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• We exploit the gain-field effect in parietal neurons for sensorimotor transformations.
• Construction of a body map is based on visuo-motor integration in a robotic arm.
• Error between real and estimated signals models the hidden spatial transformation.
• This feature of gain-fields neurons is used to solve the correspondence problem.
• Gain-field neurons learn external-point reference frames for tool-use and body change.
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a b s t r a c t

The so-called self–other correspondence problem in imitation demands to find the transformation that
maps the motor dynamics of one partner to our own. This requires a general purpose sensorimotor
mechanism that transforms an external fixation-point (partner’s shoulder) reference frame to one’s own
body-centered reference frame.We propose that themechanism of gain-modulation observed in parietal
neurons may generally serve these types of transformations by binding the sensory signals across the
modalities with radial basis functions (tensor products) on the one hand and by permitting the learning
of contextual reference frames on the other hand. In a shoulder–elbow robotic experiment, gain-field
neurons (GF) intertwine the visuo-motor variables so that their amplitude depends on them all. In
situations of modification of the body-centered reference frame, the error detected in the visuo-motor
mapping can serve then to learn the transformation between the robot’s current sensorimotor space and
the newone. These situations occur for instancewhenwe turn the head on its axis (visual transformation),
when we use a tool (body modification), or when we interact with a partner (embodied simulation). Our
results defend the idea that the biologically-inspired mechanism of gain modulation found in parietal
neurons can serve as a basic structure for achieving nonlinear mapping in spatial tasks as well as in
cooperative and social functions.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Over the last two decades, the studies of the post-parietal cor-
tex (PPC) have permitted to understand better the neural mecha-
nisms involved in the spatial representation of oneself body. What
we have discovered is that our body representation is far more la-
bile as we previously thought and that the brain fully exploits the
perceptual ambiguity yielded by the senses to represent spatially
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not only our body limbs but also the nearby objects and by exten-
sion the persons around us. The so-called mirror neurons found by
Rizzolatti and his colleagues exemplify the most this discovery as
they respond to action and to observation (Rizzolatti, Fadiga, Fo-
gassi, & Gallese, 1996; Rizzolatti, Fogassi, & Gallese, 2001). Mirror
neurons appear to bear out the fundamental structure for achiev-
ing perceptual, cognitive and motor functions as well as coop-
erative and social functions (Fogassi et al., 2005; Keysers, 2004)
although its mechanism is still poorly understood.

In this perspective, the studies by Iriki in themacaquemonkeys
are particularly interesting as they showed evidences of a dynam-
ical readaptation of the body schema with respect to the ongoing
situation (Iriki, Tanaka, & Iwamura, 1996). By simply manipulating

http://dx.doi.org/10.1016/j.neunet.2014.08.009
0893-6080/© 2014 Elsevier Ltd. All rights reserved.



S. Mahé et al. / Neural Networks 62 (2015) 102–111 103

the visual feedback on a TV set that a monkey scrutinizes to guide
its arm motion, Iriki showed how the parietal neurons were read-
justing continuously the body image (here the hand) in accordance
to the new reference frame (Okanoya, Tokimoto, Kumazawa, Hi-
hara, & Iriki, 2008). The spatial transformations performed could be
as complex and nonlinear as the combination of translation, rescal-
ing and rotation. This result was also tested on tool-use where
the spatial receptive fields of the parietal neurons associated to
the hand extended to entail the tool (Goldenberg & Iriki, 2007;
Maravita & Iriki, 2004). In terms of social cognition, this trans-
formation mechanism is considered to take a central place in the
process of understanding others as a mean to transform someone
else visuo-motor perception into our own thus simulating their
actions (Fogassi et al., 2005; Lewkowicz, Delevoye-Turrell, Bailly,
Andry, & Gaussier, 2013;Meltzoff, 2007; Rizzolatti et al., 2001), see
Fig. 1.

Thus, one may recognize that the neural mechanisms involved
in spatial representations constitute a hard problem that requires
at the same time non-linear transformations as well as rapid pro-
cessing. On the one hand, the PPC is ideally placed for multimodal
integration since it is one of the first cortical structure to receive
the sensory signals coming from the different modalities (Ander-
sen, 1997; Pouget & Snyder, 1997). On the other hand, its role to
bind fastly the sensory signals is not trivial at all since each sen-
sory signal is encoded differently and anchored to different body
part or spatial reference frame; e.g., eye-, head-, shoulder- or hand-
centered. One consequence is that patientswith lesions of the pari-
etal cortex present difficulty in spatial adjustment, coordination
disorders and even spatial neglect (Keysers, 2004). Moreover, the
spatial disorders also pervade in the social domain particularly in
autism spectrum disorders with the importance of embodied self-
rotation for visual and spatial perspective-taking (Pearson, Ropar,
& Hamilton, 2013; Surtees, Apperly, & Samson, 2013). These stud-
ies have revealed a lack of multimodal integration and the disabil-
ity to put in perspective the spatial location of objects and persons
relative to our body.

Considering the mechanisms it may involve, the discovery of
reach cells and postural cells for particular orientation of the hand
associated to the current context or motor plan have permitted
to discriminate further the functional organization at the net-
work level (Blohm & Crawford, 2009; Bremner & Andersen, 2012;
McGuire & Sabes, 2009). Andersen and colleagues (Andersen, Es-
sick, & Siegel, 1985; Andersen & Mountcastle, 1983) first discov-
ered neurons firing for a specific eye saccade motor command,
modulated by the position of the eye relative to the head. That is,
this result demonstrates that (1) these neurons are bimodal neu-
rons as they encode two information at once and that (2) their
amplitude level is an informative quantity that can be modeled.
Furthermore, the gain-modulation effect observed for this behav-
ior does not correspond to a summing integration as it would be
for integrate-and-fire neurons. Instead, a more correct mathemat-
ical model of the parietal neurons’ responsewould be amultiplica-
tive integration between the incoming sensory signals, which can
be approximated as a nonlinear basis function (Pouget & Snyder,
1997).

The striking advantage of a gain-field representation of the
signal is that a basis function representation may approximate
any desired mapping, as it is the case for the Fourier series or
the wavelet decomposition. Therefore, this kind of representation
meets the requirements for a local-to-allocentric transformation
because multiple reference frames can be derived from the same
population of neurons allowing to use intrinsic as well as extrinsic
reference frames (Bremner & Andersen, 2012; McGuire & Sabes,
2009). For instance, Shadmehr and Wise proposed that the gain-
field neurons compute a fixation-centered frame by subtracting
the vector between the gaze location and the hand position to

Fig. 1. The problem of the frame of reference and of sensorimotor transformation.
(a) Grasping is a complicated task as it requires to learn the visuomotor space in an
ego-egocentric reference frame. (b) When we observed our own action in a TV set,
we change reference frame, which requires to transform the spatial information
of the visual coordinates with respect into the hand coordinates. (c) The same
situation occurs when we observe someone else’s actions and try to imitate them;
this transformation is called the correspondence problem. The point A in visual
space corresponds to the point A0 in the new reference frame after transformation
and to the point A00 after a different transformation.

derive the hand toward the target in eye-centered frame (Bremner
& Andersen, 2012; Shadmehr & Wise, 2005). Following this,
different robotic experiments have been conceived using the linear
combination of basis functions for sensorimotor transformations
(Chinellato, Antonelli, Grzyb, & del Pobil, 2011; Halgand, Soueres,
Trotter, Celebrini, & Jouffrais, 2010; Hoffmann et al., 2010).

In previous works, we demonstrated how the mechanism of
gain-field modulation can be applied for integrating audio–visual
signals and proprioceptive feedback in a head–neck–eyes robotic
device as it is for some parietal neurons (Pitti, Blanchard, Car-
dinaux, & Gaussier, 2012). In our studies, the gain-field neurons
were successfully used to remap the location of one sound signal
(in head-centered reference frame) into retina coordinates (in eye-
centered reference frame). The gain-field basedmodel enabled the
system to increase the accuracy of a visual stimulus (i.e., the posi-
tion of the mouth when a person speaks) by using the supplemen-
tary sound signal to estimate more precisely the spatial location of
the mouth–voice stimulus.

In this paper, we consider to employ again the gain modula-
tion mechanism but this time toward a fixation-point reference
frame, external to the body (Shadmehr & Wise, 2005). We pro-
pose that the same neural architecturemay permit to derive cogni-
tive functions involved in fixation-point reference frame (such as
tool-use) as well as social functions involved in perspective-taking
tasks such as joint attention and imitation. To this end,we first per-
form a rapid learning of the visuomotor associations in a gain-field
architecture with a shoulder–elbow-like robotic arm and a cam-
era. Once its body schema is learned, a second gain-field module
is added for situations of visuomotor mismatch and novelty. This
second module is used to encode the new sensorimotor task set
(Pitti, Braud, Mahé, Quoy, & Gaussier, 2013a; Pitti, Mori, Kouzuma,
&Kuniyoshi, 2009) corresponding to the visuomotor distortions in-
duced by novel fixation-centered tasks such as in front of a mir-
ror, during tool-use or during the control of an avatar in a video
game (self-observation in a TV set). In the social domain, the idea is
then to retrieve the hidden visuomotor transformation responsible
for the mismatch between the robot arm’s own motion and what
it currently sees (e.g., a person moving his/her hand aside). The
hidden visuomotor transformation permits to reduce the result-
ing spatial error in the visual field and in the motor domain, which
is associated to the so-called correspondence problem (Brass &
Heyes, 2005; Heyes, 2001) and to motor imaginary (Kosslyn, Ga-
nis, & Thompson, 2001).
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2. Methods

2.1. A formal model of gain fields

Our architecture implements multiplicative neurons, called
gain-field neurons, that multiply unit by unit the value of two
or more incoming neural populations, see Fig. 2. Its organization
is similar to radial basis function (RBF) as it transforms the in-
coming signals into a representation of basis functions, a func-
tional space, that could be exploited to simultaneously represent
stimuli in various reference frames (Pouget & Snyder, 1997; Sali-
nas & Thier, 2000). The multiplication between afferent sensory
signals from two different modalities (M1,M2) is the element-
wisemultiplication between two probability distributions Xm1 and
Xm2 , two vectors of dimensions {M1 and M2} respectively, with
{m1,m2 2 M1, M2}. The featured matrix is the signal activity
Xm, m 2 M1 ⇥ M2 that gain-field neurons learn the activity.
The equation for nth gain-field neuron XGF

n , n 2 N , with synap-
tic weights wi, i 2 M1, M2 is:

Xm = Xm1 ⇥ Xm2 (1)

XGF
n =

M1⇥M2X

i=0

wiXi. (2)

Hence, neurons XGF have the same equation as perceptrons
without bias. The key idea here is thatXGF mapencodes a particular
combination of the two values, the amplitude of the gain-field
neurons encode onemodality conditionally to another in a Bayesian
fashion, in a lower dimension (Braun, Aertsen,Wolpert, &Mehring,
2009; Braun, Mehring, &Wolpert, 2010). We exploit this feature to
model the parietal circuits fromdifferent sensory signals as a linear
combination of gain-fields neurons f so that we have f (XGF

n ) =PN
n=0 !nXGF

n , for n 2 N gain-field neurons, and ! the pondering
weights. In a sense, the linear combination of perceptron-like
neurons corresponds to the neural architecture of RBFs.

We explain hereinafter how the gain-fields neurons learn the
associations between various modalities, see Fig. 2. Once a first
mapping is done – say between variables X and Y in Fig. 2 – it
is possible to chain the gain-field maps so that the activity of the
latters (e.g., to encode the newmodality ✓1) depends on the activity
of the formers (i.e., the first modalities X and Y ). As an example, we
give the equations for the second map XGF2

n constructed from the
activity of a first map f (XGF1

n ) and the new modality Xm3 , a vector
of dimension M3:

X 0
m = Xm3 ⇥ f (XGF1

n ) (3)

XGF2
n =

M3⇥NX

i=0

wiX 0
i . (4)

The new gain fields neurons XGF2
n depend on Xm3 and f (XGF1

n )
and encode then a relational map obtained from the activity of all
the preceding modalities, Xm1 and Xm2 , with the new one, Xm3 . We
make a point that XGF1 represents essentially the multiplication of
the two input modality values, which do not uniquely represent
one combination of the two values. However, from a biologically
viewpoint, the observation of single gain-field neuron shows
a similar behavior in parietal neurons (Salinas & Thier, 2000).
While one XGF is not enough to disambiguate certain cases, the
linear combination of multiple XGF1, as XGF2

n do, can do much
for generalization, as it is for RBFs and perceptrons. Thus, the GF
neurons each represent a specific overall activity pattern of the XGF

map which encodes a pair-wise combination of the two values.
By doing so, the system retranscribes the relative information
of the occurrence of one modality with respect to the others.

Fig. 2. Neural architecture for gain-field neurons. Gain-field neurons can bind the
activity of one, two, three or four inputs by reusing gain-field neurons resulting
from the multiplication of two modalities as one of the two modalities of another
gain-field map. These neurons can serve as basis functions from which desired
representations can be mapped. (ROC) stands for Rank-Order Coding neurons.
The sensory signals I can be estimated then from the linear combination of ROC
neurons as it is with perceptron neurons. The desired output, Î/ROC, means then
the estimation of signal I by ROC.

This multimodal process is similar to the chaining of Bayesian
conditional rules between multiple variables (Deneve & Pouget,
2004). As the number of dimension augments, a linear combination
of GF neurons can permit to represent well the input data for an
appropriate number of GF neurons, if the input space is sparse
enough. In this case, we should not see a resolution loss after the
learning stage.

2.2. The Rank-Order Coding algorithm

In order to learn the sensorimotor mapping between input and
output signals, we implement the hebbian-like learning algorithm
proposed by Thorpe and colleagues (Thorpe, Delorme, & Van
Rullen, 2001; Van Rullen, Gautrais, Delorme, & Thorpe, 1998)
called the Rank-Order Coding (ROC) algorithm that we have used
already in previous researches (Pitti et al., 2012, 2013a). The ROC
algorithm has been proposed as a discrete and faster model of
the derivative integrate-and-fire neuron (Van Rullen & Thorpe,
2002). ROC neurons are sensitive to the sequential order of the
incoming signals; that is, its rank code and the distance similarity
to this code is transformed into an amplitude value. A scalar
product between the input’s rank code with the synaptic weights
furnishes then a distance measure and the activity level of the
neuron. More precisely, the ordinal rank code can be obtained by
sorting the signals’ vector relative to their amplitude levels or to
their temporal order. Due to this feature to encode the rank, ROC
neurons are more robust to amplitude noise than winner-takes-all
(WTA) (Thorpe et al., 2001).

The neurons’ output XGF is computed by multiplying, not di-
rectly the amplitude values of the sensory signal vector I , but the
inverse of its rank order rank(I) by the synaptic weights w; w 2
[0, 1]. For an input vector signal of dimensionM and for a popula-
tion of N GF neurons X , we replace Eq. (2) by:

XGF
n =

X

m2M

1
rank(Im)

wGF
n,m. (5)

The updating rule of the neurons’ weights is similar to theWTA
learning algorithm of Kohonen’s self-organizing maps (Kohonen,
1982). For the best neuron s 2 N and for all afferent signalsm 2 M ,
we have:

1wGF
s,m = ↵

✓
1

rank(Im)
� wGF

s,m

◆
, (6)

where ↵ is the learning rate; we set ↵ = 0.01.Wemake a note that
the synapticweights follow a power-scale density distribution that
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Fig. 3. Transformation mechanism with an error signal. We can compute an error
signal 1A between a variable A and its estimation Â done by the neural network
in Fig. 2. This error can be learned by different maps with respect to the context it
corresponds. The error map can serve then to learn the transformation to pass from
the point A to the point Â.

makes the Rank-Order Coding neurons similar to basis functions.
This attribute permits to use them as receptive fields so that the
more distant the input signal is to the receptive field, the lower is
its activity level.

2.3. Learning sensorimotor transformation

Once the gain-field neurons have learned the visuomotor rules
from their input space, they can be exploited for comparing any
situation of visuomotor mismatches during physical perceptual
changes as well as during social ambiguities. For example, a
comparator model as plotted in Fig. 3 that computes the difference
between a real signal value A with an estimated one Â from the
network can serve to retrieve back the possible transformations
responsible for the sensorimotor errors.

In that sense, the GF neurons used in our model are similar to
radial basis functions (RBF) used in image processing for morphing
and registration problemswhere the linear combination of RBF can
serve to deform the input space to a particular a priori model. Let
us consider the point A and the new point Â estimated by the GF
network with:

f (A) =
nX

i=1

wiXGF
i (A)

f (Â) =
nX

i=1

wiXGF
i (Â).

(7)

Let us express f (Â) as a function of f (A):

f (Â) =
nX

i=1

wi(XGF
i (A) + (XGF

i (Â) � XGF
i (A)))

f (Â) =
nX

i=1

wiXGF
i (A) +

nX

i=1

wi(XGF
i (Â) � XGF

i (A))

f (Â) = f (A) +
nX

i=1

wi(XGF
i (Â) � XGF

i (A)). (8)

This means that the closer Â is to A, the closer f (Â) will be to
f (A), in other words, the closer a point Â is from a point A used for
the training of the GF neurons, the closer the associated transfor-
mation will be to the example transformation.

The second term corresponds to the transformation function
that minimizes the distance between XGF

i (A) and XGF
i (Â). One per-

ceptron can estimate this function within the range around the
point A by identifying the weights that minimize the correspon-
dence problem, Although a population of perceptrons is more
satisfactory since it can cover the whole space as well as different
transformation functions with respect to the current situation.

3. Experimental setup

In our experiments, we use the Kinova robotic arm with 7
degrees of freedom and a fixed camera to observe it, a graphic of
the setup is shown in Fig. 4(a).

For the sake of simplicity,we limited the arm to twoDegrees-of-
Freedom (DoF) in the visual plan of the camera, but the architecture
can be easily extended to more DoFs by chaining the GF maps.
The two motor joints correspond respectively to the shoulder
and elbow-like joints, ✓0 and ✓1; with ✓0 2 [0°, 200°] and with
✓1 2 [0°, 100°]. Each motor angle is translated into a discretized
vector of 22 bins with a Gaussian curve centered on the current
motor angle. A color-based vision system focusing on the red
color provides the hand’s coordinates (x, y) on the retina reference
frame. And similar with the motor angles, the visual coordinates
are translated into two discretized vectors of 22 bins with a
Gaussian curve centered on the current position. Using the gain-
field architecture as in Fig. 2, the system is composed of threemaps,
where each ROC group is composed of 22 neurons in order to have
a regular network. The last ROC group learns to associate then the
motor angles (✓0, ✓1) with the coordinates of the hand in the (x, y)
axis. The output of the gain-fields network will now give an RBF
based representation of the learned (x, y) coordinates of the hand.

To take advantage of the gain-fields, an output layer of percep-
tron neurons will combine their amplitude level toward the esti-
mation of the hand’s coordinates (x, y) in the visual field and of
the motor angles; resp. (bx,by) and (b✓0,b✓1). This will correspond to
the integration of the four inputs through three chainedmaps as in
Fig. 2; see also Section 2.1.

a b c d

Fig. 4. Experimental setups and sensorimotor transformations. (a) The first situation corresponds to the learning of the visuomotor correspondence between the motor
variables (two degrees of freedom) and the (X, Y ) position in the camera visual field. Although this task is nonlinear, a slight change of the reference frame does not require
to relearn all the visuomotor links but instead, the transform function responsible for the global error. These changes can be due to a visual transformation as for a camera
rotation (b) or to the body changes as during tool-use (c) or to the embodied simulation of one partner as in (d); the so-called correspondence problem. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)



106 S. Mahé et al. / Neural Networks 62 (2015) 102–111

a

b

c

Fig. 5. Activity of Gain Fields neurons. Neurons 1, 4 and 15 resp. (a)–(c) encode
different sensorimotor locations in (✓0, ✓1) and (X, Y ) as it would be for radial basis
functions. Each variable is normalized within the interval [0, 1]. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Then, in the second part of the experiment, we will use this
output layer in order to learn the transformations produced in sit-
uations of perceptual ambiguities; i.e., camera-shift, tool-use and
social interaction, see Section 2.3 and Fig. 4(b)–(d). A third layer
will be added that will learn the difference between the estimated
values of the hand coordinates and the current ones (after the
transformation is applied to the system); c.f., Eq. (8). The output
of the third layer of perceptron neurons provides the transforma-
tion for any given point that will cancel the transformation applied
to the system and thus making the previously learned action still
relevant.

4. Results

4.1. Generalization from visuomotor association

We first let the network learn the visuomotor coordination
with the gain-field neurons and we check then how the learning
operates toward the spatial location of the arm in the eye-field and
in the peripersonal space.

At the initial stage, we perform a motor babbling in a random-
ized fashion so that the ROC neurons will map uniformly the vi-
suomotor space. After the learning period, which corresponded to
12min duration, 12,000 sampleswith the exploration of a newarm
configuration each 0.05 s, the ROC neurons self-organized them-
selves and reproduced the gain-field behavior of PPC neurons.

Fig. 6. Amplitude dynamics of one Gain-field neuron with respect to the motor
variable ✓0 on the X axis. It is noteworthy that the two variables are linked together
with respect to the amplitude. The X centers slightly shift also with respect to the
variable ✓0 as it is seen in biological neurons. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

For instance, we plot in Fig. 5 the activity level of three different
ROC neurons from the third map with respect to the variables
pairs (✓0, ✓1) and (x, y). The color code indicates the activity value
for each neuron and their respective receptive fields in the motor
domain and in the visual domain. We make a note that the motor
and visual receptive fields are not separated from each other, but
the activity level of the gain-fields neurons is related altogether
to the four variables: in Fig. 6 for instance, the amplitude level
for one GF neuron varies with respect to the motor angle ✓0 for
a given range of values on the X axis; the color code indicates
three different intervals of the motor angle ✓0. We can see that
its receptive field is not strictly centered on a particular value on
the X axis but shifts with respect to the proprioceptive feedback; a
phenomenon also observed in the biological PPC neurons (Salinas
& Thier, 2000).

One consequence for gain-fields neurons to simulate basis
functions is that the linear combination can serve to estimate
the current visuo-motor state in a specific reference frame.
Gain-modulated neurons in PPC have been found to generate
depth-dependent activity (Blohm & Crawford, 2012) as well as
hand-centered maps (Galeazzi et al., 2013) but because our setup
does not have vergence and tactile information, we will not focus
on these properties. Instead, we propose to use the gain-field
neurons to estimate each incoming signal from the fusion of all,
in their respective reference frame.

A population of perceptron neurons is used to adapt its weights
correctly to the appropriate linear combination of gain-fields in
order to estimate the (x, y) variables, (bx,by); see Fig. 7(a). The blue
line corresponds to the real visual location on the Y axis whereas
the green line and the red line are the linear combinations learned
by the perceptron neurons respectively from the first ROC map
(by/ROC1) and from the third ROC map, (by/ROC3); the first map
is the one that receives information from the (x, y) position solely
whereas the third map combines the information coming from
the four variables. In this plot we observe a slight variance and
bias in the estimation process for the two output networks, more
pronounced for the second system, which integrates the motor
signals to the visual ones. The histograms plotted in Fig. 7(b)
display the normalized spatial error for the twoneural populations.
The two histograms correspond to two power-law curves but the
variation in their shape exemplifies how the two neural networks
generalize also differently. The larger error variance in the second
perceptron map indicates that the motor variables (✓0, ✓1) have a
defavorable influence in the estimation of the visual variables.
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Fig. 7. Neural estimation on the visual field. (a) The blue line corresponds to
the location of the target to the Y axis whereas the red line and the green
line correspond to the estimated location of the two output neural networks
respectively calculated from the ROC neurons from the first map (visual inputs
only) and from the ROC neurons from the third map (visual and motor inputs). (b)
Histogram of the visual error for the two neural networks, the variance of the error
distribution is larger for the network estimated from the visual and motor inputs
(green) than from the sole visual inputs (red), although some big errors occur above
0.5: the motor inputs have an influence on the estimation of the spatial location of
the visual targets. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

4.2. Neural extension to visuomotor transformation

To estimate the generalization properties of our system for
visuomotor transformation, we first perform our experiments on
three basic visual transformations as done by Iriki on a macaque in
which the primate showed rapid adaptation to new visual position
of its limbs with changes operated on the screen (Iriki et al., 1996)
or on the body (Maravita & Iriki, 2004; Okanoya et al., 2008). The
first transformation consists on the small rotation of the camera
in the plane of the robotic arm and the second transformation
corresponds to a body extension of the robot handwith a tool (tool-
use), the third transformation consists on a translational shift of the
camera with respect to the arm plane of motion; see resp. Fig. 4(b)
and (c).

We present the results for the estimated transformations of
three population outputs for each case presented above in Fig. 8(a),
(b) and (c) respectively for rotation, translation and tool-use. Each
perceptron neuron of the output layer estimates the (1x, 1y)
values learned from the current values received (x, y) and the
expected ones (x0, y0) from the GF maps.

a

b

c

Fig. 8. Rotation, Tool-use and Shift Transformations. The arrows correspond to the
estimated local transformations, the blue line corresponds to the original trajectory
of the robot hand before any transformation and the red line corresponds to its
trajectory after transformation. (a) Learned transformation after the rotation of
the camera. (b) Learned transformation after adding a stick to the robot hand.
(c) Learned transformation after the camera shifting. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)
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In order to visualize the transformations that link the two sen-
sorimotor spaces, we plot the arrows that link each point (x, y)
with its associated ones (x + 1x, y + 1y) after transformation.
In Fig. 8, we plot in blue the trajectory of the hand before transfor-
mation and in red the trajectory of the hand after transformation.
We make a note that the length of the arrows do not correspond
to their actual size, they are reduced in order to be visualized bet-
ter in the figure. Fig. 8(a) displays the transformation for the cam-
era rotation. The blue line corresponds to the position of the hand
before transformation and the red line corresponds to its position
after transformation. As it can be seen, the arrows within the cen-
ter, where the robot moves, show a correct approximation of the
rotation as the generalization is made on the close neighborhood
of the learned examples. However, past to a certain distance to the
originally learned examples – and outside the center area – we can
see some local discrepancies as the orientation of the arrows do not
perfectly match the direction of the rotation anymore, although it
is a global transformation.

The second transformation in Fig. 8(b) is the addition of a small
stick at the end of the arm that effectively scales the armup. During
the second step of the experiment, the vision systemwould in this
case recognize the position of the end of the stick instead of the
position of the hand. Once again the transformation is successfully
learned, and the generalization applies to a much larger part of
the parameter space, which is probably due to the simplicity of
the transformation. With respect to rotation, this transformation
corresponds to a local transform, not applied on the whole image.

The last transformation performed is a simple vertical shift
of the camera; see Fig. 8(c). Once again the transformation is
successfully learned, and the generalization is applying to almost
the whole parameter space, which differs from the previous
experiment.

What is interesting to notice on the three presented results
in Fig. 8 is the capacity of the system to generalize at least to a
certain extent; see Fig. 9 for a quantitative measure of the root
mean square error of the estimated location of the visual target.
For each transformation, all the learning input (the conditional
signal of the perceptron neurons) were gain-field representations
of a point on the red line, while the associated example (the
unconditional link of the perceptron neurons) was on the blue
line. This coverage of the parameter space is far from complete,
however the generalization of the transformation to the rest of the
parameter space is rather correct, at least in terms of direction. If
we look closer, for any given point, the generalized transformation
corresponds to a fraction of the closest learned example. If a point
is in between two learned examples, then the transformation is an
interpolation of these two example transformations.

4.3. Motor imagery & perspective-taking in social context

The previous experiments were resolved with the estimation
of the spatial error in the visual field. In comparison to body-
centered sensorimotor transformation, the motor imaginary and
perspective-taking tasks in the social domain require to observe
the actions of one partner and to simulate his/her movements
through our own motor system.

We investigate therefore how it is possible to estimate the
motor configuration of someone else just from the visual input
and to imitate one’s arm posture with respect to what is seen. This
situation corresponds to the so-called correspondence problem in
social interaction for representing someone else’s body posture
(Brass & Heyes, 2005); see Figs. 1(c) and 4(d). Since there is no
specific correspondence associations during role-taking, the new
reference frame has to be computed from the estimated visual
error from which the new motor action is calculated.

Fig. 9. Root mean square error computed from the position of the visual target
and the estimated one for rotation (green), tool-use (red) and shift transformations
(blue); resp. (a)–(c) in Fig. 8. The linear combination of gain-field neurons permit to
reduce the error to a small range even for three different nonlinear transformations.

The experiment is as follows. The robot arm performs first a
dynamic exploration of its arm visual location with a red toy in its
hand and once it has learned its sensorimotor rules, a participant
comes to interact with it by exploring his/her own peripersonal
space with the same toy; see Fig. 10(a) and (b). We display in
Fig. 10(c) with red arrows the visual transform found by the output
neurons, which corresponds to a combination of a translational
shift in the X axis with a rotational effect centered on an external
fixation point, roughly situated at the shoulder’s location of the
student. This situation combines the three experiments done in
Section 4.2 and Fig. 8.

Once the visual transform is defined, we analyze how the
motor dynamics are estimated. We plot for this aim the robot
personal space and the person’s sensorimotor space in Fig. 11(a)
respectively in blue and in red lines, where the arrows correspond
to the visual transformation. We note that the two locations
are different in space, therefore the neural architecture can
differentiate its own robotic arm from one person’s arm.

Considering the motor estimation, the top chart of Fig. 11(b)
displays the transition in the visual signal in the X and Y axes from
the period when the robot waves its hand and stops (t < 500
iterations) to the one when the student starts to wave her hand
(t > 500 iterations). Themiddle chart exposes themotor dynamics
(✓0, ✓1) and the bottomchart displays the activity of the perceptron
neurons involved in the motor transform for estimating the motor
variables ✓̂0 and ✓̂1. We can observe from the graph that the output
variables ✓̂0 and ✓̂1 estimated by the neural system in the motor
domain (bottom chart) are replicating the variations of the visual
signal (top chart), which aremostly on the Y axis and for themotor
variable ✓0. The dynamics of the two variables are mostly in phase
with the visual dynamics whereas the amplitude range is different.
A plot of the renormalized estimatedmotor configuration is shown
in Fig. 11(c) with respect to the visual stimulus. The neural system
has mimicked the motor pattern of its partner and estimated its
respective transform function.

5. Discussion

TheMirror Neurons System (MNS) shapes the sight information
to the motor system when grasping an object. Its features extend
to action recognition in the premotor cortex when it is the
agent who is the observer so that the same cortical sites are
activated during execution and observation. This system suggests
that object-directed actions, communication and body movement
are intertwined.
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a

b

c

Fig. 10. Visual transformation and motor imagery during interaction with a
partner. (a) and (b) Red toy handled by the robot and then handled by the student.
This experiment reproduces the so-called correspondence problem posed in social
interactionswhere one has to simulate themotor activity of one person into his/her
own visuomotor system in order to imitate her or to recognize her intentions.
(c) Within our framework, this simulation can be modeled as a visuomotor
transformation by which the robot can learn the visual error. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

What is so special in the mechanism called embodied simula-
tion is that we reuse our mental state (Gallese & Sinigaglia, 2011;
Jeannerod, 2001). Embodied simulation should not be seen as a
passive process by which mental states are ‘‘replayed’’, instead,
it should be seen as an active process by which a transformation
function is discovered online, mapping what it is seen to our own
body dynamics. We propose that the processing involved in motor
simulation in social cognition is a byproduct of the one involved in
spatial transformation. We advance also that the gain-modulation
effect in parietal neurons is part of the mechanisms responsible
for it.

In previous works, we proposed a development scenario for
the emergence of the MNS in two stages (Pitti & Kuniyoshi, 2012;
Pitti, Mori, Yamada, & Kuniyoshi, 2010). We hypothesized that an
automatic mimicry system is maturing at the fetal stage possibly
in the superior colliculus (SC) forming the ground for the cortical
circuits to organize the MNS (Pitti, Kuniyoshi, Quoy, & Gaussier,
2013b). At a first stage, we proposed that the topological alignment
in SC across the modalities enables the automatic social responses
of the newborns like facial preference and facial mimicry. This
hypothesis has been also suggested byNagy andMolnar (2004) and
Neil, Chee-Ruiter, Scheier, Lewkowicz, and Shimojo (2006) who
emphasized the central place that occupies the SC for fusioning the
senses with respect to other brain regions not yet matured.

a

b

c

Fig. 11. Visual transformation and motor imagery. (a) The arrows display the
estimated visual transformation between the robot peri-personal space (blue)
and the partner space (red). This function can serve for self–other discrimination
purpose as well as the estimation of the motor activity of the partner. In (b) and
(c), the plots of the (X, Y ) visual signals with the estimated motor configuration
(✓̂0, ✓̂1) (normalized in (c)). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

At a second stage, we propose then that a more complex spa-
tial representation of the body in an allocentric metrics is emerg-
ing in the cortex as suggested in Bremner, Holmes, and Spence
(2008), Del Giudice, Manera, and Keysers (2008) and Pitti et al.
(2010). This body mapping would be based on the GF mechanisms
of sensorimotor transformation responsible for body-centered ref-
erence frames (Andersen, 1997; Blohm, Khan, & Crawford, 2008;
Salinas & Sejnowski, 2001) but also from the sensorimotor inte-
gration from the different modalities. As proposed by Shadmehr,
such mechanism would permit to have far more plastic represen-
tations with fixation-point reference frames external to the body
(Shadmehr &Wise, 2005). This system would permit to handle vi-
suomotor changes such as during self-observation in a TV set or
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during tool-use, but also for solving the correspondence problem
in inter-personal interactions.

Considering the construction of the inter-subjective mind, the
PPC has been well-acknowledged for its contribution to agency
(Schwabe & Blanke, 2007; Tsakiris, Prabhu, & Haggard, 2006), in-
tention (Andersen & Buneo, 2002; Andersen & Cui, 2009) and mo-
tor simulation (Kosslyn et al., 2001; Kosslyn, Ganis, & Thompson,
2006). Blanke – among other researchers – proposes that the sense
of agency is related to the level of anticipation across the sen-
sorimotor signals. Hiraki and colleagues suggest further that the
synchrony among the sensorimotor signals activates certain pari-
etal regions while its disrupting activates others (Miyazaki & Hi-
raki, 2006; Shimada & Hiraki, 2006; Shimada, Hiraki, & Oda, 2005)
(e.g., with time lags). More precisely, the right inferior parietal cor-
tex is consistently activated in conditions involving imitation (De-
cety & Chaminade, 2003; Meltzoff & Decety, 2003; Ruby & Decety,
2001). We suggest that this region is associated to self–other sim-
ulation and encodes the transformations necessary for extending
the body representation.

If we consider now this problem from a robotic perspective,
Nagai pointed out that no computational models that aim to
address imitation nor the architecture of MNS took self–other
discrimination into account (Nagai, Kawai, & Asada, 2011). For
instance, these works take advantage of self-observation and
perceptual ambiguity for the emergence of imitation (Andry,
Gaussier, & Nadel, 2002; Andry, Gaussier, Nadel, & Hirsbrunner,
2004; Kuniyoshi, Yorozu, Inaba, & Inoue, 2003), but do not disam-
biguate the dynamics corresponding to oneself action and those of
others (De Rengervé, Boucenna, Andry, & Gaussier, 2010). Among
the few exceptions, the works done by Fuke, Ogino, and Asada
(2009) and Nagai et al. (2011) propose to discriminate the mo-
tor space with respect to observed actions (self ones or others’).
We can cite notwithstanding the hebbian solution proposed first
by Keysers (2004) based on contingency detection at the neural
level (i.e., the biologically-inspired mechanism of spike timing-
dependent plasticity) for categorizing the sensorimotor signals in
situation of interaction with others (Pitti et al., 2009). In compari-
son with these works, the present one emphasizes the learning of
a transformation function that maps the robot visuomotor space
(the egocentric reference frame) to the new one (the allocentric
reference frame). We suggest that this mechanism of sensorimo-
tor transformation based on gain-field neurons is general enough
to serve for the mapping of spatial transformation during physical
as well as social interactions.

Deneve and colleagues described in detail the advantages and
disadvantages of representing multi-modalities using radial basis
functions (tensor products). Themain advantage of basis functions
is notably to reduce the computation of nonlinear functions
into linear ones (Deneve & Pouget, 2003) especially for retinal
images, which are highly nonlinear, requiring translation, scaling,
and rotation of the image (Olshausen, Anderson, & Essen, 1995).
Deneve acknowledges however that one of the main drawbacks
is the curse of dimensionality as the number of basis functions
required to approximate functions with high accuracy increases
exponentially with the number of signals being combined:
N2,N3, . . . , (Deneve & Pouget, 2003). Deneve further argues in
Deneve and Pouget (2003) that this weakness of the basis function
approach is also one of its main strengths. Because it uses so many
units, a basis function representation tends to be highly redundant.
This redundancy can be exploited to filter out the noise optimally.

One question that remains is how our framework can permit
to describe an accurate geometrical information about the world.
For instance, infants do seem to have an intuition of euclidean
geometry that they retrieve from their senses (Spelke, Lee, & Izard,
2010). Adults perform easily mental rotations by simulating how
the object wouldmove by applying affine-like transforms (Kosslyn

et al., 2006). One possible hypothesis that we can formulate
could come from the findings of ‘‘cosine’’ gain-modulated neurons
in the cortical motor areas and responding to certain visual
direction and arm movements for performing 3D reaches (Blohm
& Crawford, 2012; Blohm et al., 2008; Kakei, Hoffman, & Strick,
2003). We can hypothesize for instance that such neurons may
serve for extracting geometrical rules based on our actions (Izard,
Pica, Dehaene, Hinchey, & Spelke, 2011). We let nonetheless this
unsolved question for future works.
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