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Abstract

In this paper we describe how a mobile robot can au-
tonomously learn and “recognize” simple objects present
somewhere in an indoor visual scene. The experiment
consists in transposing a classical conditioning exper-
tment on a mobile robot. We propose the use of a
selective attention mechanism to reduce the amount
of computation involved by the complete image analy-
sis. Objects are categorized according to their associ-
ated actions that are learned in accordance with a re-
ward/punishment procedure. Qur approach emphasizes
the importance of a movement reflex mechanism based
on the use of the same egocentric representation from
the visual information to the motor output. Finally we
highlight the impact of information coding in self organ-
1sed topological maps on the robot performances.

1 Introduction

After decades of work in the field of autonomous robots,
a lot of results have been obtained concerning indoor
as well as outdoor robot navigation [3, 5]. However,
everybody agrees on the lack of solution allowing robots
to learn by themselves for real (on line learning).

Figure 1: A prototype of the Koala robot

In our opinion, the main difficulty is linked to the
“symbol grounding problem” [13]. We will show that
an architecture for on line learning can be achieved by
associating several features, namely: a self organized
topological map, a neural architecture and a condition-
ing rule. We will illustrate this idea by an experiment
which is the transposition of a classical instrumental
conditioning (the robot must learn to react according
to a reward/punishment procedure). More precisely, we

present a right or left arrow in front of the robot cam-
era and we want it to associate them with particular
movements such as “turn 90 right” or “turn 90 left”.
Moreover, the robot must learn to go in the direction of
a drawing representing a mushroom. The difficulty is
that the relevant object is not alone in the scene. There
are a lot of distractors, like doors, radiators, chairs that
the robot must learn to discriminate from the objects
to be learned. The robot must learn to build a “model”
of the objects before using them. Moreover, even if
we suppose the objects have been correctly learned, a
global and invariant recognition method (like Fourier
or Hough transforms) cannot be used directly because
an “object” only represents a little part of the image
(the result of a global analysis should be too noisy to
be useful). For all those reasons, we have developed
the PerAc (Perception - Action) architecture. In this
architecture, we try to imitate the way information is
computed in mammal brains. We separate the problem
of recognizing “what” is present in the input flow and
“where” are the relevant information [1, 6, 7]. In the
first part of the paper, we point out the problems due to
the unsupervised association learning process between
an object and a movement. We describe how and which
information must be extracted from a CCD camera. We
show the interest of a movement reflex mechanism based
on the use of the same egocentric representation from
the visual information to the motor output. Next, we
propose a neural architecture which isolates possible
objects and learns to associate them with the correct
movement. Finally, we show experimental results and
discuss the interest of the generalization capabilities of
a topological map model which allows on line catego-
rization of visual shapes.

2 Object recognition mechanism

In order to reduce the image complexity and to work
with more usable information, we extract edges to ob-
tain a binary image. The boundaries are defined by the
local maxima of a Nagao gradient operator. We assume
those boundaries to be the frontiers of the objects (see
figure 2) or at least, to contain enough information to
distinguish two objects having different effects in the



environment (ecological approach of vision [12]). In or-
der to choose the areas that could be the location of
possible objects;, a mechanism of image exploration is
used. This mechanism allows the robot to focus its “at-
tention” on a particular area (a local view). For sake
of simplicity, we use a corner detector providing focus
points (like in figure 2). It is a simple difference of gaus-
sian filters applied on the contour image (DOG filters

see [7]).
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Figure 2:  Grey level and contour image of a left and a right
arrow. The labelled black points on the contour images represent
explored focus points.
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The resulting local view is then obviously indepen-
dant of the object translations. Moreover, a log-polar
(logp, 8) transformation which simulates the retinotopic
projection of the retina on the primary cortical areas
[6, 14] allows a weak scale and rotation invariance. This
transformation gives more importance to the points
close to the center of the focus of attention area. The
resulting binary image is called the Visual Input (VI)
of the Neural Network (N.N.).

The VI are stored on a Probabilistic Topological Map
(PTM) [9]. Tt allows an immediate on-line learning and
codes similar shapes on neighbor neurons (topological
preservation). The neural map constitutes the Visual
Output (VO) of the N.N. (see appendix A). A global
term named vigilance controls its learning level and al-
lows to select only the relevant local views. For in-
stance, if a VI looks too much alike to a previously
learned pattern (according to the vigilance parameter),
then it is not stored. The vigilance parameter is con-
troled by the reinforcement signal. If a punishment is
emitted, then the vigilance must be increased to take
into account the need of storing the “reason” why the
punishment has appeared. Our vigilance parameter is
equivalent to the one described in ART (Adaptive Res-
onance Theory [4]). For sake of simplicity, in the next
paragraphs, the VO group will be used like a simple
WTA (Winner Take All) or an ART model. Indeed,
only a single neuron in VO will be active for each local

view (VI).

3 Problem of action choice

In the next step, after the recognition of a local view, an
action is performed. The mechanism is simple: several
neurons are connected to VO, so that the activation of a
local view involves an action. Each neuron in the Robot
Motor Output group (RMO1) is devoted to a particular
action: “turn left”, “turn right” and “go ahead”. As our
robot only uses local views it has to focus on several
points in order to explore the whole image. Moreover
the exploration allows to propose several actions, but a
robot can only perform one movement at a time. Then,
only one action must be choosen. The addition of this
sequential exploration is our major contribution to the
PerAc architecture.

A first possibility to link a perception to a particular
action, is to keep the action associated to the best recog-
nized local view in the input image. Unfortunately, the
“best” recognition in a visual scene can be something
not relevant for the robot movements. For instance, on
figure 2 the best recognized local view can be centered
on the sheet of paper and not on the “right arrow”. In-
deed, during the recognition process, the robot focuses
its attention on several feature points (the corners). It
may recognize them or not, but at least, we want it
to perform the movement associated to the recognition
Thus, the choice of the
winner must not be performed at the visual recogni-

best linked to a movement.

tion group VO. Conversely, this choice must take into
account the strength of the connections between the
recognition and the action. The conditioning must be
performed at the RMO1 group level. RMOI1 repre-
sents the information of VO which is salient according
to the motor aspect. In that purpose a Max operator
is used to trigger a buffer group that stores the best
proposed movement (see figure 4, the maximum is reset
after each whole image exploration, i.e., after each robot
movement). The N.N. mechanism involved in the image
recognition is represented on figure 3. An example of
movement decision is shown figure 4.
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Figure 3: Simplified neural implementation. The robot first
learns to build simple sensori-motor categories in RMO1 (Robot
Movement Output 1) based on the recognition of visual shapes:
VO (visual ouput). The reflex RMI indicates the movement to
perform to reach the viewed object. Next, the robot uses RMO1
and the reflex to obtain RMO2
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Figure 4: Mechanism of decision making during sequential ex-
ploration. The best associated movement is kept by the Max-
Buffer operator

Thus, if the system has learned relevant sensori-motor
associations between VO and RMO1, the recognition of
the learned local view will imply the correct action. The
presence of a distractor in the image will not involve a
movement because the link between any action associ-
ated to a distractor will be weaker than those associated
to relevant pictograms.

4  Associations Learning

The learning strategy assumes, at first, that all the ex-
plored local views in the perceived image can be rel-
evant for the sensori-motor associations to be learned.
The winner neuron in the motor group can simply learn
to associate or dissociate all the local views from its ac-
tion according to the sign of the reinforcement signal. A
first problem is that neurons in the motor group must
learn according to the effective robot action (i.e., the
action proposed in the buffer group at the end of the
exploration sequence). Otherwise, learning would have
no sense since the reinforcement signal would not be
associated to the finally involved neuron. Thus, at the
end of the exploration sequence, when the action has
been performed, the result of the buffer is forced on the
neurons of the RMO1 WTA by opening the learning
gate (see figure 3). Next, when the robot receives the
reinforcement signal, the integrated input (the different
visual recognitions -VO- created during the exploration
of the focus points) and the effective ouput (the max of
RMO1 which is in the buffer) are at its disposal.
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Figure 5: Example of sensori-motor links evolution during learn-
ing, a) t: correct association of the “right arrow”, b) t+1: bad
association for the “left arrow”, c) t+2: the robot succeeds in
performing the good association. The dotted lines represent the
inhibitory links and the solid lines the activatory links.

4.1 Example of PerAc learning

On figure 5, we can see the evolution of learning for
two visual scenes (see figure 2) where one distractor is
present (a sheet of paper in this example). The prob-
lem is that the sheet of paper is not a relevant shape.
The only effective views supposed to imply actions are
the two arrows. The associative learning is performed
between VO and RMO1. First, the “turn right” arrow
and the “sheet of paper” are presented to the robot.
By chance, the robot performs the correct action. It re-
ceives a positive reward so the “turn right” arrow and
the distractor are both associated to the “turn right”
action (see figure 5 a). Second, we present the “turn-
left” arrow and the “sheet of paper”, no association had
been learned between an action and the “turn left” ar-
row. So, because of the distractor, the resulting action
is “turn right”. A punishment is emitted, the distractor
is dissociated from the “turn right” action (see figure 5
b). Third, the “turn left” arrow and the distractor are
presented once again. There is no link between the ac-
tion and the distractor or the “turn left” arrow. So the
chosen action only depends on the weak output neuron
noise. In our case, by chance, the “turn left” action will
be selected. So, a reward is given to the robot and both
“turn left” arrow and the “sheet of paper” are associ-
ated to the “turn left” action (see figure 5 ¢). At the end
of the exploratory sequence, we are sure that a single
action is performed but we cannot be sure it has been
performed due to our interpretation of the problem (the
supposed correct reason !).

4.2 Proof of the algorithm

In order to understand how the system finds relevant
views, two main cases must be studied. First, there is
no intersection between the set of local views associated
to the first movement and the set associated to the sec-
ond one. Both sets will end by being associated to the
correct movement. The learning problem is trivial but
the robot will never be able to separate the distractors
from the “important” objects because there is no way to
reduce the links between the distractors and the correct
action. Second, there is an intersection between both
sets of local views. A problem will arise for the learning
of the second set because the links between the shared
distractors of both sets have been associated to the first
action (fig 5 a and b). Learning will reduce the weights
associating the distractors to the first action (fig5b). A
second action may also be selected and it will be linked
to the whole second set of patterns (fig. 5 c).

5 Control of precise movements

In the previous section, we have described how to se-
lect one movement from 3 possible movements. But, to
control the robot precisely, we must be able to do the
same thing with several tens of possible actions. A first



solution could consist in learning which action must be
selected if an object is present in a particular area of the
image. For instance, if the mushroom is 47 degrees left
from the camera direction (in left part of the image a
figure 6), the robot should learn to turn 47 degrees left.
This method could be simply coded in a look up table.
However, if the robot proposes a particular movement
and receives a negative reinforcement, it will have trou-
ble to know if the punishment comes from a movement
orientation error or a bad choice of the relevant object
(or both). In our case, there are 32 possible movements
and 32 locations in the image and at least 3 objects
to be learned (in fact the system learns more than 50
shapes ! - see section 6), so the system would have to
test at least 32 x 32 x 3 possibilities in order to learn
which recognition at a particular position must be as-
sociated to a particular action ! The method is correct
but obviously unserviceable.

In our PerAc architecture, so as to simplify the learn-
ing problem, all the movements are computed relatively
to the object position. It allows an invariant learning
of the movement direction according to the object posi-
tion. This mechanism is implemented through the reflex
pathway which provides a rough hardwired behaviour
used as a bootstrap mechanism for the learning sys-
tem. The reflex system uses the geometrical informa-
tion given by the focalisation mechanism (Robot Move-
ment Input (RMI) on figure 7 - see [11]) as a movement
proposition for RMO1. To do so the position of the
focus point is projected on the x axis (egocentric rep-
resentation). This position is coded by a set of neurons
that have the same topology as the image. The first
neurons represent the lower x (the left part of the im-
age) and the last neurons represent the higher x (the
right part of the image). Figure 6 shows which neuron
is activated in the RMI group according to the position
of the focus point in the image. The reflex should allow
the robot to go in the direction of the object of interest.
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Figure 6: Different robot movements according to the learned
sensory-motor associations and to the position of the object in

the visual field. The circles represent the local area used by the
VI group. The vertical lines indicate the projection of the focus
points on RMI group to rotate the movement proposed by RMO1.

In fact, it would not be a good idea to use directly
the RMI as a reflex input to the RMO1 group because
the VO would be unable to control the RMO1 group

easily. Indeed, RMO1 provides movement information
corresponding only to “turn right or left” or “go ahead”
while the RMI involves slight robot movements. They
do not address the same kind of level. In fact they be-
long to two distinct levels: a high level corresponding to
the recognition of a specific category and a low level cor-
responding to the object reaching problem. Moreover,
if the robot is not in the same orientation than during
learning, the recognition of a local snapshot allows the
robot to perform a learned movement like “turn left”
or “turn right” but the robot will be unable to learn
a strategy like “follow this object”. Indeed, the useful
information is no more accessible in the VO group (the
“what” and “where” information have already been sep-
arated by the focus of the attention). Thus, the RMI
is used to rotate the result of the RMO1 group. The
result is stored in the RMO2 group which corresponds
to the real movement the robot must perform (figure
7). For instance, if an arrow involving a “turn left” ac-
tion is presented at 10 degrees left of the image center,
the robot turns 100 degrees left (90410) and it moves
forward a bit (like in figure 6).
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Figure 7: Details of the control of object reaching by a motor
group that can choose between ”turn left”, ”turn right” and ”go
straight ahead”.

6 Experimental results

The architecture has been tested on our mobile robot.
All the information come from a CCD camera (384 x
288). The digitalization resolution is 192 x 144 pixels
gray scale. The camera visual field is about 70 degrees,
so the first and the last neurons of the RMI group corre-
spond to a 35 degrees angle respectively to the left and
to the right. The extracted local view used as the Vi-
sual Input (VI) of N.N. is a 32 x 32 binary matrix. If an
object in the image is subject to a 10 degrees rotation
or if there is a scale variation of about 10 % the per-
ceived image is exactly the same and the system cannot
see any difference (exactly the same (logp, 0) image).
At the begining, the robot knows nothing, it has to
learn, at the same time, the different shapes and their
associations with a movement. In our experiment the



different movements indicators are arrows and a mush-
room, it could be anything else and we can have several
different indicators for the same mouvement. The robot
must turn according to the direction of the arrow and it
must reach the mushroom. The indicators are drawing
on a A4 sheet of paper (21mm x 29.7mm) and the sheet
is put in the robot visual field. The robot is brough back
until it performs the good movement. It receives a pun-
ishment for a wrong movement and a reward for a good
one. Each object needs about 2 or 3 presentations to be
learned and then, the behavior seems to remain stable.
The robot is able to recognize the object even if the dis-
tance is from two times shorter to 1.5 times longer. For
instance, if “mushroom” is presented, the robot needs
approximatly 3 trials to learn to go “straight ahead” in
the direction of the mushroom. All those results come
from real experiments on the robot.

Figure 8: The simple " go ahead” order associated to the recog-
nition of the mushroom allows to go always in the mushroom
direction

The egocentric representation of the movements has
also another interesting effect. As for the mushroom,
the robot needs, in the worst case, 3 trials to asso-
ciate a “turn right” arrow with the turn right move-
ment. Then, whatever the position of the robot is (in
the neighborhood of the arrow), the robot will tend to
avoid the arrow area by turning right around it (see
figure 9). Indeed, as soon as the robot is close enough
to the learned position of the arrow, it will react by
turning right but it will also add an angle more or less
important according to the difficulty of avoiding it on
the right. It is a very pleasant side effect of our algo-
rithm.

7 Interest of the topological map

As noticed at the beginning of the paper the local views
are learned on a topological map. The main interest
of those maps is that two stimuli should produce close
activity patterns in the map (figure 11) and close sit-
uations should be coded on nearby neurons. Unfortu-
natly, classical Kohonen maps need to separate learning
and utilization phases and do not really allow on line
and immediate learning. The Probabilistic topological
Map (PTM) is an attempt to bring together features of
a fast-learning algorithm and of a topology preserving
map [10, 15, 9]. In order to obtain an immediate topol-
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Figure 9: The simple “turn right” order associated to the recog-
nition of the “turn right” arrow allows the robot to always avoid
the “turn right” arrow by the left. The dotted circles represent
the begining of the visual recognition of the arrow. a) The robot
is always facing the arrow. b) The arrow appears at different
positions in the CCD image.

ogy preserving map, we maintain a continuity on the
map by allowing the immediate coding of the intersec-
tion of two learned patterns between their maximally
responding cells. The winner neuron activity is diffused
on the map to a maximum distance given by the diffu-
sion radius value. Its action is meant to model the ef-
fect of lateral coupling of the winner with its neighbors:
it makes them learn the input pattern, with an effect
that decreases with distance. The neurons weights are
adapted according to a probabilistic law that matches
the diffusion function (the transformation of the PTM
to a WTA was performed by reducing the diffusion ra-
dius of the PTM to a unitary distance). The general-
ization capabilities of PTM are very important. Typi-
cally, after the recognition process an image learned at a
particular distance can be put two times nearer to the
camera or 1.5 times farther from the camera without
any change in the winner choice (it depends on the ob-
jects number and on the differences between objects).
The PTM also allows a correct recognition even if the
robot camera is +/- 50 degrees rotated from the ori-
entation used during learning (see figure 8). The main
interest of the topological map is to allow a good a pri-
ori generalization over the different learned shapes (two
similar situations are coded on close neurons) and thus,
to reduce the number of patterns that must be learned
[15].

The topology also brings a new element. When only
one action is associated to different shapes, this action
will always be activated (if there is no inhibition links
on the map). As a matter of fact, a new shape is coded
on a new neuron but due to the diffusion, the neu-
rons in its neighborhood which have already learned
something are also activated. Thus, the system cannot
learn to associate the new shape with the action, be-
cause neurons in the neighborhood involve the action
learned before. So, we also need to introduce inhibitory
links between VO and RMO1 and thus each neuron in
VO must have at the same time an activatory and in-
hibitory link. Those links can theoretically be strong



at the same time but this situation cannot last because
their probabilities evolution are exactly opposite. The
Probabilistic Conditioning Rule (PCR) used to asso-
ciate VO and RMOL1 is described in appendix B. This
association problem between a topological map and a
WTA appears in the example figure 2. Only explored
focus points are labeled. The Visual Input (VI) cen-
tered on points L1, L2, L3 are on the left arrows, they
induce the “turn left” action. VI on R1, R2 have to
imply “turn right” and VI on L4, R3 are not relevant
(the labels will be used to design a visual pattern as well
as the neuron coding the shape on VO). After several
presentations when the robot performs the good action,
the links between VO and RMO1 are as seen figure 10.
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Figure 10: Representation of the motor links on the topological
map. a) Links of the “turn left” neuron. b) Links of the “turn
right” neuron. Black boxes correspond to activatory links and
white boxes correspond to inhibitory links (no link elsewhere).
Labels correspond to the position of neurons that recognized the
local view shown figure 2
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Figure 11: The topology diffusion, a movement can be involved
by neurons in the neighbourhood of the winner.

In figure 2 b) the action “turn right” is involved by
the VI on R2, as expected. To understand how it works
we have to study the links (figure 10) and the topology
(figure 11). When the robot learns to associate arrows,
several VI are presented. A relevant VI for the “turn
right” action (view centered on R2 or R1) will only be
present in a “right arrow”, so the links associated to R2
and to the neighbor shapes are the same. This can be
seen on figure 10 a) and b). The labelled boxes rep-
resent the place where the shapes have been learned
on the PTM. A white or black box indicates that the
neuron at this position induces an inhibition or an acti-
vation to the associated motor neuron. A shape like the
one represented by R2 is connected to the “turn right”
action with an activatory link and to “turn left” action
with an inhibitory link. But the most important is that
the neurons in the neighborhood of the neuron coding

R2 are connected to the “turn right” action with only
positive links and to the “turn left” action with only
negative links. So the activation of the “turn right”
action will be higher than for the “turn left” action.
Moreover, neurons in the neighborhood of a distractor
like the sheet of paper (figure 2) coded on R3, are not
solely linked to the “turn right”action with activatory
links and also not solely linked to the “turn left” action
with inhibitory links. Thus the contribution of those
neurons to the activation of the “turn right” and “turn
left” actions is negligible in comparison to the effect of
the activity associated to a relevant shape like R2 (see
figure 11).

Because each experiment needs about 10 min to be
performed it is obviously impossible to test exhaustively
the robustness of our stochastic PCR, rule. So, from
the real experiment, we have stored 6 images for the 3
differents cases to perform realistic simulations of the
learning process. The indicator is on a dustbin in front
of a radiator, so as the robot use edge detector for its
perception there are several distractors in each image.
Only in 2 of the 6 images the indicator is at the center
of the field of view, for the rest, there are rotations
and translations. For each image the robot explores §
focus points so, there is a total of 144 (8 x 6 x 3) local
views. In the simulation, there is no difference with
the experimental process. The same image is presented
until the movement is good. Images of the database are
presented in a random order. When all the images have
been shown a new random presentation is performed.

% of good action % of learned local view diffusin radius

1

(] 10 20 30

G0 s e 70 80 %0 ) s 20 2
Number of presented images Number of presented images

Figure 12: a) The rate of good action performed in function
of the number of images presented (each image represents 8 local
views). The dotted line corresponds to the case without topology
(diffusion radius = 1), the full line is for a diffusion with ra-
dius = 3. b) Diffusion radius comparaison (the different curves).
The pourcentage of views that are learned in function of time,
the x axis is the number of presented images, performances are
almost the same in time (not plotted).

In a first experiment, we only used the PTM as a
WTA with 20 x 20 neurons (a vigilance of 0.7 and no
diffusion : diffusion radius = 1) so, there is no benefit
from the topology. For example, if we present 18 im-
ages (6 for each movement) with 8 focus points on each
one, the network receives 144 local snapshots on the
VI group. The WTA-PTM learns 140 differents views,
the other ones where similar enough to an activated
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Figure 13: Each map represents the strength of a neuron to
involve a special action, a) diffusion radius = 3, b) diffusion ra-
dius = 5.

one of the 140 learned neurons. Conversely, when the
PTM is used with a diffusion radius of 5, the number
of learned shapes is dramatically reduced (only 36 local
views are learned - see figure 12) and the learning speed
for the sensori motor association is higher ! (see figure
12). Thus we can see that a priori generalization is effi-
cient (the vigilance is still 0.7, see figure 13). To test the
stability we have presented thousands of times the set
of images. So we see that the learning is very stable, af-
ter 60 images presented the percentage of good actions
is always greater than 95%. Even more, the percentage
of good action is always increasing overall.

8 Conclusion

We have seen that an obstacle avoidance strategy
“emerges” from the simple association of a single pic-
ture representing an obstacle and a particular move-
ment. Moreover, we have shown that identification of
the relevant information in an image is not really com-
plex if the robot can use a mecanism to focus its atten-
tion on the different possible objects. This mechanism
makes the robot “cognition” sequential and needs to be
associated to an intermediate memory to come back to
a parallel processing.

Another important conclusion is linked to the power
of the topological representations and to the topology
of the N.N. architecture. PTM introduces really inter-
esting shortcuts in the learning process and allows to
“take for free” information which are, most of the time,
neglected in traditionnal TA systems.

Our different experiments with our Koala robot have
also shown the interest of action to suppress the ambi-
guities or the errors. The present work is not a goal by
itself. It is a first step toward the implementation of a
real time navigation system that we have proposed in
[11] and that we are currently testing. We hope it be-

lexamples of diffusion can be see on figure 11, i.e. a bubble
constitued by a set of 9 X 9 neurons is activated with a maximum
at its center.

comes now possible to really implement on autonomous
robots, the concept of the ecological approach of vision
proposed several decades ago by Gibson [12] to explain
animals and humans visual capabilities.

A The PTM rule

The algorithm for the Probabilistic Toplogical Map is the
following:

Present an input vector / to the map. Find the winner
N*, i.e. the map cell with highest activity. The similar-
ity between I and the weight vector is first computed and
the real neuron activity is processed trough an activation
function fx with variable selectivity Dy (t). The activity in
neuron Np under presentation of binary input vector [ is
measured as follow:

Act(Ni, I) = fi[$input( Wi, I)] + noise, where if Di <1
then
P
DICHASES S
S 3
ZW +ZW:

= =1
where Wy is Ni’s weight vector and W =1— wg, I, =
1-I7, Vi =W¢ 4+ (a—1) - Wg,

Sila)(t) = De(t) - eap [— o (ﬂ)]

ﬁ/k is the vector derived from W} whose components W;;’
are equal to 1 when W}’ has been reinforced more than once
and 0 otherwise. P is the dimension of the input space and
S is the presumed number of ones of the input vector (it is
a constant value).

Diffuse the winner activity on the map according to a

1
Sinput — 7

~i|
€

otherwise sinput =

diffusion function.

Dy (t) = Dy (Ng, N*) = exp [—u <dy g, (N, Nk)]

If Di(t) > D (t) and Dk(t) < v (the vigilance parameter)
enable learning on the map: The Ni’s selectivity parameter
is modifed: Dy(t + 1) = Di(N*, Ng) If random < Dx(t)
then adapt Ni’s weight Wi: W¢(t 4+ 1) =1“. If I“=1 and
W¢ (t)=1 then W (t + 1) =1 Else if the random draw fail
Wit +1) = Wi ()

In our experiment the different constants are: ¢ = 0.01,

c=05,v=0.7 P=32%32=1024, S = 150.

B The PCR Rule

In this section we only sum up the main caracteristics of
our conditioning rule (see details in [8]). Its main interest is
to allow one trial learning capabilities (all-or-none learning)
and to provide pretty good results even in the case of a de-
layed reward. Our rule is a generalization of the Barto and
Sutton [2] rule to the case of an environnement with objects
not having the same appearance probability and with rein-
forcement signal which can be badly or not defined for a lot
of situations. The PCR allows the robot to test hypotheses.
Weights are not gradually changed. They stay at the same
value during a time long enough to evaluate the interest

of an hypothesis. The algorithm combines neural network



associative capabilities and simulated annealing exploration
methods.

Weights are only modificated by a probabilistic law when
a reinforcement signal occurs. This law belongs to the same
kind of rule we use for our probabilistic topological map.
The PCR consists in using binary weights associated to a
probability which measures the confidence on the weight
value (p € [0,1]). When the reinforcement signal varies,
probabilities are updated and weights can be modified ac-
cording to the confidence value. If there is no reinforcement
variation, neither the probabilities nor the weights are mod-
ified, but information about the correlation between the in-
put and the output of the weight go on being stored. To
be able to modify confidence terms, a measure of input-
output correlation must be stored. This term is updated at
each time step. Three time integrated parameters are asso-
ciated respectively to the input I;, the output O; and to the
input - output product. Notations are: I, O and 10. We

assume I; belongs to [0,1]. The correlation is computed as
C=—"2=.

Vo
input and output over a given span time. The algorithm is
the following :

C is an efficiency measure of correlation between

o 1,0, and T0;; are updated at each time step.

o If |%ﬁl| > ¢ and T- O # 0 then the probabilities are
updated as follows:
Apij(t) = (- Li+a-57)-Ciy - S (Wi;) = Api; (t) - I and
pij (t+1) = pi; (t) + Api; (¢).

e For the same conditions there is Random draw: if
Rnd > pi; and ]~_O_;é_0 then Wi; = 1 — W;; and
pi; =1 —pij and 10, I, O are reset to 0.

P(t) is the global reinforcement signal. It represents a
way to measure robot satisfaction over time. S(z) = —1if
z=0and S(z) =1if v = 0. ais the delayed conditioning
learning rate. A is the forgetting rate. ¢ is a constant fixed
by the experimenter. Rnd is a random value tossed in [0, 1].

In our case, we use PCR with analogic weights. The
weight value is not the binary weight (W;;), but Wi; - pi;.
This product gives analogic weights corresponding to the
confidence term. The ouput activity of a neuron is:

O; = mazi_; (WZJ ~I.‘) + noise with
Wi =1+ (2Wi; — 1) py

The noise can be as small as wanted. It is only used to
allow a random choice when several neurons have the same
output.

We also use the PCR for the inhibition links with little
changes in the rules. First W;; € {0, 1} is changed to W €
{-1,0}, S(W;;) is changed to S(—1) = —1, S(0) = 1 and
WJI = ZVVZ.; 4+ 1 — pij. The rest of the adaptation rule is
exactly the same. The ouput activity of a neuron become:

O; = mazi_, (WZJ ~L‘) + minj—, (W._I . L‘) + noise

ij
The max is taken on the activatory links and the min on
inhibitory links.
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