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Abstract

Starting from neurobiological hypotheses on the existence of place cells (PC) in the brain, the aim of this article is

to show how little assumptions at both individual and social levels can lead to the emergence of non-trivial global

behaviors in a multi-agent system (MAS). In particular, we show that adding a simple, hebbian learning mechanism

on a cognitive map allows autonomous, situated agents to adapt themselves in a dynamically changing environment,

and that even using simple agent-following strategies (driven either by similarities in the agent movement, or by

individual marks - “signatures” - in agents) can dramatically improve the global performance of the MAS, in terms of

survival rate of the agents. Moreover, we show that analogies can be made between such a MAS and the emergence

of certain social behaviors.
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1. Introduction

Swarm-based systems [1] are a classical approach to deal with collec-

tive intelligence problems. In such approaches, newly gathered infor-

mation is represented by physical traces (pheromones) let by agents in

the environment. We develop an alternative approach in which informa-

tion is stored internally in agents, with no marking of the environment

but with will to get similar emergent behaviors. Several works [2–4] re-

late the possible use of special cells in the rat’s hippocampus that fire

when the animal is at a precise location. These neurons have been

called “place cells”. Starting from those neurobiological hypotheses on

the existence of place cells (PC) in the brain, we show how agents

can continuously learn during the exploration of their environment, and

how they can share the information they have using a simple agent-

following mechanism, seen as a low-level kind of imitation. Imitation

processes are usually divided in two levels: the action level of imi-

tation [5, 6] is related to the mechanisms involved when reproducing

a simple action, often an elementary movement. In what follows, we

refer to this agent following capacity as “imitation”. The program-level
refers to imitation of more complex actions while preserving their orga-

nizational level. The work presented in this paper mainly focuses on

the first of those two levels. It lies at the intersection between sev-

eral domains: we use a multi-agent system (MAS) to test hypotheses
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on both individual cognitive processes in simple agents and the emer-

gence of non-trivial collective behaviors in some (sub-)groups of those

agents. At the individual level, agents can rely on an on-line, continuous

building of a cognitive map [2, 7–11] whose structure depends on their

own experience and discovery of the environment in which they live.

At the global, population level, they can take advantage of the ability to

imitate one another using simple agent-following strategies to transmit

parts of one agent’s cognitive map to another’s, leading to some kind

of natural distributed knowledge, similar to what can be achieved in

swarm-intelligence systems, except that shared knowledge does not

use the physical space as repository (as is the case for pheromones)

but individual cognitive maps instead. Those maps are a subclass of

topological maps, used in several context, from navigation [12–14] to

image processing [15] and others. This process, though mainly illus-

trated here in navigation tasks, can thus be reused for a wide range of

action selection problems.

Some of our previous papers [16–19] showed how to use a cognitive

map to solve non-trivial, possibly contradictory goals at an individual

level and to let social behavior emerge from a group of situated agents

launched in a previously unknown environment. Similar works [20, 21]

use sensorimotor maps together with an additional field to distinguish

between information about position and activity spreading mechanism

on a cognitive map. These two fields play a similar role as the sen-

sorimotor and planning maps in our architecture. The navigation and

planning aspects described here are meant as parts of a more global

and complex autonomous system, which in time aims at recognizing

objects [22], imitating [23–26] and communicating information among

them. Other experiments in our lab showed that our model can suc-

cessfully be used on actual robots navigating in the outside [27], but
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also learning sequences of actions, either from a human being or from

another robot [25, 26].

In social sciences, and more precisely in the economics field, MAS are

used to “formalize complex situations with various, spatial, temporal

or organisational scales and heterogeneous agents engaged in social

activities” [28]. Previous works on the formalization of bottom up pro-

cesses and rooted in the Santa Fe Institute, “Simulating Societies” [29],

“Artificial societies” [30] then “Growing up societies” [31] have arisen

the interest of the application of MAS in economics and more gener-

ally, MAS can be seen as a tool to model macro and micro relationships

such as the artificial stock market in Santa Fe [32], the complexity of

exchange and market mechanisms [33] or the strategic behavior of

agents [34]. In those contexts, agents are purely rational: they try to

optimize a hardwired satisfaction function. Moreover, we know that in-

dividual behaviors are able to produce social and spatial phenomena

unexpected in theory [35]. In social science, the Schelling segregation

model is doubtlessly one of the first models of a dynamical system ca-

pable of self-organization. It shows that a small preference for one’s

neighbors to be of the same color can lead to a spatial segregation.

MAS also exhibit the emergence of urban patterns such as urban hier-

archy [36], resilience and the persistence of urban settlement structures

and emergence of polynucleated urban landscapes [37]. Whereas the

process is quite similar (except that agents are immobile geographical

entities in [36]), spatial organization and clusters emerge from the def-

inition of different categories of agents: population size, activity, urban

functions and range in [36], color in [38], ethnic specification in [39] or

income level in [40], and spatial marks (such as ants in [37]). It remains

that, in human geography too, agents are truly rational. The choice

criterion is only making the difference: as an example, agents locate

their home with regard to income and job accessibility [40], a conve-

nient cultural environment [39], a mild preference for having neighbors

of their own color 1 [38]; towns trade with regard to surplus and the cre-

ation of new functions [36] and agents, following the tradition of swarm-

based systems, leave physical traces in the environment that enable

learning to occur and routines to emerge [37]. The spatial dimension

is the consequence of the definition of agents’ basic characteristics

and location or moving processes on a lattice. If human geography

has engaged successfully with applications in agent-based systems, it

has surprisingly omitted to integrate cognitive maps. Indeed, the def-

inition of cognitive and mental maps processes come from the geog-

raphy and psychology and previous works by Lynch [41] have shown

that space is of fundamental interest to understand individual routes,

spatial routines or the geography of places. Renewed in the nineties,

partly by the development of computer sciences and interdisciplinary

approaches [42], authors were expecting a better understanding of

individual spatial behavior that could replace the simplistic homoeco-

nomicus hypothesis [43]. Using cognitive maps to model economic

agents enables us to live up to this expectation and to deal with lim-

ited and situated rationality. Our systems deal with two kinds of agents,

reactive and cognitive [17]. Reactive agents are “naturally” rational in

simple environments (where visual continuity allows for the success of

simple gradient following strategies), but fail as soon as those hypothe-

ses are not met. Cognitive agents are not rational initially, but tend to

become rational when their knowledge of the environment increases.

Our aim is to show that this last kind of agents, dotted with a cognitive

map, though only partially rational, can help to model complex social

patterns in which simple reactive agents are of no - or few - help.

Next section is devoted to the description of our model of place cells

(and transition cells [44], see 2), and to that of the agents. In particular,

we show that using transition cells (TC) solves the important problem

of unambiguously linking actions to places in the environment. The

term has been proposed by our lab, initially without actual biological

justification, even if several recent biological recordings [45, 46] can be

interpreted as coming from such transition cells. Section 3 depicts the

structure, role and construction of a cognitive map, then shows that

adding a hebbian learning rule on the weights of the connections in

the cognitive map can help the agents adapt themselves to a dynam-

ically changing environment. Using such a map can allow non-trivial

behaviors, such as the ability to deal with contradictory goals [16].

Section 4 focuses on two agent-following strategies that can help to

transmit information from an agent to others. We describe a signature-

based mechanism to distinguish agents from one another, then com-

pare a “blind” following strategy to the strategy based on the agents’

signature. We show that in both cases, simulations lead to the forma-

tion of subgroups, though not identical in their structure and stability.

As a consequence, the analysis of such subgroups may question spa-

tial economic analysis. Section 5 discusses how to implement such

a model in the spatial economic field which main purpose is to study

the importance of space in both individual and collective economics

processes.

2. Model, material and method

In our experiments, software agents - or animats [47] - are launched in

an unknown environment. They are motivated by the simulation of three

types of needs (hunger, thirst and stress) that can be contradictory.

Each need can be satisfied by a (pool of) corresponding resource(s),

namely food, water and nest, that can be found in the environment. The

level of each type of need is internally represented by an essential
variable [48], ei(t) whose value is in [0, 1] and varies with time as

in Equation 1, except when the agent reaches the resource and the

variable level is reset to 1.

dei

dt
= −αnei(t) (1)

In the equation, αn represents the decreasing rate of the ith essential

variable. When ei(t) falls under a given threshold, a planning behavior is

triggered to go back to the (known) resource. Thus, changing its value

has an impact on the frequency of the visits to the resource: the higher

αn, the more frequent the visits. If no resource of the corresponding

type has been found by the agent, the level decreases until 0 and the

agent dies.

The environment is gradually discovered by the agent during random

exploration phases. Each time-step, the agent receives information

about the visible portion of its surrounding environment. This infor-

mation is made of couples of “what” and “where” information. “What”

relates to the recognition of a local view centered around a point of in-

terest (corner, end of line, etc.). “Where” represents the azimuth (angle)

under which each point is seen by the agent, compared to the North.

The perceivable points of interest are as follows:

· landmarks: fixed remarkable points (thus a particular location

is given by a set of landmark/azimuth pairs). Those points are

defined during the design of the environment and are not subject

to changed during an experiment;

· obstacles: locations that the agent cannot cross, and which pre-

vent it from seeing what is beyond;

· resources;

· other agents.

Landmarks may be seen from anywhere unless occluded by an obsta-

cle. All other elements are only detected within a given detection range.

26



PALADYN Journal of Behavioral Robotics

Figure 1. An animat (small dark triangle) in its environment, made of landmarks
(crosses), obstacles (solid rectangles), resources (labelled circles)
and possibly other animats (triangles). Visible landmarks are linked
to selected animat, and its visibility range is put in evidence with the
grey circle around it.

Indeed, if sources were visible from far away, there would be no need

for any planning behavior. Similarly, the choice to follow another agent

is restricted to the closest agents. Finally, obstacles are detected using

proximity sensors (equivalent to infra-red sensors for instance). In order

to simplify the model, the three ranges described above are merged into

a single “visibility range”. Figure 1 shows a typical environment. There

is no cartesian map of the environment, nor use of a square paving, as

in some other planning techniques (Q-learning among others).

Depending on its internal state, the agent can adopt several different

behaviors. Figure 2 sums them up. More precisely, and in decreasing

priority order:

1. If the agent encounters an obstacle on its path, it triggers an

obstacle avoidance strategy, based on Braitenberg vehicles [49]

principle.

2. If one of the essential variables falls below its minimum thresh-

old, and the agent has already discovered at least one matching

resource, it triggers a planning strategy to reach back the known

resource. Depending on the cognitive level of the agent, this

strategy can be a simple gradient following, or - as we describe

later in this paper, see 3 - it can use a cognitive map.

3. If other agents are in sight, it can choose to follow one of them.

The decision is probabilistic, and the choice of “who to imitate”

depends on the imitation strategy (see 4).

4. Lastly, default behavior is a random exploration of the environ-

ment.

The place cell paradigm allows for a given PC to code for a given lo-

cation in the environment, and only fire when the agent is at (or very

near) this location. Equation 2 defines the activity An of place cell n at

a location where landmark i is viewed under azimuth θi:

Figure 2. Subsumption-like [50] architecture for action selection mechanism in
the animat.

An = 1
un

K∑

i=1
ωi,n.(1 − λ |θi,n − θi|) (2)

where K is the number of known landmarks, un =
∑L

i=1 ωi,n is the

number of landmarks used for (i.e., visible from) PC n, ωi,n = {0, 1}
expresses the fact that landmark i has been used to encode PC n, θi,n

is the learned azimuth of landmark i for PC n and λ is a normalization

constant. A similar model has been tested on mobile robots, in indoor

and outdoor conditions [51].

As the distance to the location of maximum response increases, the ac-

tivity of the PC decreases. While the PC activity is above a given, mini-

mum recognition threshold, the agent is said to be in the “place field” of

the winning PC (the one with maximum activity). When the agent gets

out of any learned place field, the current location is learned on a newly

recruited cell1. This way, randomly exploring the environment for a long

time leads to a somewhat complete “paving” of the environment with

place cells. Figure 3 shows three steps in the paving process, in the

case of simple, obstacle-free environment. This PC neural layer gives

the agent a way to localize itself into the environment.

Using only place cells for localization leads to several drawbacks re-

lated to the planning model and to the action selection mechanism.

Both will be described further, but to understand the problem, and why

it can be solved using transition cells, let us briefly describe a PC-based

simple action selection mechanism: to define a sensori-motor unit, one

can associate an action with a given place. But then, the model can-

not deal with situations where several actions can be associated with

the same place. The problem is mentioned in [20], who handle it by

associating the motor command with a couple of sensorimotor units,

but do not use transition cells. In Figure 4, if food is placed in the left

arm of the T-maze (“C”) and water in the right arm (“D”), then PC “B”

should be associated with two different movements (“turn left” and “turn

right”), depending on the motivation (hunger or thirst), which is not fea-

sible. Transition cells are inspired by a neurobiological model of timing

and temporal sequences learning in the hippocampus [10, 52, 53]. A

transition cell codes for a spatio-temporal transition between two PCs

successively winning the competition, respectively at time t and t−dt.

Using TCs instead of PCs allows to solve the problem: “turn left” can be

associated with transition BC and “turn right” with transition BD. One

can legitimately wonder about the growth of the number of TCs, rela-

tively to that of PCs, during the exploration of the environment: since

1 There is a second situation where a place is learned and coded using a PC:
when the agent discovers a resource.
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Figure 3. Building place cells during exploration of the environment. The known portion of the environment at t = 500 (left picture), t = 1500 (middle) and t = 5000
(right). Each homogeneous region represents a zone with the same winner (its place field). Colors are randomly chosen to avoid two contiguous regions
to share a common color.

Figure 4. A simple “T” maze example to illustrate action selection problem with
place cells: if food is in C and water in D, two movements (“turn left”
and “turn right”) should be associated with B.

a TC can be created with each pair of PCs, could NTC = O(N2
PC )?

Experiments have been made [54] that show that this is not the case,

and that the number of TCs stays proportional to that of PCs (with

a branching factor of approximately 5). This result was predictable, as

the number of neighbors of a given PC is limited by construction, and

as one TC only links two successively reached PCs.

The two following sections describe experiments made using several

types of environments, differing in size, presence / absence of obsta-

cles, static / dynamic resources and so on. However they share com-

mon features and parameters. In all of them, the need for a resource

is dictated by the level of an essential variable that falls below the mini-

mum “comfort” level and triggers planning. The only encoded informa-

tion are locations and resources discovered during random exploration.

The environment is discretized in square portions. Typical sizes range

from 30x30 squares to 200x200 squares. The agent speed is con-

stant, time needed to go from the upper-left corner to the lower-right

one is approximately 150 time steps for a small environment (40x40

squares). The lifetime of agents depends primarily on the value of αn,

the decreasing rate of essential variables level. Typically for a small en-

vironment, αn = 10−3 makes agents die after about 1500 time steps

if they have not found the minimum set of resources. Time to almost

completely “pave” such a small environment in the cognitive map is

approximately 20000 to 30000 time steps. The quantity of visual infor-

mations usable by the agent depends on the visibility radius, counted

in squares, typically between 5 and 10.

Figure 5. Simplified view of a cognitive map based on transition cells. The moti-
vation system modulates the activity of neurons at the planning level,
thus allowing to choose the appropriate action at the recognition level:
(1) Place recognition using PCs, (2) activation of one PC and delayed
activation of another allows for transition prediction, (3) need for a re-
source triggers maximum motivation for a given goal (Equation 3), (4)
motivation is diffused along the cognitive map using Equation 4, (5)
combining transition prediction and motivation gives the recognized
transition, and (6) the action (movement) corresponding to this tran-
sition is selected.

3. Individual learning

Place cells are sufficient to make the agent reach back a previously dis-

covered resource when the need arises. Indeed, the resource location

can be coded on a particular PC; then, by computing a distance (using

the perceived azimuth vectors) between each neighbor of the current

location and the target location, the agent can choose the neighbor

which is “nearest” to the target location. This way, a simple gradient-

following strategy can be used to return to the resource location. How-

ever, this is only true for simple environments. When the environment

becomes more complex (namely, in the presence of obstacles, as has

been shown in [17]), or when multiple goals must be achieved simulta-

neously, the choice of the path to follow cannot rely any more on simple

sensori-motor associations: the agent needs more information. This

information can be provided by a cognitive map. Such a map is built

simultaneously with the creation of place (transition) cells, by linking to-

gether two PCs (TCs) reached successively. This linking process leads
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Figure 6. Diffusion of the motivation along the cognitive map. Here, the agent
(situated near the lower water source) feels the need to rest (nest),
and there are two solutions (two known resources) in competition. In
this situation, the motivation for the lower nest is stronger (nearly 1)
than that of the upper one (nearly 0).

to the formation of “paths” in the cognitive map that will allow the agent

to find its way through a complex environment to retrieve the previously

discovered resource. By associating this map with a motivational sys-

tem, we provide the needed tool to cope with those complex situations.

The motivational system consists of a modulation of the neuron activity

by a motivation activity. When the need for a given resource arises, the

motivation triggers the activation of the appropriate neurons - every TC

whose destination is the goal location - in the cognitive map (see Figure

5.). The activity is then diffused along the graph (using a Bellman-Ford-

like [55] algorithm, see also [20]) until the TC whose origin codes for

the actual location of the agent (see Figure 6). Equation 3 rules the

motivation value for the goal TC, when the level of an essential variable

is below its minimum threshold:

Ag = C
ecur
emin (3)

where C is a constant in ]0, 1[, emin is the minimum threshold for the

essential variable (the value below which motivation triggers the activity

of the TC), and ecur is its current value (supposed less than emin for

activation to take place).

The goal TC activation is then propagated to the neighbours. Equa-

tion 4 shows that the activity of TC An at the planning level of the cog-

nitive map depends exponentially on its distance (counted in number

of links) to the goal:

An = maxpath∈paths(g)



Ag.
∏

i∈path

wi



 (4)

Here, paths(g) represents the set of paths leading from current loca-

tion to g, the goal TC, path is an element of this set, Ag is the activity

of the goal TC, and wi is the weight (in ]0, 1]) of link i, for each link be-

tween two successive TC belonging to path. This way, the activity of

a TC can be viewed as a measure of “proximity” to the goal: the agent

goes from a given TC to that whose activity is maximum. By default, all

transition weights are constant (0.9 in Figure 6).

Our system aims at making agents evolve in a dynamically changing en-

vironment, where some sources can disappear when intensively visited

for a long time, and others can randomly appear somewhere in the en-

vironment. The kind of map described above is fixed, in the sense that

the connections between neurons, and their weight, do not change.

Hence, when the environment changes (a door opens or closes, a re-

source disappears, etc.), the map may not be used accurately any

more: it is necessary to be able to modify the links and their weights,

and to create or remove neurons when appropriate. We thus added

a learning rule on the building and evolution of the cognitive map to

help the agent acquire smarter behaviors, for instance solve contradic-

tory goals. The equation ruling this hebbian learning algorithm [56] is

as follows:

∆wij (t) = −λwij (t) + αδijAi(t).Aj (t) (5)

where wij (t) is the weight of the link joining two successively reached

cells i and j in the cognitive map, Ai(t) the activity of cell i at time t and

δij is 1 if link ij is fired at time t and 0 otherwise. By complexifying the

δ function, one can even enforce behaviors with different timescales

(for instance, in order to have the agent avoid dangerous areas [57]).

Previous works [16, 58] showed that such a cognitive map2 enables

agents to exhibit “smart” behaviors, such as choosing to go to a food

resource located far away, although there are some closer to its current

location, because it will find water there too: everything looks like the

agent anticipates a future need for water, whereas no structure allows

it to know it will be thirsty in the near future. Simply, the links in the cog-

nitive map leading to the couple of resources are more often reinforced

(each time the agent eats OR drinks), leading the agent to see this path

shorter than it really is and thus choose it.

When a planning agent tries to reach a previously known source and

realizes that this source has disappeared, two things happen: (i) the

agent dissociates the current PC from the formerly-corresponding re-

source, and (ii) it sets to 0 the motivation. Since the PC does not

fire any more when the agent feels the need for this resource, there are

chances that the use of transitions leading to this place be progressively

forgotten. Similarly, when a new, matching resource is discovered, the

paths leading to the resource are rapidly reinforced, making the cogni-

tive map evolve synchronously with the environment. This evolution is

illustrated in Figure 7, where left snapshot is taken when the dynamic

food resource has not yet expired (t = 10000 time steps) whereas right

picture represents the map after the dynamic resource has expired and

the agent has discovered a new matching source elsewhere in the en-

vironment (t = 25000 time steps). In the experiments reported here,

with respect to Equation 5, we set α = 5.10−2 and λ = 10−6. We can

see that some of the paths leading to the old resource location have

been partially forgotten, and that new paths have emerged.

4. Collective learning

Experience gathered by individual agents cannot benefit to others, if

there is no means to communicate information between agents. One

2 At that time, the cognitive map was built from PCs, not TCs
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Figure 7. Cognitive map evolution induced by a changing environment. The roads leading to the food source in the left snapshot (bottom of figure) of the cognitive
map are partially forgotten when the source has changed, whereas new paths have appeared near the new source location (left part of the right snapshot
of the cognitive map) and some existing paths have been reinforced (in this experiment, the animat almost never goes directly from Nest to Water, but
prefers to “transit” by the Food source)

way to add knowledge transmission among agents is to make them

able to imitate one another. Several benefits can be expected from

imitation capability, among which the possibility to share partial knowl-

edge of the environment, resource locations and so on. In particular,

we showed in [17] that adding an imitation capability can dramatically

enhance the survival rate of a population, as Figure 8 sums up. In the

experiment shown here, the environment is the same as depicted in

Figure 1. First, ten agents are launched; we wait for stabilization (those

who found the three resources will remain alive indefinitely and serve

as potential “teachers”, others are dead), then successively launch ten

other agents, one at a time, to make sure “students” will only imitate

“teachers”. The experiment has been repeated 15 times and its aver-

aged results are presented in the figure.

When an agent happens to see other agent(s), it can choose to imitate

(one of) the agent(s). The decision is probabilistic, the initial minimum

threshold is an input parameter of our simulations, and its value de-

creases as the agent gets older. We implemented and studied two

simple imitation strategies, one based on the azimuth under which po-

tential “teachers” are perceived by the agent, the other based on the

signatures. In both cases, it is important to mention that the imitated

agent is never aware of being imitated, and that there are no predefined

“teacher” or “student” roles: the same agent i can be in both situation

(in case it chooses to imitate agent k as it is itself followed by agent j),
either at the same time or at different moments of its life.

Indeed, if agents are indistinguishable from one another, we have to

face several problems: for instance, no agent can be sure to follow the

same agent when encountering a whole group; moreover, statistical

results can not separate individuals and detect if one agent spends

most of its time in the vicinity of another. To solve those problems, we

decided to add an individual signature to each agent. This signature

is to evolve over time, when agents meet each other and one starts to

follow the other.

We chose to design the signature as a short integer coding for a two

eight-bit coordinates vector, just to be able to map it on a space iso-

morphic to the geographical space (see Figure 9, where agents appear

as triangles and signatures as diamonds), which allows to better follow

the evolution of signatures, in the map and in time. Signatures are thus

Figure 8. Survival rate of a population of agents with (red curve with diamonds)
and without (blue curve with squares) imitation capability. The x axis
represents the number of agents launched in the environment, the y
axis the number of surviving agents (the ones that succeded in finding
all needed resources).

part of the information which is perceived by an agent, just like points

of interest or obstacles. When a new agent appears, its initial location

is chosen randomly and its initial signature is the vector of this loca-

tion: it represents the agent’s “place of birth”. Other kinds of signatures

could be used (not necessarily related to physical space). The interest

of this coding is to allow an intuitive (geometrical) representation of the

signature. The evolution of signatures is ruled by their meetings with

other agents: each time an agent decides to imitate another agent, its
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signature will slightly change to get closer to that of the imitated agent.

We can expect two consequences from this dynamic evolution of sig-

natures. On the one hand, it helps to detect the formation of subgroups

(and to follow the evolution of such subgroups) of agents in which the

members imitate each other more often than they imitate members of

other groups. On the other hand, agents can adopt a strategy based

on signatures to choose which agent to imitate: they can choose the

one, in their vicinity, whose signature is closest to their own, assuming

that since signatures are similar, habits (place to live) are similar too and

this agent’s goals are “close” to theirs. The equation that describes the

variation of signatures is as follows:

Si(t + 1) = Si(t) + δi(Sj (t) − Si(t)) + ν(t) (6)

where Si(t) and Sj (t) are respectively the signature of the imitating

and the imitated agent at time t, δi represents the facility for agent i
to imitate (it is a decreasing probabilistic function of the age of agent i:
the older the agent, the less probable the imitation). To avoid a global

convergence to a unique signature, a noise is systematically added to

each agent signature at each timestep: ν(t) is a random “noise” vec-

tor whose two coordinates are randomly chosen in {−1, 0, +1} (kind

of brownian movement), so that distance between Si(t + 1) without

noise and Si(t + 1) with noise can never be more than
√

2. Indeed,

without noise the basic mechanism described by this simplified equa-

tion only makes signature get closer from each other: it is thus likely

that, after a certain amount of time, random agent meetings will have

led to a global, common agent signature. This mechanism is similar to

the Kohonen LVQ algorithm [59]. Steel’s experiments about the talk-
ing head project showed the relevance of the introduction of such

a simple vocabulary, but one can wonder about the robustness of the

signatures. Indeed, in a same subgroup it is not unlikely that two agents

tend to have similar signatures; but in our context it is not a problem,

since what we expect from agents’ signature is just an help to detect

the formation and follow the evolution of subgroups.

In the case of imitation based on the azimuth, the choice of who to

imitate is ruled as follows: if a single agent is visible, it becomes the

chosen imitation target; if several agents are visible, then the chosen

target is the one that is closest to the direction in which the agent is

currently heading to (that is, the one whose perceived azimuth is clos-

est to 0 mod 2π). The main problem we encountered with this simple

imitating scheme is deadlocks due to reciprocal imitations. When two

agents came in front of one another, they sometimes both began to im-

itate each other, leading to a blocking situation: each of them started to

follow the other, so they changed their direction at the same time and

in the opposite direction! In order to avoid / lessen reciprocal imitations

that lead to such deadlocks, only agents whose azimuth is less than

or equal to π/2 (in absolute value) are competing. This way, when the

two agents are just in front of each other at time t, they can’t see each

other any more at time t + 1, so no more deadlock can occur, at least

not that simple (such a deadlock could still occur if a lot of agents are

involved). Such problems are an illustration of the kind of local dynam-

ics that can emerge from even simple imitation mechanisms (here, the

creation of a moving loop of agents following each other until death).

When the target teacher gets out of sight, the student stops imitating

but the process can start again later.

In the case of imitation based on the signature, the choice of who to

imitate is ruled by computing the Euclidean distance between the vec-

tor coding the “student” signature and each of the potential “teachers”’

vector, and choose that with the minimum distance. Notice that, since

the decision to imitate leads to a modification of the signature of the

imitating agent, which gets slightly closer to that of the imitated agent,

one can expect the formation of groups of agents having somewhat

similar signatures.

Figure 9. Agents (triangles on left-sided picture) and their signatures (dia-
monds on right-sided picture). Signatures being considered as a two-
coordinate vector can be projected on the same physical space as
agents, which shows where emerged subgroups of agents spend
most of their time. The geographical proximity of the agents signa-
tures is a way to define the emergence of subgroups of agents. Here
for instance, one can distinguish two main subgroups, on each side
of the vertical “wall”; right subgroup is more tightened than left one,
which is not yet stabilized.

In the experiments reported below, we compared the two imitation

strategies (plus a purely random choice strategy) from two points of

view: (i) the emergence of subgroups in a “multi-villages”3 environ-

ment, and (ii) the survival rate of a population. To study the influence

3 A “village” is defined by the presence of the three needed resources in close
vicinity, and let the agents leave there indefinitely, without need to further explo-
ration.
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Figure 10. Two types of behaviors in the case where two “villages” exist: in the
left picture, the agent “oscillates” between resources belonging to
different villages, in the right picture it sticks to one of the villages.
The graphics represent the density of presence of the agent after
5,000 time steps. There were no obstacles during this simulation,
and only one agent’s moves are recorded in each case.

of the imitation strategy on the emergence of subgroups, we used the

environment shown in Figure 9, containing two separate “villages”. In

such a configuration, one can expect two types of behaviors: either the

agent sticks to a village it found, or it “oscillates” between resources

belonging to two or more villages. These two behaviors are illustrated

in Figure 10, which represent the density of presence of the agent in

the environment after 5,000 time steps (we removed the vertical “wall”

separating the villages to record the agent positions). To differentiate

between the two imitation strategies described above, for each experi-

ment, we launched 50 agents randomly in the environment and waited

for 20000 time steps (which is approximately the time needed for the

agents cognitive map to tile the whole environment). Then we studied

the set of signatures to determine the number of subgroups formed.

We repeated the experiment 42 times, 21 times with each of the two

imitation strategies, and reported, for each experiment, the number of

subgroups that have emerged, based on a minimization of the intra-

group standard deviations. We also made the same experiments using

a random-based technique to choose the agent to follow. The results

are represented in Table 1. As expected, the possibility to distinguish

individual agents leads to a more stable way to choose which agent to

imitate (which explains why random selection and selection based on

the azimuth both lead to similar results), and thus to a bigger number

of subgroups. Indeed, signatures can be thought of as a membership

sign, and can be analysed as a support to “remember” who the agent

has already imitated, and who it is willing to imitate in the near future.

When there is no signature, there is no “past”, no history for imitation

decision. What is more interesting is that, whereas the number of sub-

Table 1. Influence of the imitation strategy on the formation of subgroups (2
villages). We report here the number of experiments that led to the
emergence of 1, 2 or 3 subgroups, when imitation is random, based
on the azimuth (left column) or on the signature (right column). Each
experiment is made with 50 agents running during 20,000 time steps.

# experiments random azimuth signature
1 group 17 15 0

2 subgroups 3 6 14
3 subgroups 1 0 7

4+ subgroups 0 0 0
total experiments 21 21 21

Figure 11. An example showing that imitation on signatures can lead to situa-
tions where the number of subgroups (5, left picture) is greater than
the number of villages (4, right picture).

groups almost never exceeds the number of villages when agents imi-

tate randomly or from azimuth, we found several cases where imitation

from signatures leads to such a situation. This is a clear indication of

the greater stability of the groups in this case: the probability to imitate

someone who is not part of its own group is lower, due to the distance

between the two signatures. Moreover, in the cases where three sub-

groups emerge, two of them are related to a village and one is made

of individuals that “oscillate” between the two regions. It is likely that,

if the number of villages increases, the number of different subgroups

will grow more rapidly, but the experiments verifying that assertion are

yet to be made. The probability for such oscillation is much lower in the

case of imitation based on the azimuth: suppose that two “oscillating”

agents i and j arrive, j following i, near a village where n agents “live”.

The probability for j to keep on imitating i is roughly 1
n+1 , so it is very

likely that either i or j (or both) will remain near the village.

It is easy to see why imitation on signatures leads to a number of sub-

groups greater or equal to the number of villages: oscillating agents are

likely to create their own subgroup. To show that in more detail, we can

think of a proof by recurrence: let nv be the number of villages and

ns the number of subgroups, try to state that ns ≥ nv . The property

is clearly true for nv ∈ {1, 2}: one village always leads to one sub-

group, and two villages to two or three subgroups (oscillating agents, if

any, tend to stick to the same subgroup, going from one village to the

other). Let’s assume the property is true for (nv, ns) and try to figure out

what happens when a new village is added to an existing environment

containing nv villages, and new agents are launched. A new group of

agents will almost certainly stabilize around the new village. If the new
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Table 2. Influence of the imitation strategy on the survival rate of the popula-
tions. Average number (and standard deviation) of surviving agents.
The much higher standard deviation for signature-based imitation is
due to some global group disappearance.

# agents random azimuth signature
40 14.2 +/- 1.5 15.0 +/- 1.5 18.4 +/- 2.4
50 15.5 +/- 3.1 16.3 +/- 3.1 17.6 +/- 4.9
70 26.4 +/- 4.5 27 +/- 4.8 31.1 +/- 8.3

average 34.73% 36.22% 41.87%

village is close enough to existing villages (say nc villages), it is likely

that subgroups can emerge, oscillating between the new village and

one of the nc closest neighbors. That leads to a new couple (nv ′, ns′)
where nv ′ = nv +1 and ns′ = ns+1+ i, i ∈ {0, ..., nc}: clearly we

still have ns′ ≥ nv ′. Figure 11 shows an experiment with 4 villages,

where 5 stable subgroups appear. The fact that the number of sub-

groups is not that high when agents imitate on the azimuth is due to

the lower stability of subgroups in that case: agents arriving in a village

are likely to follow other agents that stick to the village (same probability

as to continue their oscillation), so oscillating subgroups are unstable

over time.

To study the influence of the imitation strategy on the survival rate

of the populations, we used the same environment and successively

launched 40, 50, then 70 agents, for both of the imitation strategies,

and counted the number of agents that survived, or died for not hav-

ing found all of the three types of resource. Each of the experiments

has been conducted 7 times, and the results are summarized in Table

2. Average number of surviving agents is almost always greater with

signature-based imitation strategy. This result is linked to the greater

stability of the groups in such a strategy. If one of a group member

has found the three resource types, the probability for the entire group

members found to find the three resources is higher (indeed the prob-

ability each agent of the group imitates another is greater). What can

seem more curious is that the standard deviation is significantly higher.

Observing what happens during those simulations, we saw that this

was due to some subgroups creation around one or two agents that

did not find the three resource types at the time the group emerged.

Consequently, since the chance for an agent to follow its peers is high,

the result is of type “all or nothing”: either the resources are discovered

by one of the group members, and the whole group survives, or they

are not and the whole group disappears.

5. Discussion

The kind of complex behaviors illustrated in this article explains the in-

terest for cognitive maps and imitation in social sciences, and more

precisely in the spatial economics field.

Concerning the agents imitation ability, the group behavior observed in

Table 2 is related to a process observed in the spatial economics field,

known as “unemployment traps”: they are well-defined portions of ur-

ban territories in which the unemployment rate is significantly higher

than anywhere around [60]. Although it might be possible for people

living there to find a job a few kilometers ahead, things are like if peo-

ple could not - or didn’t try to - move outside this small region. In our

simulations, although the needed resource is in the reach of the group,

it is only seldom discovered because of the strength of the intra-group

link.

Using a cognitive map is a way to store information internally in agents

and, together with the ability to imitate, to get similar emergent behav-

iors as in swarm-based systems. It questions the analysis of the re-

silience of urban systems and the complexity of cities [37, 61]. The

results presented here show that the cognitive map is a way to envis-

age broad-minded agents that enable us to deal with series of spatial

economics issues. They question spatial economists as the issue is

not only the analysis of collective spatial dynamics but also a better

understanding of the agents’ behavior. If classical economics gener-

ally considers agents as rational, the cognitive maps raise the interest

to work with cognitive agents instead. As an example, in spatial eco-

nomics, the interest is to minimize distances or costs to one or several

objectives that are previously known by the agent. As a consequence,

when maximizing an objective function, agents are considered having

a substantive rationality. In most cases, this optimization is incompat-

ible with the limited cognitive capacities of the agents. Agents do not

have complete and perfect information: they have a bounded ratio-

nality [62], a procedural knowledge that enables them to discover new

places, new objectives locations and learn new paths to reach a known

objective or to satisfy a multi-objective function. In this respect, spatial

economics suppose that the question of the knowledge of places, of

objectives location, paths and obstacles can be thought of as a mat-

ter of geography and regional planning. Indeed, classical economics

generally considers that space is an additional index we add on eco-

nomical variables, so space is not considered as an important variable

in individual and collective analysis: the spatial configuration of places

or roads would only imply a marginal modification of the agents’ rational

strategies.

Works in cognitive science show that spatial cognition – and cognitive

maps – take part directly in the effectiveness of individual strategies.

Environmental psychologists and researchers in human geography had

the intuition of this result. Quoting from Portugali’s paper [43], “mental

maps studies would provide a deeper understanding of human spatial

behavior and as such would replace the simplistic assumption of a ra-

tional ’economic man’ which underpinned the theory of location and

spatial analysis”. Indeed, works in cognitive science teach us that each

agent has its own procedural knowledge of space, places, objectives

and possible paths to reach a previously learn objective. Each agent

is equipped with a cognitive map, that its experience or its past dis-

covery and learning of places and paths has enlarged with time. As

a consequence, simulations of cognitive maps are a way to show the

importance of space in individual and collective intelligence processes.

A main result of cognitive map models in economics field is to explain

how the learning process is functioning and so on, how this proce-

dural knowledge is constructed. Following Bourgine’s paper [34], it’s

important to note the “remarkable property of neuronal plasticity that

make adaptation possible in complex situations”. Here, we mobilize

tools of simulation and modeling from robotics and computer science:

the cognitive map is referring to two levels of neural networks (the first

one intended to learn and recognize distinct places; the second one

to memorize the paths most frequently used by the agent to achieve

a goal, see 3). As a consequence, agents inherit adaptability in com-

plex environment. In such a context, they have to locate according to

a set of visible landmarks likely to change (landmarks could be hidden

by a wall, houses...) and they are able to benefit from a former explo-

ration of space: they will find different ways through intermediary goals

set on their cognitive maps. Hence, economic agents are in a situation

of limited rationality: they can see and discover their environment (see

2), they can learn and plan optimal paths (see 3), solve multi-objective

problems according to their experience and to their discovery of the

environment (see 4).

Another result is the interest to work with cognitive agents compared
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to purely reactive agents when faced with increasingly complex spa-

tial environments. When the environment is complex (made of obsta-

cles, vanishing or non-renewable resources as example), the cognitive

agents are more effective than the reactive ones (which is not the case

with simple, obstacle-free environments): in such a situation, the mask-

ing of landmarks leads to important distortions, and the agents may

have difficulties to locate or to find an effective path because they will

find their way through intermediary goals set on their cognitive maps.

Moreover, when multiple solutions exist, such cognitive agents will nat-

urally “spread” on the different solutions instead of sticking to the ap-

parently best one (that with the maximum average value of essential

variables level for instance). That can lead to a better global solution:

in the case where resources are limited and can only renew with time,

purely rational economic agents would all stick to the nearest village,

exhaust its resources and die if too far from the next village; cognitive

agents, by spreading on all the solutions, can exhibit a better global

behavior (in term of surviving agents ratio for instance) in this situa-

tion. On the other hand, if the environment is simple, reactive agents

are more effective than cognitive ones because they do not refer to

previous paths and go straight to the objectives. It seems that the col-

lective intelligence processes have inherited from these results. Follow-

ing classical economics fields, as in a simple environment, natural re-

sources have been over-exploited or exhausted whereas in a complex

environment, the agent exhibits complex dynamics such as adaptability

or survival when resources exhausted and it will be interesting to anal-

yse the agents capabilities to manage existing stocks of resources. In

the first case, we consider that natural resources, that have been dis-

covered, are exploited independently of their location. Prices (including

transportation costs) and available quantities are the single limits to re-

sources exploitation. In that case, environment is quite simple, routes

are known and the economics question is to preserve resources con-

trolling prices or quantities. In the second case, we have to deal with the

complexity of the environment: resources can become exhausted, new

ones are discovered and agents are simultaneously interested in differ-

ent types of resources. Pressures to resources are unequal and are

not systematically a function of the transportation costs of agents. The

complexity of the environment is also questioning local unemployment

contexts: finding vacant jobs asks for an ability to move, to know the

location of firms, skills and vacancies to avoid spatial mismatch. Urban

economics encounters spatial mismatch cases without taking into ac-

count the spatial strategies of unemployed people. It supposes that the

standard characteristics of agents (gender, age, qualification, car own-

ership, distance from home to potential jobs, incomefl) or of local poli-

cies (collective transportation system, unemployment agenciesfl) and

labor market functioning (internal market, adequacy between supply

and demandfl) are the main variables to understand spatial mismatch.

Agents may have spatial habits or routines that constrain their use of

space whereas the economics analysis is always developed in a simple

environment. It argues as if unemployed people have all information on

firms, jobs and road to apply when individual strategies and contexts

are complex. Cognitive maps enable to catch this phenomenon. Never-

theless, it requires adequate tools to identify, test and calibrate different

groups and spatial configurations.

Schelling’s work [38] is a fundamental example of the analysis of spa-

tial configurations in economics: “The demographic map of almost any

American metropolitan area suggests that it is easy to find residential

areas that are all white or nearly so and areas that are all black or nearly

so but hard to find localities in which neither whites nor nonwhites are

more than, say, three-quarters of the total”. The main question is to

identify why such a non-organized segregation exists. To mimic the

distribution of ethnic groups in an urban area, Schelling sets up the fol-

lowing hypothesis: residents of a given area are happy as long as the

majority of their neighbors are the same color as themselves. If the res-

idents are “unhappy” they move to a new area. On the basis of such an

hypothesis he showed that even if all agents have a preference for inte-

gration, the model dynamics leads to segregation. The main criticisms

consist of an a priori definition of the origin of segregation (the color)

and the dynamics rule that inevitably leads to “tipping point” and seg-

regation. The use of cognitive maps together with the ability to imitate

show that it is possible to define “villages” as in Figure 11 and segre-

gation outlines: the signatures of agents are a way to differentiate them

and to define the nature of the groups, whereas the collective intelli-

gence process is running on the base of space discovery and known

essential resources reaching. It is a way to deepen the analysis of col-

lective dynamics [31, 61] to better understand the part that space is

playing.

An important question is now to characterize the set of spatial collec-

tive dynamics which can be obtained according to the level of com-

plexity of the model of agents, their environment and their interactions

with the environment and other agents. If limited rationality is now an

operational concept, it’s in the interest of economists to recognize the

importance of space in some basic economics question. When con-

sidering a complex environment, space is essential to the analysis of

collective intelligence processes.

In conclusion, we showed that our model and system allow to to solve

non trivial planning and optimization problems, with only very little as-

sumptions on the initial knowledge of the agents. They can adapt them-

selves to a changing environment, share a partial knowledge of the

problem with each other, handle multiple, contradictory goals and find

different solutions to the problem when multiple solutions exist.

It should now be possible to see how the optimization can be pushed

one step further, by making agents able to act on their environment

instead of just adapting themselves to it: for instance, letting agents

specialize in a given task [63], or letting them carry some resource from

“natural” sources to locations near important paths could dramatically

enhance the performance of the global system, as far as the average

“satisfaction” level of the agents (the average of an agent’s essential

variables values) is concerned.
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