Visual Navigation in an open environment without map
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Abstract

In this paper we describe how a mobile robot controled
only by visual information can retrieve a particular goal
location in an open environment. Qur model does not
need a precise map nor to learn all the possible positions
in the environment. The system is a neural architecture
inspired from neurobiological studies using the recog-
nition of visual patterns called landmarks. The robot
merges those visual information and their azimuth to
build a plastic representation of its location. This rep-
resentation is used to learn the best movement to reach
the goal. A simple and fast on line learning of a few
places located near the goal allows the robot to reach
the goal from anywhere in its neighborhood. The sys-
tem uses only an egocentric representation of the robot
environment and presents very high generalization capa-
bilities. We describe an efficient implementation tested
on our robot in two real indoor environments. We show
the limitations of the model and its possible extensions
to create autononous robots only guided by visual infor-
mation.

1 Introduction

Most of the existing navigation systems use allocen-
tric referentials like cartesian map representations or
at least cartesian coordinates to locate the important
objects they are computing about (the robot, the goal,
the areas to avoid...). In well structured environments,
the navigation problem consits in finding the best route
to go from one place to another. The robot movements
can be limited to simple orders such as go ahead, turn
right,... because the robot can recognize a wall or a T
junction (maze problem). These planification systems
suppose the places are already learned and usually use
improved versions of the A* algorithm to find the best
route to reach a goal. These systems need an impor-
tant engineering work to choose the information, to re-
calibrate the robot position, to check the robot current
state, or to wait for the recognition of the next state
In the
case of a real autonomous navigation, if the robot for-

when a reactive planning mechanism is used.

gets to learn a place or learns several times the same

physical place, it becomes unable to navigate correctly
(cut or infinite loop in the graph of its cognitive map -
[3])-

In aless structured environment, when the robot does
not move in corridors but must evoluate in a room or
in any other “open” environment, potential field tech-
niques [1] can be used. For each location the strenght
of the attraction of the goal on the robot is computed.
It implies at least to store the goal location and the
robot location in a cartesian referential frame (need to
compute precise trigonometrical computations). Unfor-
tunately, odometry currently used to measure distances
is not precise in a long run and must be recalibrated by
other sources of information such as particular visual
patterns called landmarks [4]. Thus in both structured
and “open” environments, the actual main problem in
realizing really autonomous mobile robots is linked to
the problem of finding learning criteria such as how to
choose the learned positions and how to regulate the
learning level [5]. The way information is represented
seems to be crucial to reduce the algorithm complex-
ity. Indeed, if the robot had to learn each position in
the environment before being able to navigate correctly,
the learning time would be huge. Moreover, the robot
would be unable to perform topological generalization.

In this paper, we show experimental results of a nav-
igation model proposed in a previous paper [10]. It
is a neural architecture named PerAc (Perception Ac-
tion) based on animals navigation models which do not
require a precise map of the environment to navigate.
This model has been implemented on a mobile robot
named Prometheus. It only uses a small number of
panoramic views to decide which movement to perform
in order to reach a learned position in an open indoor
environment. In the first part of the paper, we briefly
summarize the principles of our neural network model
and show simulation results. In the second part, we
present an efficient and low cost implementation (in
terms of memory load and computation time) of the
algorithm on a real mobile robot. Finally, we discuss ex-
perimental results and propose different improvements
of this first implementation.



2 Landmark-based navigation

More and more systems take into account the fact that
animals mainly use landmark information and navigate
directly from 2D perceived images. This approach re-
duces their algorithmic complexity and increases their
robustness. The PerAc architecture is a neural com-
putation architecture proposed to solve a wide variety
of control problems requiring learning capabilities (by
opposition to adaptation ! capabilities). It consists in
an action level (a hardwired pathway able to play the
role of a reflex mechanism) and a perception level try-
ing to recognize particular situations and to associate
them with the correct action through an associative or
a reinforcement learning rule. The perception level al-
lows the robot to react to a situation even if it i1s too
complex to allow the action pathway to propose an an-
swer (the goal is not in sight for instance) by gener-
alization of previously learned situation (the landmark
configuration in the navigation task). Moreover, if the
action pathway induces a negative reward, the links be-
tween the recognition of the perceived situation and the
current robot action can be inhibited and a link with
an action avoiding a negative reward can be learned.
At the beginning of the exploration phase, we suppose
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Figure 1: Four views (circles) are learned (i.e. associated with
an elementary movement), others are associated as a function of
the similarity between learned and tested places (boxes). As we
can see, if the robot learn to reach the cross from each learned
view, it can reach the cross from all the views. The set of arrows
represents a possible path. The views are in a 1.2m X 1.2m area,
the learned views are at 30 cm from the center. The scale is not
respected for the position of the different furniture (in fact they
are about 1.5 m from the center)

Prometheus moves randomly, looking for something in-
teresting. When it finds its goal, it moves around it in
order to explore various positions in its proximity. At

!Learning is something that can be performed quickly and
involves a variation in the structure of the control architecture
whereas the adaptation consists in a slower variation of the struc-
ture parameter. Adaptation can induce learning if there is a non
linear modification of the adapted parameters that induce a non
linear variation of the system response.

these places, it learns both the landmark configuration
(represented by a set of local views and their angles)
and the direction leading to the goal. Later, when the
robot wants to find the goal, it considers the informa-
tion of the “place cells” (i.e. the cells which react to a
specific set of local views associated to their azimuth)
and moves in the direction associated to the most ac-
tivated “place cell” (competitive mechanism) to reach
the goal 2. Thus at each step, the distance to the target
is reduced (Fig. 1) and the robot returns inevitably to
the learned position. A complete description of a neural
implementation of the learning process can be found in
[10]. The PerAc architecture for place learning realizes
an approximation of a potential field function without
the cost of learning what to do from each position in
the environment.

When the goal is in sight (goal recognition), a neu-
ron corresponding to its angular position relative to the
robot’s facing position is activated in the Target Az-
imuth group (we suppose that the robot has previously
learned what the goal looks like [12]). A shifting mech-
anism activates a neuron in the Direction of Movement
Proposal (DMP) group by adding an angle correspond-
ing to the angle between the robot and the north direc-
tion. The inverse shifting mechanism is applied to the
output of the Direction of Movement group, by sub-
stracting the same angle. Thus the robot movement is
correct whatever the robot orientation is (conservation
of the sensory topology in the whole neural network
architecture).

First to recognize a place, the robot must be able
to isolate a local view (focus of attention mechanism
that will be presented later). Next, the information
about the landmarks recognition and the associated
angle are merged to produce a unifyed representation
that can be easily learned and matched with previously
learned representation. That merging is represented by
the matrix product of the information corresponding
to “what” (Landmark) and “where” (Azimuth) the ob-
jects are (Fig. 2 Landmarks Azimuths group). A time
integration process allows to suppress the sequential as-
pect of the scene exploration (spatio-temporal merg-
ing). With this representation, there is no need to “rec-
ognize” specifically what the landmarks are (a fridge, a
chair...), it is only important to distinguish them and to
know their angular position. Even if a landmark is miss-
ing (for instance if the fridge is removed), because the
“image” of the scene (Landmarks Azimuths) is noisy,
the other landmarks can allow a good recognition (we
have shown that several landmarks can be removed, hid-
den or displaced without disturbing the global recogni-
tion of the scene [13]). This “plastic” merging by oppo-
sition to the static recognition of a multisensor config-

2Those “place cells” are called like this as a reference to the
biological place cells recorded in rat hippocampus[11].



uration seems to be performed by a brain region called
the hippocampus and involved in the memorization and
navigation processes (processes that we study in the
frame of a neurobiological project [2]). The place rep-
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Figure 2: The navigation neural network. Target azimuth and
Direction of movement are WTA. Landmarks azimuths empha-
sizes merging of visual and motor flow.

resentation (Landmarks Azimuths) is learned by the
Place Cells group of neurons. If the robot recognizes
the goal, it moves in that direction (reflex link between
Target Azimuth and Direction of Movement on Fig. 2).
Otherwise, learned association between Place Cells and
Direction of Movement allows an efficient generalization
to the whole environment. Consequently, this process
creates a basin of attraction in which the robot always
moves in order to come closer to the goal. Moreover, it
has been mathematically proved that there was no lo-
cal minimum induced by the competition between the
action neurons within the domain bounded by the set
of landmarks [10].  To simulate visual navigation in

a) AN
Figure 3:

a) Each black circle represent a landmark which present 6 differ-
ents aspects according to the observer point of view. The small

Simulated environment with complex landmarks.

numbers represent the places where a panoramic view has been
learned by the robot (the drawing between those circles represent
the robot trajectory during learning). b)Vector field representing
the robot movement direction when using the east landmark as
angle origin.

a real environment, we have supposed that landmarks
do not have the same aspect according to the robot
location (see Fig. 3). The simulation results are even

better than in the case of cylindrical landmarks. The
robot is always able to join its goal and moreover the
place recognition is more robust because the variation
of place cells activity is more significant from one loca-
tion to the other (the competition mechanism can then
be less precise). If no absolute direction is available,
a landmark can be used as orientation reference but
then the generalization capabilities to long distances is
reduced. However, the place cells responses remain cor-
rect if the robot stays in the area surrounded by the
landmarks.

3 An efficient implementation

In order to test our model we have implemented the
algorithm in C.

3.1 Sensors and environment

The visual input comes from a 384 x 288 grayscale CCD
camera. Its field of view is about 70 degrees. To build
the panoramic view a servo-motor is used to pan the
camera. The robot takes 24 images with a 7.5 degrees
rotation between each capture. The central vertical
band of each image (30 x 288 pixels) is merged to con-
stitute the global panoramic view (the central band is
only used because the camera distorts the image sides).
A 1066 x 288 pixels panorama is obtained. Its field of
view is about 270 degrees. It is not a complet 360 de-
grees image but it is sufficient for our application. As
you can see on figures 4,5,11 the images merger is not
perfect but it works (which shows the robustness of our
system). The test environments are our every-day

Figure 4: a) and b) Panoramic images constructed by our sys-
tem referenced in Fig. 1.

working rooms with the chairs, tables, shelfs, worksta-
tions, dustbins... We use the environments as they are
without any change. In addition, the more complex the
environement is, the more numerous landmarks can be,
and thus the more efficient our algorithm is.

3.2 Implementation

The first step of the navigation algorithm is to find
where the possible landmarks are. All the image rows
are averaged and weighted with a larger weight for the



Figure 9: 15 local views stored in a learned image (environment
Fig. 8, black circle S), and the absolute value of the derivative.

points near the center of a row. The resulting one di-
mentional signal is derivated and the local maxima and
minima are used to point out what will be the center
of local views (an example derivative absolute mean-
ing is shown on Fig. 5). Each panorama projection
contains, in average, 20 local maxima. On figure 5,
15 maxima are extracted to be the center of 15 local
For each selected point, a 32 x 32 pixels lo-
cal view is built by averaging the 148 x 288 pixels of
the corresponding panoramic image part. The y axis is
just scaled whereas a logarithmic transformation is used
for the x axis. Then each local view is compared with
each learned local view. This comparison is a simple
difference between the pixels of the local views. The
five best corresponding views are used as landmarks,
i.e. their positions in the image are compared with the
ones in the learned panorama. The sum of those abso-
lute angles gives us the similarity between panoramas.
So the movement associated to the best corresponding
panoramic image is performed.

views.

The complexity of the algorithm for one panorama
analysis is about 14 millions integer additions and 1
million floating point multiplications. More than 95%
of the calculation time is dedicated to the creation of the
local views, the rest is spent in views comparison. The
total calculation time is less than 1 second on a Pentium
133 and could be easily reduced. In fact, when the robot
had learn 10 positions, it performs a movement every 15
seconds. About 13 of those 15 seconds are spent in the
acquisition of the panoramic image (camera rotation).

4 Experimental results

The algorithm has been tested in a large number of
rooms, some plans can be seen on figures 1 and 8.
We show that our algorithm works in large open areas
with a very high precision in target reaching. Next, we
change the robot head direction and introduce pertur-
bations and show the robot continue to run correctly.
New results, not describe there, show that our robot can
reach the goal from a 20m? start area in a 7.2m x 5.4m
room with obstacles and only 10 learned positions[6].
Simple obstacle avoidance is implemented through a low
level reflex mechanism that used the infrared sensors of

the robot[9].

4.1 Place cells response

Results on figures 6 and 7 show how the different posi-
tions in the environment are far from the learned posi-
tions. Figure 6 is a combination of the four responses
of the place cells by selecting the maximal response (a
gray level is associated to each direction).
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Figure 6: Maximal place cell response in the experimental area
(environment figure 1), unit is meter, a gray level is associated to
each direction (verification on Fig. 1).
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Figure 7: Response of each place cell when covering a 1.2m X
1.2m square (environment Fig. 1), white color represents high
place recognition. The cross represents the learned view position,
the goal position is 0, 0.

o)

Another environment is used (Fig. 8) to show pre-
cisely the variation of the place cells activities of two
arbitrary locations. On figure 9, the responses of two
place cells when the robot is moved on line D are shown.
Those learned positions are the place “i” in figure 10
for figure 9 a) and the place “ii” in figure 10 for figure
9 b).The maximum activity of the place cell is always
obtained for the learned location and it monotonously
decrease on a large distance. These results emphasize
the fact that even with large distances (comparing to
the robot size and to the environment size), the robot
is able to perform an action in order to come closer to
the goal.

4.2 Movement precision

Figure 10 shows a real path taken by the robot to reach
the goal. We can see that the closest the robot is from
the goal is less than 2cm (note that the width of each
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Figure 8: A second room for the experiment, the white circles
and line D represent several tested positions. Four views are
learned (black circles). The dotted rectangle corresponds to figure
10 area, the cross represents the goal.
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Figure 9: Response of a place cell (learned view) according to
the distance to i and ii in meters(environment Fig. 8, 10).
move is about 4.5 cm in this experiment). In fact, the
smallest distance is less than half the width of each sin-
gle movement (about 2cm). In theory, with landmarks
at distance d, the precision p representing a 1 pixel shift
in the image, is: p = tan(1/4) - d. It comes from the
field of view being about 270 degrees, the x axis made of
1066 pixels that each pixel represents about 1/4 degree.
Thus, with landmarks at 1.5m, the maximum precision
is Tmm and with landmarks at 15m it would be 7cm.
The starting point of the robot can be very remote from
the goal. The robot is still able to reach the goal with
great precision.
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Figure 10: An example of a real path taken by the robot to
reach the goal (environment Fig. 8). This area is a zoom of the
dotted rectangle in Fig. 8. The arrows positions are those of the
center of the camera.

4.3 Change in head direction

Till now the camera was pointed at North at the be-
gining of each mesure. We have tried to change its
orientation, the results were thoses expected. All land-
marks were shifted in the image by an angle correspond-
ing to the change in orientation. So, with a compass
sensor> giving an indication of the camera direction, we
only have to substract this rotation angle to the an-
gle found between viewed landmarks and learned land-
marks. After this shift, the comparison is made with the
learned views and the best corresponding movement is
performed (according to the body orientation -see sec-
tion 2-). We have tested several orientations at position
S (Fig. 8 and 10), after the shift the activation of corre-
sponding place cells was exactly the same as before up
to a 1% error, in spite of the loose of few landmarks in
the blind area of the robot.

4.4 Introducing distractors

On figure 11 a), which corresponds to the panorama
from position ‘¢’ (Fig. 8), we can see the positions of
the five best recognized local views. Thoses views are
used as landmarks and the absolute angles with land-
marks direction in learned views (black circles Fig. 8),
give position S as best matching. So the movement per-
formed is “go North” which reduces the distance to the
goal, it is the best of the four possible movements. Then
the robot is put back to position ‘c’ and a perturbation
(a person) is introduced in the scene (Fig. 11 b). This
perturbation occults one of the landmarks and intro-
duces new possible landmarks. But as you can see on
figure 11 b) there is no problem. Instead of the occulted
landmark, a new landmark is selected. The system uses
the other landmarks and the best matching place is still
S, the robot keeps on performing the “go North” move-
ment. This example emphazises the robustness of the
system and shows the advantage of using only some lo-
cal views as landmarks without trying to know what
they are.

Figure 11: Changement of landmarks when introducing a per-
turbation (environment Fig. 8, position ‘c’).

3Pewatron sensor model 6070 for example



4.5 Limitation of system

As a first limitation, we must suppose that the visual
system can differentiate all the landmarks. We can-
not allow the same landmark found twice in the same
panoramic view. Otherwise the system would not suc-
ceed in knowing which azimut is associated to which
landmark. So in the case several landmarks are the
same, we suppose the visual system will either use in-
formation about the neighborhood or choose a particu-
lar landmark to index all the others by reference to it.
This implies to learn a sequence and not just to recog-
nize a snapshot. Because sequence learning seems to be
one of the major role of the hippocampus in the brain
functionning we hope to introduce this kind of feature
in the next version of our model. A second limitation
results from the decrement of place cells response accu-
racy as a function of the distance from the goal. For
instance, the robot performed a wrong movement when
it reaches position ‘a’ (Fig. 8). Then, the proposed
action was “go West” and the robot reached position
‘b’. It was a mistake, but in position ‘b’ all the activi-
ties of place cells corresponding to N, E; S, W are less
significant than in position ‘a’. Our system allows to
know if the action reduces the distance to the goal just
by looking the evolution of the place cells (Fig. 9). So
the robot knows that its movement was wrong. Ob-
viously more efficient trajectories could be obtained if
the movements are performed randomly according to
their associated neuron activity rather than according
to a deterministic WTA mechanism [8]. Moreover, our
N.N. can also be used to avoid particular zones or to
introduce other goals [9].

5 Conclusion

Our algorithm works correctly even in difficult situa-
tions. It supports a lack of landmarks or a misinterpre-
tation of a few of the landmarks. There is no need of
a particular number of landmarks (more than 2). To
recognize a place, the precision will only grow with the
number of landmarks. Our work shows navigation in
an unknown environment can be achieved without any
complex learning mechanism (only associative learn-
ing). The meaning of viewed objects does not need
to be really understood by the robot (all the views as-
sociated to the same object are not explicitly linked to
each other). Our system is intended to be in interac-
tion with its environment. It is just an agent that learns
to agree with its environment and its internal motiva-
tions. It has no global or complete representation of its
world. It “keeps in memory” the link between a partic-
ular situation and the action that it has learned to be
correct in that situation. Should the universe collapse,
the robot’s memory would have no more meaning. For
instance, a cognitive map involved in high level goal
seeking will be simulated in Prometheus with only few

neurons in competition (representing a well chosen set
of learned places). The decision to learn a new place
can be performed with the information about the goal
recognition. For instance, if the best recognized view
is not correct, the robot can move in a bad direction
but then at its new position the global activity of the
place cells will decrease (see experimental results). It
is easy to build a learning rule that is triggered when
the sum of the place cells response decreases [9]. The
robot would then find a movement that allows it to go
in a direction associated to a global increase of the goal
recognition (an efficient reinforcement learning rule is
described in [7]). Our future work will consist in test-
ing for real a planification level allowing the robot to
pass from one subgoal to another in order to reach a
particular goal.
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