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1 Introduction

Navigating in an unknown environment is a task
commonly accomplished by most animals.
Nevertheless, it is not justified to infer that this
capacity needs complex reasoning involving abstract
geometrical computations. Indeed, it is hard to
imagine that ants or wasps have such knowledge,
while they are clearly able to locate a source of food,
and then go back and forth between that source and
their home. In this paper, our aim is to show that
such behavior, including switching between goals,
can be simulated by simple artificial Neural
Networks (NN) where no complex computation is
performed. We will present a real development and
simulations about a Khepera™ robot (fig. 1) and a
simulated system named Prometheus.

Figure 1: The Khepera™ robot developed at the
LAMI [Mon93].

We use a novel neural architecture named PerAc
(Perception-Action) which is a systematic way to
decompose the control of an autonomous robot in

perception and action flows [Gau94b]. We show that
action simplifies the interpretation of perception:
each action is a choice and conditions entirely the
future of the robot. That way, acting in the world is
necessary to the categorization and hence the
interpretation of perceived signal, i.e., to the
emergence of an elementary "cognition". The
greatest advantage of this type of approach is that it
makes cognition sequential, thereby avoiding the
possible large duplications and relaxation
mechanisms needed by massively parallel systems.
We also focus on the interest to perform an
autonomous on line learning of the relevant places
to the robot in its environment. Furthermore, we
compel ourselves not to touch modify the internal
structures of the artificial robot "brain" by hand,
while it operates. Thus we have to:

- design a self modifiable connection diagram.
- pay attention to the self adaptability of each simple

block to data variations.
- allow the robot to use the signals correlations

which are really relevant to it.
- introduce a limbic system to control the robot's

learning, motivation and behaviors.

 We  emphasize the interest of a constructivist
approach [Mat87], [Ste91] as implemented for
instance by the subsumption architecture [Bro86]. A
special stress is put on introducing goal resolution in
our biologically plausible model of vision and
navigation system.
We propose a design for an extremely simple limbic
system (the one mainly involved with emotions in
our own brains), in order to deduce the overall
structure of the neuronal basic element. This leads
us to use the concept of simulated cortical column
first proposed by [Bur89].
In a first part, we briefly sum up the characteristic of
the PerAc architecture and we show how it can be



used to extract localization information from a
visual scene. Next we show how a robot can learn to
return from any starting point to a previously
discovered and learned position without any a priori
symbolic representation. At last, we simulate a
complete behavior consisting in avoiding dangerous
zones to go to "eat" and next to return at home when
the robot is "tired."

2 The PerAc building architecture

We have already realized robot 'brains" with simple
conditioning that allows them to learn sensory
situations and at the same time to learn what
movement must be performed. For instance, when
the robot collides in a wall a pain signal is emitted
and a reinforcement learning rule is used to increase
the synaptic weights in order to avoid obstacles on
following similar situations [Gau94a]. The same
mechanism is involved to recognize objects. The
robot's eye is able to move its eye from one point to
the other in a perceived scene [Gau92]. It learns an
object as a sequence of local recognitions associated
to particular ocular saccades. All this system is
simulated with unsupervised neural networks. The
output of the visual system, that is, the local
recognitions and the angular movement to go from
one focus point to the other are used as inputs to
another part involved in targets retrieval. The local
recognition is associated to the identification of
landmarks in the visual environment and the ocular
movements provides information about the angle
between two landmarks. A simple neuron called
"place cell" can then learn a particular location
[Zip85] and react according to the proximity of the
robot to this stored location.
In our system, all the neural groups involved are
modelled by self organized topological maps
[Gau94a]. This implies that our robot is able to store
new information near similar ones previously
learned. Then, a lateral diffusion mechanism allows
to react to the new learned shape in the same way as
for the previous ones. Whenever the reaction is
wrong, the robot can learn to refine is classification
according to the action that must be performed.
 Prometheus' “  brain ” architecture is summarized
on fig. 2. The same neural architecture is used to
recognize an object or a landmark and to control the
robot movements. The PerAc blocks of which it is
made appear to be a kind of basic building block and
a systematic tool to combine motor and perceptive
information. Perac architecture relies on the
postulate that the recognition of any cue can be

simplified if the system can act on it. This justifies
to cut any perceived cue into two parts: a) a motor
part which is the result of a hardwired conventional
processing and b) a cognitive one which proposes to
learn/record important situations and to allow a
quicker adaptation of the system's response.
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Figure 2: The complete neural network for target
retrieval modelled by PerAc blocks

 Our model also offers an alternative to the classical
scheme of hierachical classification because we
integrate not only static perceptive recognition
information but also motor information provided by
the input cue or/and the local recognition.
Navigation problems are a good example for
illustrating the problems to manage goal
achievement and switching in a completely
autonomous system controled by a single neural
network without any programmed trick to allow the
good choice at the right time. The solution we
propose can be understood on fig. 3.
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Figure 3: Intuitive structure of a N.N. that allows the
switch between different motivations.

The neural network is composed of a recognition
part with a Winner Takes All (WTA) competition
mechanism that allow to recognize a situation and to
inforce the activation of a particular movement
according to what has been learnt. The different
motivation nuclei allow to favour a particular sub
group of recognition neurons. In the next part, we
will describe how a such basic network can explain



navigation behaviors. Next, we will return to the
problem of behavior switching, and therefore we
will study how to link properly the different
motivation nuclei with the simple PerAc N.N.
structure.

3  Target retrieval using landmarks

At the beginning, we suppose Prometheus moves
randomly. When it finds "food", it moves around it
and learns that from several particular locations it
can go to the target by performing a movement in a
given direction.
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Figure 4: Local exploration around a target.
 The target is represented by a circle at the intersection of
the dotted line representing the associated recognition
domain of Ni neurons. The robot records at certain points
(represented by small circles Ni) their relative position to
the landmarks and the direction to the target.

Later, when Prometheus wants to find "food", it
considers the information of the place cells
associated to the food and goes in the direction
associated to the most activated place fields
(competitive mechanism). Thus at each time, the
distance to the target is reduced (fig. 4) and
Prometheus is bounded to return to the learned
position of the food. The complete "brain" is
depicted on fig.5. The local visual recognition (LR)
and the information about the eye movements (EM)
can be joined to provide information about “  what ”
the landmarks are and “ where ” they are from each
other. Simple product or logical AND neurons can
be used to merge those different information type in
a map of neurons that reacts only if a particular
landmark is recognized at a particular place: GVI
group (Global Visual Input) in fig. 5. Matching
between a proposed visual scene and a learned scene
is performed with a topology preserving map.
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Figure 5: The navigation neural network.

When a movement direction is selected (RM': Robot
Movement), the robot makes one step of given
length in that direction. The input to this network
are the north direction, and the food and landmarks
positions in the robot's visual space. We assume that
a compass is available. It could be replaced by a
vestibular system or a gyroscopic mechanism that
would produce low precision information about the
body orientation (a local landmark could also be
used but it would reduce the generalization
capabilities of the robot to very distant situations).
This system allows target retrieval when the place
cells have been learned. We have proposed a
neurally-coded reflex mechanism [Gau94b] that
allows to visit several evenly disposed places around
the target, which includes a pleasure-linked
regulation for learning control.

Figure 6: Different trajectories.
 The Place-cells (PC) are indexed by their order during
exploration. The Voronoi tessellation is represented by the
thick lines, the landmarks by the rectangles and the target
by the inner circle. The large circle represents the limit
beyond which the target is not perceived. Thin lines
represent trajectories from various starting-points.

We have succesfully implemented and tested the
neural network described above on a Khepera robot.
Due to the tremendous computing time required, we
simulate the visual part that has been tested
elsewhere [Gau92].  The robot succeeds in learning
the food position, and later, it always takes the right
direction, whatever its starting point (fig. 6). More



realistic trajectories can be obtained if the movement
is performed according to a probabilistic vote rather
than a determinist WTA mechanism.

4 Avoidance of forbidden areas

The previous mechanism allows Prometheus to go
back to a learned position in a somewhat straight
line but it does not take into account any zone the
robot must not go through. Moreover, forbidden
areas not necessarily have an intrinsic reality for the
robot. Hence, we need to introduce ad hoc
mechanisms that allow to generate for instance a
pain signal when the robot enters a forbidden area.
Such a zone is then perceived as dangerous and the
robot uses the same mechanism as for obstacle
avoidance to learn the direction to avoid pain. As a
result, learning a forbidden zone is equivalent to
learning an interesting place. The robot learns
different meaningful places where the pain signal is
high and also the association to the proper
movement in order to avoid pain (see fig. 7).
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Figure 7: An example of situation with a dangerous
area that must be avoided to reach the goal.

With such a system, a problem arises when the robot
is closer to the dangerous area than to the food area.
Indeed, the neurons associated to the recognition of
the dangerous area have a higher activity than those
associated to the goal. Then, the most activated of
them must win and the robot will perform a
movement to avoid the forbidden zone, thus moving
in a direction opposite to its goal, which is thus
never reached. That problem can be solved if the
influence of the neurons associated to "non-goal"
actions can be inhibited or switched off when the
robot is far enough from the dangerous area. This

means that when the recognition of a dangerous
position is not high enough, recognition of
dangerous areas has no effect on the robot behavior.
But how to switch of the avoidance behavior?
Moreover, according to the simple retrieval system
when the robot has found its target once, it will
remain forever in its proximity. So the general
question is how the robot itself can be able to switch
off its unexpectated behavior.
A first solution to inhibit a particular recognition
could have consisted in tuning the neurons'
selectivity but it is impossible because this parameter
is already used to automatically control the
unsupervised learning of the neurons [Gau94a].
Moreover, it seems difficult to change only the
selectivity of one particular neuron that interests us
and not of the others.
Actually, the problem is that Prometheus should
recognize a situation that is not the best fit but that
agrees its goal. The solution, we propose is inspired
by Grossberg's studies about contour closing in
preattentive vision [Gro87] and by Burnod's model
of the cortical column and cortical map [Bur89].
Grossberg proposes a structure composed of two
layers of neurons with feed-forward and feed-back
links. The former is a competitive network with
neurons associated to the recognition of a particular
situation (i.e: a piece of straigth line) whereas the
second level tries to propose positions for contour
completion by reacting on the first neuron layer. If
the total sum of the input activities is high enough,
the neuron on the first layer is activated and a piece
of edge is "recognized" at that position even if the
initial recognition was not high enough. This N.N.
can so be seen as a way to achieve a preattentive
goal of contour completion. On a other level,
Burnod's formalization of the cortical column
distinguishes a thalamic level associated to action
choices and a cortical level in which rewarded goals
and subgoals can propagate freely according to most
frequent transititions between different situations, as
in a relaxation or a Markov process.
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Figure 8: representation of a cortical column



To sum up, our neural building block must have
three layers (fig. 8). A first level must be associated
to the recognition of the current situation according
to their synaptic weights. A second level consists in
a competition mechanism that must choose the
recognized situation according to the first level
information and to those coming from goal. And the
third one can be used to propagate the goals and
subgoals. Fig. 9 represents such an architecture,
which allows to avoid one forbidden area. In
addition to the cortical column structure, the limbic
system is represented through different neural and
chemical nuclei. Those nuclei are linked to the
cortical maps in the same way as action units are
associated to recognition units in the simpler N.N.
When pain is active, the links betwen the neurons
representing dangerous situations and the nucleus
associated to pain are increased, thus allowing the
robot to feel pain earlier when it sees once more a
given dangerous situation. We also suppose that
when the pain nucleus is inactive, it induces a
negative activity to its associated neurons on the
goal level of the recognition cortical map. The same
thing goes for the hunger nucleus.
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Figure 9: How Prometheus inhibits an avoidance
behavior when it is hungry enough.

Next, we have to suppose that the different nuclei
take their inputs from the analog value of the
recognition and not from the competition. Indeed,
they need to have an analog value that really
represents the proximity to the learned situation and
that can allow to trigger the avoidance behavior if
the situation is too similar to the painful situation
learned. For instance, on fig. 7, we suppose the robot
is closer to the forbidden zone than to the food.
Thus, the most activated neuron on the recognition
level is one associated to the forbidden area. But its
activity may not be high enough to switch on the
pain nucleus, whereas the hunger nucleus is
activated because the robot "needs" food. Then, the

goal level associated to the recognition of the food
places can allow them to win and to induce the
movement in the good direction, ie: to go to the
food. If both nuclei are inactive then the associated
recognition neurons cannot be activated and no
information is provided to the motor group. Hence,
the robot moves randomly.

Figure 10: Simulation of a forbidden area avoidance
and goal reaching.

Fig. 10 represents a simulation in which the robot is
hungry. It goes in the direction to the food since it is
too near to the forbidden area. Then, the avoidance
of pain is activated and the robot goes out to the
influence domain of pain nucleus and it tries again
to reach the food. The probabilist WTA mechanism
prevents it from being blocked and allows it to move
around the forbidden area.

5 Choosing between different goals

We have shown that a limbic system is needed to
control the switching of behaviors between a goal
and a prescriptive constraint such as the avoidance
of a dangerous area. Now, we are interested in how
to switch from one behavior to another. For
instance, after having found food, the robot may
want to go home. According to the previous
diagrams, the robot should stay forever near the food
because the recognition of the place associated to the
food is very high. Having already eaten should
reduce the intensity of the will to move towards
food. The will to see home should favour the
recognition of the associated places to allow the
good movements.



The mechanism presented in the previous part can
be extended to choose between different simple goals
that must be associated to different internal
motivations. According to the activity of each
motivation nucleus, the competition mechanism on
the recognition cortical map should allow the robot
to choose the most interesting behavior that can be
performed according to the situation and to its
motivations. The neuron activation rule used is the
difference betwen the maximum of the excitatory
and inhibitory input links. This activity (Si) is put to
0 when it is negative. Hence, a constant input allows
the unreached neurons to win in front of inhibited
neurons.
S I Max positive activation Min negative activation

if x

i = + −

= =

+

+ +

_ _b g b g
 x > 0  x  else x 0

The Max operator is a way to make the neuronal
activity independant of the number of input links
and to give rise to stability of the neuronal activity
through the cumulative effect of feedback positive
links. If the weight is lower than 1 there is no
divergence problem.
The goal level can also be used to add capabilities of
plan generation. When a goal is proposed, if it
cannot be satisfied possible subgoals are proposed
until a subgoal is really satisfied. Then the actions
can be performed according to their goal pathway.
The mechanism can be extended to topological maps
[Gau94a] if the inhibition is applied to the whole
activity bubble in order to inhibit all the recognition
neurons associated to the same movement.
Motor groups use the same law but the
simplification comes from the absence of needed
recognition. In fact it can be added if actions can
only be performed in particular situations or if the
choice of the action depends on the position of the
motor system; for instance, a mechanical arm with
several freedom degrees and forbidden angular
zones...

6 Conclusion

We have shown that a simple neural system can be
used to control robot navigation and goal
management.
Research on these mechanisms should lead to define
an explicit parallel langage to “  program ” animal-
like robots with adaptation and autonomy
capabilities.
The neural vision sytem associated to the robot has
not been used in the experiments presented above for
reasons of computation time. We are now working

on a multi processor architecture that may allow to
dispatch simply the explicit parallel program that
the N.N. represents. Other work focuses on learning
with delays between the conditional stimulus and the
unconditional one or the reinforcement signal. At
another level algorithms able to learn a succession of
perception action according to a latter goal have
been successfully tested. Future work will consist in
assembling all these part to (really) realize a
(animal) robot able to navigate with a real autonomy
in an outdoor environment.
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