of their bump activity, provided for a true generalization of learning to any
place in an open environment. Indeed, each novel place was associated with
a weighted combination of the actions associated with the most active PCs
corresponding to neighboring learned places in order to generate smooth
trajectories. At any location, the direction to the goal could also be provided
by the single most similar place where a view-action association had been
previously learned (see Figure 7B). Further, multiple goals could be simul-
taneously active as multiple attractor basins that were size-modulated by
the strength of the corresponding drives (Gaussier et al., 2000).

3.5.3 Contextual Maps and Planning. A set of such places and transitions
could be learned during random exploration (see Figure 8A) of an environ-
ment by strengthening the connections between the corresponding tran-
sition cells (Hebbian latent learning at the cortical level). Some of these
connections could also be reinforced after leading to a goal-reward (see
Figure 8B). A combination of several such paths formed a task-context-
dependent map similar to a graph (see Figure 8). Muller first developed
a conceptual graph model based on PCs (Muller et al., 1991) that was
also simulated (Redish & Touretzy, 1998). In contrast, in our model, tran-
sitions computed in CA3-CA1 formed the building blocks of the global
graph-map learned and stored at the cortical level. In conjunction with
goal diffusion through the graph-map in prefrontal cortex, these transitions
provided for a straightforward solution to the shift from space representa-
tion to navigation, in particular path desambiguation, monitoring several
goals, and the invention of shortcuts. The navigation strategy based on
this type of map implemented sequences of transitions leading to a goal
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in a proactive, planning mode of navigation combining previous latent
learning of a global map in the prefrontal or parietal cortices and a guid-
ance by the diffusion of activation from the goal location throughout the
map (Gaussier et al., 2002; Banquet, Gaussier, Revel, et al., 2001; Banquet
et al., 2002, 2004)

4 Discussion

Before discussing these results, the scope of the model must be clearly
delineated: neural computations at cell and population levels, in parahip-
pocampal cortices and the hippocampus, were related to spatial processing
and navigation. The model aimed to establish a link between mechanisms,
functions, and behavior and to separate the specific contributions of these
cortical and subcortical structures that are not yet clearly understood.
The head direction system was only implicitly modeled by referring
directional information of landmarks to the head-body axis and to an
external reference. The simulations and robotic experiments dissociated the
contribution of the different modalities or structures and the static-dynamic
aspects in spatial processing. In spite of this limited scope, the model is
relevant for hippocampal and brain processing in general. Indeed, the same
architecture receiving different input modalities was successfully used for

Figure 7: (A) Results of an experiment where the robot learned different loca-
tions in a room. The x,y plane represents the space of the experimental room.
The z-axis represents the normalized level of activity of the place cells. The
manifolds in different gray levels represent the overlapping activities of four
different place cells, with maxima in different locations, recorded during a
robotic experiment. The combination of these overlapping activities builds a
potential landscape, with a potential vector, proper to every location. (B) After
learning four place-action associations around the goal (filled circles with ar-
rows), the robot could navigate to the goal from an unlearned place (empty
squares) along a path materialized by a sequence of arrows (learning gener-
alization). As in the previous figure, the x,y plane represents the space of the
experimental room, in arbitrary coordinates, partitioned by four place fields.
The z-axis represents the levels of the behavioral attractor. This figure illustrates
the navigation strategy associated with the potential landscape of part A of the
figure. Any unlearned location in the environment was associated with the ac-
tion(s) related to the closest learned place(s). Therefore the movement (or the
weighted combination of movements for a population code with smooth tra-
jectory) associated with these places was performed. This strategy amounted to
implementing in the behavior of the agent a gradient descent toward the goal.
The exploration phase was not represented on this figure, just the navigation
to the goal. The associated behavioral attractor basin illustrated in this figure
resulted from sensorimotor learning.
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learning purely temporal or spatiotemporal sequences, as well as learning
by imitation (Banquet, Gaussier, Revel, et al., 2001; Gaussier, Joulain, &
Banquet, 1998). Thus, the model contributes to bridging the gap between
the two main hippocampal theories—cognitive map versus episodic
memory. Experiments with rats and robots were conducted in parallel
(Paz-Villagran et al., 2003, 2004).

The observed properties are emergent characteristics of the model and its
inputs, and not direct consequences of a specific network architecture. The
three levels of association jointly provided the foundations of higher cortical
functions such as sequence learning and planning. Multimodal PR-PH units
performed a product to give rise to landmarks by object-location association
(Rolls & Treves, 1998). The activity of PR-PH units reflected, by its location
and activation, the characteristics of “What” and “Where” input layers.
Landmark constellations formed local views, transformed into entorhinal
place codes (Frank et al., 2000; Mizumori et al., 1992; Quirk et al., 1992).
The monotonical decrease of place recognition as a function of distance to a
learned place in superficial EC reflected the continuity of space. As a pop-
ulation, these diffuse place cells in EC supported a context-independent
universal map, in agreement with PC patterns in EC and SUB relatively in-
dependent of context (Sharp, 1999). Conversely, spatiotemporal learning in
CA3-CA1 (Gilbert et al., 2001) computed transitions between places, which
were associated with corresponding movement vectors. The model solu-
tions showed several interesting properties.

Figure 8: (A) Cognitive map built by exploration of a simulated environment,
with artificial landmarks. The landmarks are the crosses on the border. Each dot
is a subgoal. The links indicate that the corresponding two subgoals have been
successively activated. The subgoals and the learned connections formed the
cognitive map. Each learned place represented by a dot is surrounded by an
area of graded decay of activity (not represented), such that the robot entering
this zone performed the learned movement associated with the transition. Thus,
the trajectory of the robot toward the goal (dotted line) took advantage of the
map but was not constrained by the learned trajectories. Further, simulation of
the inertia of the robot provided for smooth trajectories. (B) Results of an ex-
periment where the latent learning of an environment by the robot provided a
graph-map that was subsequently used during goal-oriented navigation. The
curved lines delineate the real robot trajectory. The straight lines represent the
ideal trajectories derived from path integration between two adjacent locations
and associated with the transitions between these locations. In spite of the ab-
sence of direct connections between nodes coding transition BC and CE (not
experienced during exploration), the combination of the priming or prediction
of the possible transitions by CA1 and of the diffusion of activation from the
goal in prefrontal cortex network (maximal for the shortest trajectory) allowed
selecting this shortcut.



A Hierarchy of Associations in Hippocampo-Cortical Systems 1371



1372 J. Banquet, Ph. Gaussier, M. Quoy, A. Revel, and Y. Burnod

4.1 Generalization. Two interactive levels of generalization were
demonstrated. Locally, the PC coding for a location A fired not only when
the robot was in A, but to a lesser degree for a significant area around each
location, in particular for EC place cells. The generalization related to the
diffuse activity of the EC place cells depended on the large size of their place
fields (different from hippocampal place fields), as well as on the open en-
vironment. In the frame of a universal map, the robot learned but a few
places around the goal and was able to generalize to the whole room the
local learning of the capture of the goal, without the need to learn every
location-action association, as in other similar models. Indeed, the move-
ment to perform in order to reach the goal from a new place was computed
as a weighted sum of the movement vectors associated with the learned
neighboring places.

The local generalization was also found to be essential for a simple,
straightforward use of the contextual maps during navigation. The same
graded decay around peak location-specific activity made the trajectories
during performance of graph-map navigation, not necessarily superposed
on the learned ones. This topological interpretation of the ability of an
animal to generalize an incomplete learning to novel parts of an environ-
ment is an alternative to the hypothesis of a Euclidean metric map encoun-
tered in some vectorial models of space representations (O’Keefe, 1991;
Burgess et al., 1994; Arleo & Gerstner, 2000), which, however, provides a
better account of novel path finding by animals. Nevertheless, the large
EC place fields of our model provide a generalization capacity that allows
choosing a correct place-action association in order to solve the Morris water
maze from a novel starting location (cf. Figure 7).

4.2 Parahippocampal Cortical Networks and Spatial Maps. Proper-
ties of single neurons and populations closely resembling those of neu-
rons in the parahippocampal cortices and the hippocampus in both rat and
monkey were given mechanistic interpretations in terms of network op-
erations; functional and behavioral significance in terms of spatial versus
contextual maps could be associated with distinct locale navigation strate-
gies (O’Keefe, 1991). The associations performed by the modules of the
parahippocampal cortices, through proximal recurrent collaterals, without
hippocampal mediation, were essentially local and induced a fusion of
complementary features such as pattern and location into complex mono-
lithic entities such as landmarks. Distinct object-location associations were
encoded by different neural populations in a “What”-to-“Where” network.
Yet these structures were more than simple relay stations forwarding corti-
cal inputs to HS. They were responsible for the computation of landmarks
in PR-PH and a weak spatial code in EC. Functional models have already
attributed complementary roles to the spatial representation in EC-SUB
versus HS (Sharp, 1999); yet our model gives a precise mathematical
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formulation and a mechanistic interpretation of the two types of spatial
codes in the frame of hippocampo-cortical interactions. In particular, the
weak EC spatial information supports a context-independent universal
map; it is also at the origin of a refined spatial code in DG and of spa-
tiotemporal sequence learning in CA1 and downstream structures.

The navigation strategy associated with the EC spatial map implied more
than a simple stimulus-response mechanism in which hippocampal spatial
signals and discrete locomotor responses served, respectively, as the stimu-
lus and the response (Sharp et al., 1996). Indeed, no direct perception of the
goal or of a cue pointing to the goal was necessary. Therefore, the strategy
was better characterized as a route navigation. But no links were learned
between successive places (at variance with graphs), only associations
between a few places and the corresponding motions to the goal, as in
Burgess (Burgess et al., 1994). Yet in the graph-map, we associated transi-
tions to sensory representations of the corresponding actions; that provided
several nice properties, in particular path desambiguation, without dramat-
ically taxing the neural memory set (about four times more transitions than
simple locations). Obvious limitation, such a universal map was inappropri-
ate for planning a trajectory to the goal (at variance with the graph-map), but
was sufficient to account for simple reactive strategies according to Sharp
(Sharp et al., 1996).

4.3 Hippocampal Networks, Temporal Processing, and Context-
Dependent Maps. Several functional or mathematical models used the
associative capacities of the CA3 network for spatial computations.
McNaughton (1989) postulated linked sets of local views associated with
movements in order to carry the rat from one place field to the next, without a
global map–like representation of the environment. One aspect of our model
comes close to a mechanistic implementation of this idea. CA3 association
of two successively visited places created a transition that, through self-
motion information and path integration, was naturally and uniquely asso-
ciated with the movement vector involved in the transition. Learned links
between transitions during exploration formed sequence building blocks
that could correspond to the elongated place fields recorded in deep EC
(Frank et al., 2000). These chains generalized into graphs that supported,
at the population level, contextual maps. Yet recent experimental results
performed in parallel with robots and rats (Paz-Villagran et al., 2003, 2004)
suggest that the hippocampal representations are only fragmentary and
under the grip of current sensory information. The global, stable maps more
independent of current sensory information could be stored in cortical struc-
tures such as posterior parietal (PP) or prefrontal (PF) cortices. The buildup
of a map (see Figure 8A) and the existence of a graded decay of activity
around each learned place avoided the combinatorial problems faced by
stimulus-response and list-learning strategies.
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A topological theory of spatial representation (Muller et al., 1991) and
the related goal-oriented cognitive graph models (Trullier & Meyer, 2000)
proposed that an interconnected CA3 population globally reflected the
topological connectivity of the environment in a context-dependent man-
ner. For both theories (McNaughton, 1989; Muller et al., 1991), some form
of cognitive mapping can be viewed as a sequence learning and predic-
tion problem. We further showed that dynamic sequence codes and stable
place codes could coexist in different structures and collaborate for naviga-
tion. However, both theories (McNaughton, 1989; Muller et al., 1991) faced
the difficulty of covering a continuous space by discontinuous trajectories.
Attractor networks avoided this difficulty (Redish & Touretzky, 1997, 1998;
Redish, 1999; Samsonovich & McNaughton, 1997). Yet it must be noticed
that a sparse connectivity in a CA3 asymmetric recurrent network (Rolls &
Treves, 1998) is more appropriate for learning temporal sequences (Levy,
1996), than for the generation of attractor states. This type of sequence
learning by CA3 is compatible with the learning of transitions by this struc-
ture in our model, which form the buiding blocks of our sensorimotor se-
quences. In different implementations of our model, we also used neural
fields and chaotic attractors (Tsuda, 2001) in order to learn and control tem-
porospatial sequences in robotic experiments (Quoy, Banquet, & Dauce,
2001; Dauce et al., 2002). Yet the model presented here is not strictly an at-
tractor model; in particular, just CA3 heteroassociations and not recurrent
connections were implemented. Some of these attractor models (Redish,
1999) emphasized the existence of multiple maps and reference frames (ref-
erence point, orientation, and distance metric) of an environment (according
to reward location in particular) as a way of coding both spatial and nonspa-
tial context. In our model, the transitions occurred between the place fields
of a same map, not between reference frames or maps as in Redish. Finally,
we acknowledged the possibility of multiple maps within a single environ-
ment. Beyond that, we hypothesized that two or several complementary
maps of a different nature could independently coexist in the hippocam-
pal system and, if needed, support vicarious navigation strategies, even
though there should be some stage of fusion between the two maps for the
sake of spatial coherence. For the fusion of spatial view and self-motion
information, Stringer (Stringer, Rolls, Trappenberg, & de Araujo, 2002) pro-
posed appropriate connections for performing the idiothetic (self-motion)
update of a continuous attractor. In our model, the transition views are asso-
ciated with their corresponding movement vector. And navigation implies
the whole hippocampo-cortical network. Therefore, we make a distinction
between multimodal (e.g., visual and idiothetic) representations of
transition-action associations hypothesized to take place in CA3 and/or
SUB, and the context-dependent selection and implementation of actions
in relation to these transitions that have been shown to reside in the stria-
tum (including the nucleus accumbens) (Banquet et al., 2004). The inclusion
of recurrent connections in our CA3 network would be straightforward if
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they were used for pattern completion (Hopfield network) rather than for
temporal diffusion of the activity (Levy, 1996). There is complementarity
rather than incompatibility between the processing and learning performed
by these connections and the processing currently implemented essentially
based on heteroassociative connections. CA3-recurrent NMDA-knockout
mice or NMDA receptor blockade (Kentros et al., 1998; McHugh et al., 1996,
Rotenberg et al., 1996) essentially prevented the long-term stabilization of
newly established firing fields.

Once learned, our contextual maps were used in a reactive or a plan-
ning mode that could manage several simultaneously active drives or goals
(Banquet, Gaussier, Revel, et al., 2001; Gaussier et al., 2002; Banquet,
Gaussier, Quoy, et al., 2001). Remarkably, navigation based on this type of
map made of transitions and involving planning presented several behav-
ioral advantages and overcame typical limitations of map-based navigation:

� Path disambiguation occurred at choice points in the graph, when
several trajectories were possible.

� Due to the existence of a graded decay of activity around learned place
fields, the system was not compelled to follow precisely the learned
trajectories.

� The diffusion of activation from the goal location made possible creat-
ing shortcuts that had not been previously learned.

� Deadlock situations encountered during planning with place cell
graphs could be solved.

� Chaining of transitions into temporospatial sequences became
straightforward.

The process of remapping confirms that PCs do not just encode locations;
rather, collectively, they provide a signature of the environment and context.
A cue rotation during a constant task induces an angular rotation of the
place fields within a stable PC population (O’Keefe & Speakman, 1987;
McNaughton, 1989; Quirk, Muller, & Kubie, 1990; Markus et al., 1995; Save,
Nerad, & Poucet, 2000); only a change in the geometry of the environment or
in the behavioral task (Markus et al., 1995) induces a remapping (substantial
shift in angular and radial position of the place fields of a PC population),
implying at least a partial renewal of the CA3-CA1 population coding the
space. The geometrical remapping takes place only for environments that
have been previously learned (Lever et al., 2002); if not, CA3-CA1 cells
undergo a topological adaptation to the shape of the new environment
comparable to that of the EC place cells. This result could be accounted
for by our model if two different learning dynamics were introduced: a
rapid learning of path integration and/or landmark-based spatial features,
and its diffusion through the hippocampal system; a slower tuning of HS
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neurons to the more subtle geometrical and contextual characteristics of the
environment.

Movement-related information served in the model for the path integra-
tion between two place fields that was associated with transitions and also
to reset views after a robot motion. This model was expanded to incorporate
a detailed model of path integration (Banquet et al., 2004). In this version,
the model has similarities with others (Guazzelli, Bota, & Arbib, 2001) but
differs in that visual and proprioceptive information are not artificially pro-
vided to perceptual and feature detector layers; rather, it comes from real
data extracted from the environment or robot movement. Both independent
and merged place codes exist in distinct structures.

The computation of transition fields and their association with their
corresponding direction-motion vector through path integration in the
SUB implemented in the model a basic transition-action association. This
essential feature of the model, beyond requiring the computation of path
integration, extended the associative capacities of the CA3 network to the
temporal domain (Levy, 1996) and supported the learning of temporospa-
tial sequences in downstream structures such as the nucleus accumbens
and the prefrontal cortex (Banquet et al., 2004; Poucet et al., 2004). The pre-
diction of a temporospatial dimension in hippocampal processing was re-
cently confirmed by the double dissociation between DG and CA1 functions
in spatial and spatiotemporal (sequence) pattern discrimination (Gilbert
et al., 2001). The second prediction of a basic association of a transition
with the representation of the corresponding movement vector, within a
purely sensory modality (and not at an interface between sensory and motor
systems), was implemented by the association of a transition with its cor-
responding path-integration vector, coding direction, and displacement; it
was based on the convergence of place information and path integration
on SU and/or EC (Redish & Touretzky, 1997; Sharp, 1999). Further, whole
body motion cells have been recorded in monkey CA3 field (O’Mara, Rolls,
Berthoz, & Kesner, 1994). This combination of transition and action repre-
sentation is also supported by path equivalence found in deep EC pyramidal
cells (Frank et al., 2000), which reflects behavioral similarities between spa-
tially close but distinct trajectories. Motion-related information and path
integration could be responsible for this path equivalence. Exteroceptive,
mostly visual, information would serve not only to periodically recalibrate
the path-integration system, but also to transform a trajectory-dependent
map in deep EC into a purely spatial map in superficial EC that could be re-
cycled into and refined by the hippocampal system. The longer place fields
recorded in deep EC neurons (Frank et al., 2000) could relate positions over
longer distances and capture behavioral regularities that may support the
animal’s ability to generalize across experiences. The eventuality that basic
transition action-representation associations do not take place at an inter-
face between sensory and motor systems, but in a multimodal system like
the hippocampus, thanks to the proprioceptive and idiothetic component of
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the movement related modality, is one of the unexpected predictions of the
model.

5 Conclusion

The model makes several original contributions. First, it takes into account
and gives functional significance to the existence of at least two types of
PCs: diffuse EC place cells that adapt to task and geometrical context rather
than change their code, and DG-CA3-CA1 well-delimited PCs that depend
on task context and therefore change their code if the context is changed.
Both types of PCs seem to be under the control of head direction cells, since
a rotation of the landmarks induces a commensurate rotation of the place
fields. The EC PCs would encode the spatial layout of the environment in-
dependent of task and context constraints on the basis of purely spatial,
dominant, movement-related information used for path integration. Con-
versely, CA3-CA1 transition cells would encode temporospatial sequences
dependent on the task context in particular. In this contextual encoding, the
temporal, or at least sequential, aspect of learning during task performance
would prevail on the purely spatial aspect. Both types of maps are comple-
mentary. Distinct navigation strategies in order to capture a goal have been
associated with each of them.

Second, the encoding of transitions in CA3-CA1 (instead of simple
locations as in other models) was inspired by the memory properties of
these structures. They allowed an unambiguous and straightforward link
between spatial representation and implementation into temporospatial
sequences during navigation and planning. Path integration computed the
ideal trajectory between two locations, whatever the exploration path in
between. This was not the case when simple locations were associated with
many possible displacements.

Third, these high-level functional properties derived from basic distinc-
tions between the local associations performed by the different cortices, with
a limited (even if increasing with the hierarchies of associations) scope and
the global all-inclusive associations performed by the CA3 system.

Fourth, the submission of the model to the test of robotic paradigms
of navigation in environments different in shape or complexity pro-
vided a functional-behavioral validation of the model and made possi-
ble the straightforward integration of two originally distinct models of
hippocampal function: PC computation and timing-sequence learning. In
further developments, animal and robotic experiments are conducted in
parallel, during identical tasks; complex paradigms like navigation are con-
sidered to implicate, beyond the hippocampus, a network of systems, in-
cluding in particular prefrontal cortex and the ventral basal ganglia. In this
network, spatial as well as temporal dimensions serve as a common frame-
work and a functional link between anatomically distant or functionally
distinct systems.
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