Commentary/Webb: Can robots make good models of biological behaviour?

flow fields, and turbulence. Even if the structural accuracy of the
airplane to model target behavior (that of the bird) was developed
further — in the sense that if the airplane could flap its wings, land
with soft collisions, and so on, — it is unlikely that much more
would be identified about the neurophysiology or the behavioral
organizational principles of bird flight.

Even though the biorobotic control systems mentioned by
Webb are a significant improvement over the classic cybernetic
models, they still make assumptions similar to the cybernetic ap-
proach. To illustrate this, let us consider the example of the sim-
plest control system, the thermostat. Temperature regulation is
achieved in the thermostat by minimizing the difference between
the actual temperature of the room and that of the set point. The
set point is prescribed by an external source and is not specified
by the system itself. In contrast, biological control systems have
the capacity to internally modify the set points of different sub-
systems and thus intentionally initiate the transition from one
steady state to another, a dynamical process underlying voluntary
actions (Feldman & Levin 1995). For example, the human arm as
controlled by the nervous system can reach desired positions by
prescribing a set point, which is achieved by active engagement
with the environment, gravity, inertial, and reactive forces. Mus-
cle activation patterns, forces, torques, and trajectories are not
programmed or computed but are largely emergent in biological
systems in the process of interaction with the environment.
Whereas, even in the most sophisticated examples used by Webb,
such as modern robotic approaches called force control models
(Wolpert et al. 1998), these variables are directly programmed and
computed. The dynamical mechanism of state resetting is largely
ignored, simply because the computational principles underlying
imitations of biological movements in robotics conflict with the
natural, dynamical nature of the resetting mechanism underlying
intentional movements.

To emphasize this point, consider the posture-movement prob-
lem in biological control of movement as formulated by Von Holst
and Mittelstaedt (1950/1973). He noticed that there are powerful
neuromuscular mechanisms (“postural reflexes”) that generate
electromyographic (EMG) activity and forces in order to resist
perturbations that deflect the body from an initial posture. At the
same time, it is clear that the organism can intentionally adopt dif-
ferent postures. Each new posture adopted by the system might
be considered as a deflection from the initial one. The deflection
would result in resistance tending to return the system to its ini-
tial position. How then is an intentional movement from the ini-
tial posture and the achievement of a new posture of the body pos-
sible without resistance? It has been established that the nervous
system can reset the postural state by changing length-dimen-
sional parameters — muscle activation thresholds (Asatryan &
Feldman 1965; Feldman & Orlovksy 1972; Matthews 1959). By
resetting these thresholds, the system shifts the spatial coordinates
at which an equilibrium posture can be reached and maintained.
Thereby, the initial posture appears to be a deflection from the
newly specified posture. Therefore, the same neuromuscular
mechanisms that produce EMG signals and forces in response to
deflections from the initial position produce, without any pro-
gramming, EMG signals and forces tending to eliminate the de-
flection from the new posture and thus move the system to it
(Feldman & Levin 1995; St-Onge et al. 1997). This postural re-
setting mechanism was also confirmed by the finding that many
systems, including cortico-spinal descending ones, have the ca-
pacity to regulate the activation thresholds. Further support stems
from recent studies showing dramatic movement problems fol-
lowing deficits in the regulation of activation thresholds in neuro-
logical patients (Levin & Dimov 1997).

Stemming from robotics, force control models fail to answer the
basic question posed by Von Holst and Mittelstaedt (1950) on how
the system can actively move from an initial posture without trig-

gering resistance. By disregarding the empirical mechanism of

postural resetting (shifts in muscle activation thresholds), force
control models produce movements by overcoming such resis-

tance. For example, Schweighofer et al. (1998) simulated planar
point-to-point arm movements using a force control strategy.
Their equations show that after the movement offset, muscles
generate tonic activity in proportion to the distance between the
initial and the final muscle lengths. This implies that the final po-
sition is reached by overcoming the resistance to the deflection of
the arm from the initial position. Thereby, at the final position, the
muscle activity cannot be minimized without driving the limb back
to the initial position. This prediction of the force control strategy
obviously conflicts with the common observation that after transi-
tion of the arm to a new position, muscle activation can be mini-
mized without arm motion. Control strategies that tolerate the re-
sistance to deflections from the initial posture each time when an
active movement is produced are highly inefficient in terms of en-
ergy costs. Incorporating the empirically established mechanism
of postural resetting in a motor control theory comes with a price:
the resetting mechanism implies that output, mechanical variables
do not need to be directly programmed or computed to make ad-
equate actions. This implication conflicts with the basic, com-
putational principles underlying force control models and thus
questions their physiological feasibility, despite their efficiency in
robotics.

We conclude that while great strides have been made in bioro-
botics, there is still a long way to go before robotics can make per-
tinent contributions to biology. The contributions of biorobotics
to biology can be greatly accelerated if engineering approaches
take into account the context in which biological systems generate
solutions to real world problems.
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Abstract: As models of living beings acting in a real world biorobots un-
dergo an accelerated “philogenic” complexification. The first efficient ro-
bots performed simple animal behaviours (e.g., those of ants, crickets) and
later on isolated elementary behaviours of complex beings. The increasing
complexity of the tasks robots are dedicated to is matched by an increas-
ing complexity and versatility of the architectures now supporting condi-
tioning or even elementary planning.

The edge of biorobotics over plain mathematical modelling.
Robotic models result from a back-and-forth interaction between
mathematical models’ simulation in “gedanken” experiments, and
robotic models” experiments in the real world. As such, they do
not constitute a different type of, but actually a step further to,
classical modelling.

From our experience of complex systems, a few points are em-
phasized. First, a complete behaving system, as in a robotic model,
requires a necessary “horizontal” mechanistic integration, at the
basic level of network interactions between different components
of the global architecture (sensory, motor, associative, timing,
planning, and so on), that enforces self-consistency among co-
ordinated systems (at variance with the “vertical” integration be-
tween different levels of explanation alluded to in the target arti-
cle). This “horizontal” integration is rarely achieved in network
modelling characterized by a tendency to build dedicated archi-
tectures for specific tasks without caring about their functional in-
tegration in a system. Less accuracy or some degree of approxi-
mation is the price to pay. The specific import of biorobotics in the
“vertical” integration has been to stress the interdependence be-
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tween agent morphology and control system, and to provide a test
of congruence between the model of the agent and the model of
its environment thanks to dynamic interactions with the external
world during robotic experiments.

Second, model-grounding in the real world by compliance with
physical laws (such as spatio-temporal continuity, gravity, and so
on)is alever to the system’s simplification rather than a constraint.
Learning a real environment (during an individual lifespan or a
species’ evolutionary period) is paradoxically a source of simplifi-
cation in this type of solution and solution-space dimensionality.
Combinatorial explosion of the solution domain is prevented by
probabilistic sorting out of the situations actually encountered in
the real world. As illustrations from our model: (1) Assuming
spatio-temporal continuity expressed by the formalism of neural
fields (Schoener et al. 1995) allows stable target selection and
smooth, robust control. (2) Control architectures can take advan-
tage of inherent perceptual ambiguity to perform complex tasks in
a simple way, with disambiguation resulting from the dynamics of
the behavior. (3) Sensory and motor modules designed in com-
patible or similar coordinate systems achieve a great simplification
of the information flows (Gaussier et al. 1999).

Third, two dimensions of neural organisation, relevant for hu-
mans as well as robots, account respectively for the nature of the
functions performed (e.g., spatio-temporal processing and navi-
gation, linguistic processing, episodic learning), and the level of
performance (reflex, conditioning, planning). The first horizontal
dimension specifies, according to combined perceptuo-motor
modalities, the nature of the parallel processes performed, what-
ever their level of performance. It depends on the combination
of the multimodal associations (e.g., visual [exteroceptive] and
movement related [interoceptive] inputs in the computation of
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Figure 1 (Banquet etal.).

space during navigation; auditory but also visual inputs in speech
and language processing; and so on). Each peculiar combination
of associations specifies a function. The second vertical dimension
specifies the level of performance (stimulus-response reflex be-
haviour, conditioned automatic behaviour, planned controlled
behaviour), whatever the nature of the functions involved. This
second sequential, or rather, iterative aspect unfolds in cortico-
subcortical loops characterized by the dual process of conver-
gence-contraction and divergence-expansion of information, and
gives rise to different levels of pattern-recognition (uni- or multi-
modal events, transitions, chunks, sequences, plans).

lllustration by a generic spatio-temporal control system. De-
pending on these two dimensions, dedicated architectures can be-
come generic and, as such, used for multiple implementations ac-
cording to the input-output nature and the level of processing. We
assumed common mechanisms for spatio-temporal processing
during navigation and declarative-episodic memory. Both depend
on spatio-temporal sequence learning based on a cascade of asso-
ciations and pattern recognition performed in cortico-hippocam-
pal loops.

The computational model implemented as a robot control sys-
tem features three levels of organization (Fig. 1a) linked by in-
trahippocampal and cortico-hippocampal loops. First, a basic hip-
pocampal level learns events (whatever their nature, e.g., places),
transitions between events, and chunks. Second, the intermediate
level links sensory information to motor responses in relation with
drives and reinforcement. Finally, the cortical level links and
stores sequences of chunks to form graphs and maps that can be
used for planning in relation with goals and motivations. Accord-
ing to the nature of the input-output modalities, the system can be
used tolearn timing and temporal sequences, motor sequences for
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(a) Three-level generic architecture featuring hippocampus (EC, entorhinal cortex; DG, dentate gyrus; CA3-

CAl; SUB, subiculum), intermediate level of basal ganglia (ACC, accumbens), and cortex (PF, prefrontal). (b) Learning of places
(A,B,C,D,E), transitions, and associated trajectories while exploring an indoor environment. (c) Imitation and learning of the teacher

trajectories by a student.

1052 BEHAVIORAL AND BRAIN SCIENCES (2001) 24:6



Commentary/Webb: Can robots make good models of biological behaviour?

imitation, or temporo-spatial sequences for navigation (Banquet
et al. 2001).

In our model of timing and sequence learning, cell populations
with different time constants extend an event-related phasic sig-
nal for different delays (so learning the timing between two
events). The transition between two successive events, thus made
co-occurrent, is learned by a hetero-associative network (Banquet
etal. 1997; 1998). In one trial, event-transitions and temporal se-
quences are learned, as for a melody.

The same basic architecture, complemented with a sensori-
motor module that feedbacks proprioceptive inputs to the hip-
pocampal system performs protoimitations (Gaussier et al. 1998)
and learns arbitrary trajectories (Fig. 1c). The system, based on a
homeostasis principle, minimizes the difference between teacher-
movement perception and student movement. Structuring the
movements of the teacher in movement-transitions allows online
imitations and learning of the imitated sequences. A playful ver-
sion of this robot model (imitating vs. being imitated) is imple-
mented as an aid to understanding autistic behaviour whose main
handicap results from a deficit in social interactions (Andry et al.
2001).

The same architecture (Fig. 1a), when receiving visuo-spatial
inputs, learns not only transitions between places during the ex-
ploration of an environment, but also (thanks to path-integration)
the ideal trajectory between two places, and associates this trajec-
tory with the transition (Fig. 1b). Learning can either be latent
(Hebbian without reinforcement) or reinforced (higher order
conditioning) by a reward. Yet, transition-learning, combined with
the propagation along the graph of the activation initiated by goal
representation and motivation (Fig. 1a), allows discovering transi-
tions never experienced before, and managing several simulta-
neously active goals (Gaussier et al. 2001), according to their sa-
lience.

The biorobotic models certainly do not constitute a proof of the
existence of similar neurobiological mechanisms, but rather, a
guarantee of functional realism and plausibility, and a questioning
tool capable of suggesting unexpected hypotheses on biological
systems.
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Abstract: Using the example of the difficulties which emerge when trying
to model complex behaviors — such as emotional expression — that result
from stochastic interactions between different components, we argue that
biorobotics may well describe one possible evolution of certain features of
a biological system, but cannot pretend to be a simulation of the whole be-
havior of the system.

Robots are believed to mimic the behavior of biological systems,
but do they model complex behaviors, such as emotional expres-
sion? Several robots have been built that include the so-called
“emotional model.” For example, the AIBOT, which is a home en-
tertainment robot simulating a dog’s behavior, seems able to ex-
press “emotional behavior” (Pransky 2001), while human head-
like robots can communicate with humans by changing facial color
expression (Miwa et al. 2001a). The major reason for including
such abilities may be to advance the sociability of the robots; emo-
tional models facilitate communication between robots and hu-
mans (Miwa et al. 2001a) and machines carrying them are so much
more attractive (Ogata & Shigeki 2000). Other reasons for in-

cluding “emotional models” could be to facilitate adaptation to
natural and unpredictable environments (autonomy of the sys-
tem), and to improve cognitive processes. Indeed, it has been sug-
gested that emotions may be a process crucial for cognition
(Chevalley & Belzung 2001). In fact, there is substantial evidence
indicating that emotions may be mediators between low-level re-
active behaviors and high-level rational behaviors. What kind of
model do these “emotional systems” use? The human head-like
robots use the so-called “equation of emotion” (Miwa et al. 2001b)
which consists of the following process: (1) the robot senses the
stimulus (Miwa et al. 2001a); (2) the robot appraises the stimulus
according to three dimensions (pleasantness, activation level, cer-
tainty); (3) the robot generates a “mental state” using an equation
(called “the equation of emotions”) integrating the three dimen-
sions; (4) it loads the response, which can consist of a modification
of its facial color by using red EL (electroluminescent) sheets.
Other models are based upon the imitation of the human en-
docrine system to adjust various internal conditions such as motor
output or sensor gain (Ogata & Shigeki 2000).

So, the models used are based upon the production of a serial
linear process, occurring at the psychological or the physiological
levels. This is quite a simplistic modeling, because in biological
systems emotional expression may in fact result from complex in-
teractions between different causes, including ones related to the
natural history of the species (genetic factors) or to the events the
subject has been faced with (epigenetic factors), to psychological
states, to brain circuitry, neurotransmitter systems, and so on.
Each of these factors participates in the generation of emotions by
activating a complex set of parallel distributed processes (Cheval-
ley & Belzung 2001), which permanently interact with all the oth-
ers so as to yield an unpredictable response. Therefore, there may
be some elements of the behavior of biological models which can-
not be simulated in robots. Furthermore, it is rather probable that
even though robots may imitate some aspects of the emotional ex-
pression (such as changes in face color), they cannot have an emo-
tional feeling. This further emphasizes how impossible it is to
mimic emotional behavior.

The case of emotions well exhibits the difficulties we face when
attempting to model human behavior. But it also exhibits the am-
biguities of our conceptions of what modeling is. The method-
ological approach that was associated with modeling at the time of
acrisis in the fundamental concepts of Mechanics in the 1880s was
avery sophisticated one. Heinrich Hertz (1894/1956) was the first
to use the word “model” in connection with a new conception of
the “theory of knowledge” (see, notably, his definition of what is a
“dynamical model” in Bk. II, sect. 418), and this inspired people
as different as Boltzmann, Wittgenstein, Cassirer, Bohr, and
Heisenberg. Assuming that a model is a representation that is a
construct of the mind and may have no resemblance whatsoever
to the thing it represents, Hertz based his epistemology of the
Scheinbilder on the idea that the agreement between Mind and
Nature can be compared to the agreement between two systems
one of which is a model of the other. There must exist between the
two something like what Helmholtz (1878/1921) had called “par-
allelism in law-likeness”: namely, there must be a strict correla-
tion, not between the system modeled and its model, but between
the law of evolution of the system modeled and the law of evolu-
tion of the model. Among other motivations, such as introducing
“hidden masses” in the science of Mechanics, this was meant at
the time as an argument against all naive “pre-Kantian” concep-
tions of knowledge based on the notion of a resemblance between
things and ideas, or between systems and their symbolic expres-
sion. To Hertz, the benefit of modeling was to allow us to focus
not on objects, but on law-likeness (Gesetzlichkeit).

From the beginning, then, a model was different from a simu-
lation. This is the background of Bohr’s claim that a representa-
tion of the atom could not in any way “look like” the planetary sys-
tem, while it should account for the discontinuities observed in
experimenting on radiation phenomena. Building a model is not
simulating a process, rather, it is building one possible interpreta-
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