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a b s t r a c t

We present a neural network model where the spatial and temporal components of a task are merged
and learned in the hippocampus as chains of associations between sensory events. The prefrontal cortex
integrates this information to build a cognitive map representing the environment. The cognitive map
can be used after latent learning to select optimal actions to fulfill the goals of the animal. A simulation of
the architecture is made and applied to learning and solving tasks that involve both spatial and temporal
knowledge. We show how this model can be used to solve the continuous place navigation task, where a
rat has to navigate to an unmarked goal and wait for 2 seconds without moving to receive a reward. The
results emphasize the role of the hippocampus for both spatial and timing prediction, and the prefrontal
cortex in the learning of goals related to the task.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Spatial navigation relies on a network of strongly intercon-
nected structures that includes the hippocampus, the prefrontal
cortex and the basal ganglia. Finding out how information about
space, paths, rewards and behavioral control flows between these
cerebral structures could shed light on the processes involved in
learning complex navigational tasks in the mammalian brain. In
this paper, we present a model that attempts to describe how the
neural network performs such computations.

From an anatomical point of view, strong excitatory connec-
tions exist between the hippocampus and the medial prefrontal
cortex (mPFC) in the rat (see Fig. 1). Area CA1 of the ventral hip-
pocampus projects directly to the prelimbic and infralimbic ar-
eas of the mPFC (Jay & Witter, 1991). These connections involve
both pyramidal neurons and interneurons in the prefrontal cor-
tex. The mPFC projects back to the hippocampus through indirect
pathways (Amaral &Witter, 1995). It is connected to the deep lay-
ers of the entorhinal cortex which in turn projects to areas CA3
and CA1 through its intermediate and superficial layers (Amaral,
Bliss, & O’Keefe, 2006). The nucleus reuniens of the thalamus is
also an important relay between the mPFC and the hippocampus
(Vertes, Hoover, Szigeti-Buck, & Leranth, 2007). It receives excita-
tory signals from different structures and mPFC in particular, and
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projects to area CA1. Finally, in the basal ganglia (BG), the striatum
receives connections from both the hippocampus and the mPFC.
Bilateral connections exist between the BG and mPFC (Groenewe-
gen, Wright, & Uylings, 1997).

In the CA1 and CA3 subregions of the hippocampus, pyramidal
neurons called place cells show location-specific firing (O’Keefe &
Dostrovsky, 1971). The activity of a place cell is maximal when the
animal is at a particular location (the place field) in the environ-
ment and decreases as it gets away from it. Thus, the place cell
system is believed to allow the animal to locate itself in its envi-
ronment and is important for the memorization of different en-
vironments. Both allothetic (external: visual, olfactory, etc.) and
idiothetic (internal: vestibular, somatosensory, etc.) information
is used to maintain stable place cell activity. For example, rota-
tion of remote visual cues in a given environment induces equiv-
alent rotation of the place fields (Muller & Kubie, 1987; O’Keefe &
Nadel, 1978). Place cells can also be active and show stable place
fields when the rat is forced to rely on idiothetic cues in the ab-
sence of allothetic cues (e.g., in the dark) (Quirk, Muller, & Kubie,
1990). However, integration of idiothetic information (path inte-
gration) allows only limited navigation performance due to error
accumulation (Etienne & Jeffery, 2004). Place cell activity has also
been shown to be modulated by non spatial information such as
olfactory cues (Eichenbaum, Kuperstein, Fagan, & Nagode, 1987),
speed, direction, turning angle, trajectory encoding (Wood, Dud-
chenko, Robitsek, & Eichenbaum, 2000) and other task relevant
approach movements (Wiener, Paul, & Eichenbaum, 1989), sug-
gesting a crucial role of the hippocampus in episodic memory
(reviews in Eichenbaum, Sauvage, Fortin, Komorowski, & Lipton,
2012; Wiener, 1996).
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Fig. 1. Excitatory connections in the hippocampo-cortical loop. Red connections
are those taken into account in thenewglobalmodel (see Section 3.3).mPFC:medial
prefrontal cortex. CA1 and CA3: Cornus amonis. EC: Entorhinal cortex. gc and mc:
granule andmossy cells (in dentate gyrus (DG)). RE:Nucleus reuniens. S: Subiculum.
A: Amygdala. PER: Perirhinal cortex. POR: Postrhinal cortex. The different layers of
EC are indicated by numbers (2 and 3: superficial layers; 5: deep layer). Sensory
information mainly comes from PER and POR. Hippocampal output is transferred
after S to the basal ganglia.
Source: Adapted from Buzsàki (2007).

Other types of cells with location-specific firing have been
found in various regions of the rodent hippocampal system such
as the dentate gyrus (DG) and the superficial layers of the en-
torhinal cortex (EC) (Jung & McNaughton, 1993; Quirk, Muller,
Kubie, & Ranck, 1992). More recently, cells with multiple firing
fields have been found in the dorsomedial part of the entorhi-
nal cortex (Hafting, Fyhn, Molden, Moser, & Moser, 2005). These
‘‘grid cells’’ show a grid-like firing pattern and have been sug-
gested to implement a path integration-based spatial representa-
tion (McNaughton, Battaglia, Jensen, Moser, & Moser, 2006). Grid
cells probably have strong functional interactions with hippocam-
pal place cells but these interactions are still poorly understood
(Gaussier et al., 2007).

Recently, cells with spatial correlates have been found in the
mPFC of the rat performing a goal-oriented task (Hok, Save, Lenck-
Santini, & Poucet, 2005). In this experiment, manymPFC cells had a
place field at the goal location, i.e. a place with a high motivational
salience. Although the mPFC is not required for solving simple
navigation tasks, it has been shown to contribute to the acquisition
of the optimal behavior to reach a platform in a water maze
(de Bruin, Sànchez-Santed, Heinsbroek, Donker, & Postmes, 1994).
Lesions of the mPFC also greatly reduce performance in navigation
tasks when a certain level of planning and behavioral flexibility is
needed (Granon & Poucet, 1995, 2000). The mPFC is also involved
in strategy selection as lesions reduce the ability to switch between
strategies and lead to increased persistence errors (Ragozzino,
Detrick, & Kesner, 1999).

Traditionally, most models of spatial learning in the hippocam-
pus can be divided into two categories. The first category relies on
recurrent connections in CA3, which acts as an auto-associative
map where attractors are learned to form representations of EC
input. Recurrent connections allow to connect consecutively ex-
perienced spatial patterns where each pattern corresponds to one
location. As a result a spatial graph of the environment is created
(Muller, Stead, & Pach, 1996; O’Keefe & Nadel, 1978) in which a
given spatial pattern is able to activate another spatial pattern.
Such models have been used to simulate place cell activity (Káli &
Dayan, 2000) and to solve goal-oriented navigation tasks (Koene,
Gorchetchnikov, Cannon, & Hasselmo, 2003; Redish & Touretzky,
1998). The second type of model relies on DG to perform pattern
separation. The role of DG in pattern separation is supported by
in-vitro and in-vivo studies (review in Acsàdy & Kàli, 2007). DG is
suggested to be a highly competitive network that allows a sparse

coding of EC information using population coding. Its role in spa-
tial pattern separation has led researchers to hypothesize its in-
volvement in the formation of spatial patterns in the hippocampus
from grid cell information (Fyhn, Hafting, Treves, Moser, & Moser,
2007; Rolls, Stringer, & Elliot, 2006) and to suggest that it is part of a
system capable of encoding time and space on numerous different
scales (Gorchetchnikov & Grossberg, 2007). The model presented
in this paper can be included in the latter category since the spatial
code built in the hippocampus relies on spatial input from both EC
and DG.

In addition to their spatial correlates, both hippocampal place
cells andmPFC goal cells have recently been shown to display time-
related activity (Harvey, Coen, & Tank, 2012; Hok et al., 2007). For
instance, mPFC neurons and hippocampal neurons were found to
increase their firing just before the end of a two seconds wait-
ing period at a goal location (Burton, Hok, Save, & Poucet, 2009)
(see Section 2). Internally generated continually changing cell as-
semblies were found during the delay period of a memory task
(Pastalkova, Itskov, Amarasingham, & Buzsáki, 2008).We have also
different cells for different spatial inputs and sequences. However,
the model presented in this paper stays ‘‘focused’’ on the task. The
activity during a delay period reflects both the prediction of the
ending time of thewaiting period and the spatial location of the an-
imal. Recent results by McDonald, Lepage, Eden, and Eichenbaum
(2011) show that similarly to place cells, time cells fire during tem-
poral gaps between events. Moreover, they show that neurons in
the hippocampus respond to spatial and/or temporal events.

Here, we present a model in which such timed associations be-
tween sensory events as well as spatial correlates are learned in
the hippocampus.Multi-modal information is integrated in the en-
torhinal cortex to characterize these perceptive events. The model
can then predict reachable states in terms of space and time. We
suggest that the temporal activity recorded in hippocampal place
cells and prefrontal neurons reflects these predictions. We show
how the mPFC can use this information to control the strategies
involved in action selection.

We first present experimental evidence on the continuous place
navigation task (see Section 2). The detailed architecture and equa-
tions of the neural network are then presented (see Section 3)
before giving experimental results of an implementation on a
simulated robot navigating in an open environment (see Section 4).
Finally we discuss the results (see Section 5).

2. Experimental evidence on the continuous place navigation

task

Previously, we have demonstrated thatmPFC neurons recorded
as the rat performed the continuous place navigation task display
goal firing (Hok et al., 2005; Lenck-Santini, Muller, Save, & Poucet,
2002). This task consists of 3 phases that are repeated as long as
the experiment lasts:

1. The rat must reach an unmarked goal location in an open arena
with a single polarizing cue card (navigation).

2. At the goal location, the rat must stay immobile for 2 s (delay).
A food pellet is then delivered by a dispenser above the arena.
As it bounces when hitting the ground, the food pellet can end
anywhere in the arena.

3. The ratmust explore the arena to find the food pellet (foraging).

Interestingly, the continuous place navigation task combines
both spatial and temporal components. It also allows dissociation
of the spatial and temporal correlates of cell firing. The fact that the
animal is immobile during the waiting period can disambiguate
the behavioral origin of the changes observed in neural activity.
Furthermore, this task is also relevant from an action selection



10 J. Hirel et al. / Neural Networks 43 (2013) 8–21

perspective. Since the animal must be able (i) to navigate towards
an unmarked spatial goal location, (ii) to control its movement
for the duration of the delay while at the goal location, and
(iii) to explore its environment, the task taxes a variety of
behavioral strategies. More importantly, a simple sensorimotor
strategy is insufficient to solve the continuous place navigation
task. Planning is necessary.

In this task, many mPFC neurons fire when the rat is located
at specific, salient spatial locations such as the goal location. Since
mPFC neurons recorded from rats simply exploring the arena do
not display any spatial activity (Poucet, 1997), a plausible explana-
tion of the firing patterns observed in the continuous navigation
task is that mPFC neurons code places with a high motivational
salience.

The continuous place navigation task was also used to record
hippocampal place cell activity (Hok et al., 2007, 2007). Hippocam-
pal place fields were distributed over the entire arena and did not
over-represent the goal location. Interestingly,most place cells dis-
played excess firing activity at the goal location which, from a
purely spatial perspective, looked like a secondary place field (see
Fig. 2). Closer scrutiny of the characteristics of excess firing at the
goal, however, revealed that it peaked just before the end of the
2 s delay. Since the rat is immobile at that time, no motor com-
mands or changes in its location can account for such a transi-
tory firing peak. This firing pattern suggests instead that excess
firing at the goal is linked with reward expectation, and thus is
time-related rather than location-related. That rats estimate the
duration of the 2 s delay is supported by the observation that
when no foodwas given after a correct response (extinction trials),
they resumed their movement precisely at the end of 2 s period
of immobility even in the absence of the sound produced by the
food dispenser (Hok et al., 2007). This demonstrates their ability
to estimate the elapsed waiting time and thus to learn the timing
required for obtaining the reward. The temporal component of hip-
pocampal goal-related activity may therefore reflect the manifes-
tation of a prediction mechanism.

To determine if goal firing in the mPFC (Hok et al., 2005) also
includes a temporal component during the 2 s delay, mPFC activ-
ity was recorded as rats solved a variant of the task (Burton et al.,
2009). Rats were trained every day to locate the goal zone in two
conditions, a cue condition (the goal was directly signaled by a
salient cue put on the ground of the arena) and a no-cue condition
(i.e., in the standard place navigation task). In addition, the goal
zone changed every day, thus emphasizing the time component of
the task. Prefrontal neurons exhibited much less spatial selectivity
in this variant than in the original place task (Hok et al., 2005), an
effect likely due to the daily shift of the goal location. In contrast,
many cells were observed to fire in a strong temporal relationship
with the waiting period (see Fig. 2(c)). This firing pattern closely
resembled the firing pattern observed in hippocampal place cells,
with a peak of activity just before the end of the 2 s waiting pe-
riod. Interestingly, lesion of the ventral hippocampus, the source
of hippocampal connections to the mPFC, both abolished mPFC
time-related activity and altered behavioral performance of the
task (Burton et al., 2009). Although the rats were still able to local-
ize the goal zone, they displayed a tendency to leave it prematurely,
before the end of the 2 s, which prevented them from receiving the
reward. This behavioral alteration suggests a deficit in the tempo-
ral prediction system and supports a role of the prefrontal cortex
in controlling motor behaviors based on temporal predictions pro-
vided by hippocampus. In contrast, mPFC inactivation fails to alter
either the performance of the continuous place navigation task or
the goal-related firing of hippocampal place cells (Hok, Chah, Save,
& Poucet, in press). This finding suggests that, once the task is well
learned by the animal, normal function of mPFC is not required.

3. Neural network model

To account for the above-mentioned neural properties of mPFC
neurons and hippocampal place cells in the continuous place
navigation task,we propose a newneural networkmodel endowed
with the ability to perform spatial navigation (going to the goal)
and temporal coding (waiting at the goal for 2 s). Although in our
model these two abilities depend on the hippocampus, we also
model the interactions between the hippocampus and mPFC in
order to produce hippocampal secondary place fields and medial
prefrontal goal firing.

The new model proposed here is based on two distinct previ-
ously published models that are summarized in Sections 3.1 (for
spatial navigation and the cognitive map) and 3.2 (for temporal
prediction). In the following we first shortly present these com-
ponents, before explaining the new global model in Section 3.3.

3.1. Spatial navigation model

Terminology. In the following, we use the term state whenever
a neuron or a set of neurons is activated, whatever the reason
(place, timing, etc.). When dealing with spatial information, the
state of a neuron may code for a place (‘‘Place cell’’). Concerning
temporal information, a state is corresponding to either the current
information about the environment (sensory state in EC), or the
prediction of this information. In both cases, we build transitions
between states which are coded on one neuron (‘‘Transition cell’’,
see below).

In all our models, neurons are modeled as analog units. How-
ever this single neuron activity is representative of what is
assumed to be a population code in-vivo (see Section 5 for a dis-
cussion). According to Gaussier, Revel, Banquet, and Babeau (2002)
(see also Fig. 3), sensory states are built in the entorhinal cortex us-
ing multi-modal input from the perirhinal and postrhinal cortices.
This information is then transmitted to CA3 both by a direct path-
way and through DG. In this case DG acts as a memory of previous
states of EC allowing CA3 to associate the current state in EC with
its previous state. In amore realisticmodel, DG granule cells should
also perform some pattern separation and completion from sparse
data in EC. For the sake of simplicity, this property is not present in
this model (Banquet, Gaussier, Quoy, Revel, & Burnod, 2005). The
architecture is consequently able to associate a neuron in CA3with
the transition between states (Banquet et al., 1997), thus creating
a transition cell. After learning, it can reuse this information to pre-
dict in CA3 the available transitions from its current sensory state
in EC. Once transmitted to CA1, one of these transitions is selected
through a Winner-Take-All (WTA) mechanism. The need for the
hippocampus to encode transitions between states rather than just
states arises from the inability for a state-action coupling system to
choose between two actions for the same state without using of an
external supervisingmechanism. The concept of transition cell will
be further discussed in Section 5.

Therefore, in the architecture used in mobile robot navigation
(Gaussier et al., 2002, see Fig. 3) EC sensory states are triggered by
visual input and result in purely spatial coding by EC place cells.
DG is a simple memory of the last place. The place field is easily
identified by a WTA competition among place cells firing depend-
ing on the position of the agent. DG thus serves the sole purpose of
memorizing the last winning place cell, allowing CA3 to associate
it with the newwinner of the competition. The system learns tran-
sitions from one place to another (e.g. place A to B) but contains
no other temporal information than ‘‘place A came before place B’’.
Place fields are present in the hippocampus and entorhinal cortex:
large, stable place fields in EC (i.e. the place cells in our model) and
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Fig. 2. Secondary field activity at the goal location for hippocampal CA1 place cells (fromHok et al., 2007). (a) Spatial activity of several recorded place cells. The circle marks
the goal location. (b) Cumulative PETHs for all recorded place cells at the goal. (c) Raster plot and PETH for a mPFC neuron (from Burton et al., 2009).

narrow, context-dependent place field in areas CA3 and CA1 (i.e.
transition cells).

The size of the place field is also dependent on howmany place
cells are coding for the environment. Recognition of a learned place
is performed by comparing the new sensory information (only
vision in this case) with the stored one. If this difference is above
a given threshold, called the vigilance threshold, then a new place
cell in EC is recruited for coding this new environment.

In our recent work (Cuperlier, Quoy, & Gaussier, 2007; Gaussier
et al., 2002), the transitions learned in the hippocampus are also
used by the prefrontal cortex (or parietal cortex, see Section 5 for
a discussion) to build a cognitive map (see Fig. 3). In this map,

consecutive transitions are linked together creating a graph where
the nodes are the transitions, and the links the fact that one transi-
tion was activated after another. An association is also learned be-
tween a drive (the need to satisfy a goal, for instance going to a food
location) and transitions immediately leading to the satisfaction of
the goal. As this drive grows, the activity is propagated through
the map, allowing the agent to plan the optimal path in terms of
transitions to reach the goal in a way similar to gradient ascent. In
that model, goals are coded and processed at the level of themPFC.
Information about the available transitions is passed on from the
hippocampus to the nucleus accumbens (ACC) which performs ac-
tion selection. In addition to this information, afferent connections
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Fig. 3. Sketch of the transition learning and cognitive map architecture used in navigation in the model by Cuperlier et al. (2007). The current place is coded in EC. A WTA
competition ensures that only one neuron in EC is active. The previous place is coded in DG. A neuron in CA3 codes for the co-activation of a current place in EC and a previous
place in DG. This neuron is called a ‘‘transition cell’’. CA1 codes all possible transitions from the current place. All transitions are also coded on a cognitive map in mPFC. This
map links the successive transitions (‘‘AB’’ is linked with ‘‘BC’’ for instance). Activating a goal through a drive neuron (going to a food source for instance) activates the graph
of transitions in themap. This activity biases the predicted transitions in ACC. This enables to perform the transition leading to the current goal. Abbreviations are as in Fig. 1.
The arrowheads indicate the transmission of neuron states.

Fig. 4. Spectral timing model. Multi-modal signals (e.g. vision, sound, odometry, etc.) are integrated in EC. A WTA competition ensures that the activity of the most active
neuron is transmitted to DG. Contrary to the previous model where transitions were learned in CA3 (see Section 3.1), here CA3 learns to predict the next EC state depending
on the timing elapsed. Transitions between EC states are learned in CA1 where the memory of the current EC state comes from EC (perforant path) and the predicted EC
state comes from CA3. A Winner-Take-All mechanism in ACC enables to select the most active transition and the corresponding motor action. The state of CA1 neurons and
learning on the links coming from CA3 are given in Eqs. (5) and (6) respectively. The state of CA3 neurons and learning on the links coming fromDG are given in Eqs. (7)–(10).

from the prefrontal cortex are used to bias the activity of the tran-
sitions and to select the optimal action to reach a goal through a
WTA competition (Cuperlier et al., 2007; Gaussier et al., 2002).

3.2. Sequence and time learning model

Another hippocampal model was used in sequence learning
(Banquet et al., 1997; Gaussier, Moga, Quoy, & Banquet, 1998). The
memory in DG is more elaborated and acts as a timer. It is com-
posed of sets of granule cells with various response times. Each
of these cells responds with a Gaussian-like activity curve, with
means regularly spaced along the temporal axis. This model is in-
spired by the spectral timing model (Grossberg & Merrill, 1992;
Grossberg & Schmajuk, 1989). A set of these cells in DG codes for
one sensory state in EC and the summation of pattern of activity of
the cell population gives an estimate of the time elapsed since the
sensory state in EC was entered. Each new sensory state in EC acti-
vates its corresponding set and inhibits the previously active set, so
only one set can be active at any time (see Fig. 4). In order to avoid
the dynamical simulation of granule and mossy cells interaction,
the equation for the activities of the neurons in one particular set
can be formally summarized as follows:

xDGi (t) = fi · exp� (t � tai � mi)
2

vi
(1)

where xDGi is the activity of neuron i of DG, fi the amplitude of
the Gaussian for neuron i, tai the last activation time for the set to
which neuron i belongs, mi the mean of the Gaussian and vi the
variance of the Gaussian.

The Gaussian function parameters are given for each neuron in
a set in the following way:

mi = (�i � I + 1)
i

nC�1 + I � 1 (2)

fi = 1
i

for 0 < i  nC (3)

vi = (mi · �i · V )2 (4)

where �i is the length of time covered by the activity of a set, I
represents the activation time of the first granule cell responding
to the activation of its set, nC is the number of granule cells in each
set and V a parameter controlling the variance of the Gaussians.

Eq. (2) ensures thatmore cells code for the beginning of the time
interval than for the end (see Fig. 5). Granule cells are ordered ac-
cording to index i. When i is small, the amplitude of the response
fi is high (Eq. (3)), and the corresponding �i is small. As i increases,
so does �i. Hence the variance of the Gaussian vi also increases
(Eq. (4)). Therefore, cells respond with decreasing amplitude fi and
increasing variance for longer time intervals. These two proper-
ties allow broader, less precise predictions for longer timings and
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Fig. 5. Top: Activity of DGneurons that provide a temporal trace of the time elapsed
since the set of granule cells corresponding to a sensory state in EC was triggered.
There are more Gaussian peaks at the beginning of the interval. Bottom: Activity
of CA3 pyramidal neurons that predict 3 different timings for expected EC sensory
states. Dashed lines represent the actual timing of the arrival of new EC state that
was learned. For each prediction a neuron is activated and reaches its maximum
potential just before the expected time of EC state onset. Shorter predictions are
more accurate according toWeber’s Law. Note that CA3 neurons are nowpredicting
an EC sensory state, and not a transition as in the spatial model (see Section 3.1).
Parameters are the following: �i = 10 s, I = 0.1 s, nC = 10, V = 0.06.

sharp, accurate prediction for short timings (see Fig. 5). The time
span covered by a set is in seconds or tens of seconds, which is
coherent with biological properties of such timing systems in the
brain.

By learning the association between the time trace of a previous
event in DG and the newly entered EC sensory state, we obtain in
CA3 cells that predict the next EC state and also convey temporal
information about the timing of the next expected EC state (Andry,
Gaussier, Moga, Banquet, & Nadel, 2001; Andry, Gaussier, & Nadel,
2005; Gaussier et al., 1998) (see also Eq. (8) below). Therefore, CA3
neurons do not code transitions as in the previous model (see Sec-
tion 3.1). An interesting property is that the predictions can repro-
duce biological observations and follow Weber’s law: the longer
the expected time the less accurate the estimation of the timing
(see Fig. 5). After learning, when a new sensory state is present in
EC, the activity in DG is set to this sensory state. The time trace in
DG starts activating CA3 previously learned predictions originat-
ing from this EC sensory state. For instance, if event A occurs (rep-
resented as sensory state A in EC) then previously learned events
C and B will be activated. Moreover, if event C occurs faster than
event B then peak activity in CA3 for C will arrive sooner than peak
activity for B (see Fig. 5). It is noteworthy that this pattern is simi-
lar to the recordings of time estimation activity in the hippocampus
by Hok et al. (2007) andMcDonald et al. (2011). The activity is bell-
shaped and reaches its peak slightly before the learned timing. This
peak gives a precession signal predicting the instant of the transi-
tion. This architecture is especially important in sequence learn-
ing where a sequence of movements can be learned and repeated
with a precise timing to reproduce a trajectory (Andry, Blanchard,
& Gaussier, 2011).

3.3. A new global model of spatial and temporal learning

The continuous place navigation task cannot be solved by any
of the previous models alone. Therefore, we now present a new
global model unifying spatial and temporal learning and involving
the hippocampus and mPFC.

In the spatial learning model (see Section 3.1), transitions were
learned in CA3, and the predicted transitions were located in CA1
whereas in the timing and sequence learning model (Section 3.2),
the predicted EC state (and not transition) was learned in CA3. In
order to merge the two models, we have chosen the latter option.

Thus, in the globalmodel, learning and prediction of transitions be-
tween EC states are separated in two steps (see Fig. 6). A first layer
of pyramidal cells in CA3 learns to predict the next EC states. For
instance, the neuron in CA3 corresponding to state G is activated
by any state in EC that occurs before G. The topology between EC
and CA3 allows the model to learn predictions for multiple states
in parallel, which is why secondary associations can be learned at
the goal for the CA3 pyramidal neurons (see below). Contrary to
the spatial navigation model (see Section 3.1) EC state prediction
neurons in CA3 do not convey any information about the previous
EC state. For instance, there is no difference between transitions AG
and BG leading to state G. Therefore, if a neuron in CA3 is predict-
ing the state G and the current state is A, we need to know that the
predicted transition is AG so that an action can be directly associ-
atedwith it. This is the function assigned to CA1 pyramidal neurons
that receive EC state prediction from CA3 and information about
the last state entered from EC. The model then reconstructs transi-
tion activity and transmits it to the cognitive map in mPFC, so that
mPFC can use this information to plan future actions. Each time the
EC state changes, a transition between EC states is performed and
learning is triggered in CA1 pyramidal neurons. A recruitment pro-
cess takes place in CA1, where a new neuron is recruited to code
for the new transition between EC states if the maximal activity of
the group of neurons is below a given threshold. This allows the
system to recognize if a transition between EC states has been pre-
viously learned or not. Synaptic weights are modified only for the
most activated neuron. The equations for the computation of the
neuronal activity and learning are the following:

xCA1i (t) = f

 
X

j

W CA3–CA1
ij · xCA3j + W EC–CA1

ij · xECj � ✓

!

with f (x) =
(0 if x < 0
x if 0  x  1
1 if x > 1

(5)

dW CA1
ij

dt
= f (✏(t) · (↵ · xCA1j (t) � � · W CA3–CA1

ij (t))) (6)

where x⇤
i is the activity of neuron i of structure ⇤,WX�Y

ij is the
weight from structure X to structure Y , ✓ is the activity threshold
used to inhibit neurons of CA1 that are not co-activated by CA3
and EC inputs, ✏(t) is a neuro-modulation factor equal to 1 when a
transition occurs and 0 otherwise,↵ the learning rate and � a decay
factor. Parameter values are: ✓ = 1, ↵ = 0.2, � = 0.01.

Fig. 6 represents the hippocampal network for the learning of
timed transitions. Using this system, we allowed neurons in CA3
to encode precise spatio-temporal information rather than purely
spatial or temporal information. To accommodate the learning of
various signals, a learning equation for CA3 neurons, based on a
Normalized LeastMean Square (NLMS) algorithm (Nagumo, 1967),
was developed:

xCA3i (t) = f

 
X

j

WDG–CA3
ij · xDGj (t � 1) � ✓

!

(7)

dWDG–CA3
ij

dt
= ↵ · ⌘i(t) · (xECi (t) � xCA3i (t))

P
xDGk (t)2 + �1

· xDGj (t) (8)

⌘i(t) = |xECi (t) � mi(t)| + �2 (9)

mi(t) = � · mi(t � dt) + (1 � � ) · xECi (t) (10)

where ↵ is the learning rate, ⌘i a learning modulation, xECi is the
unconditional signal for the LMS. �1 is a small value used to avoid
thedivergence of the synapticweights for very lowmemory values.
mi is a sliding mean of xECi , �2 is a low value setting a minimal
learning rate and � a parameter controlling the balance between



14 J. Hirel et al. / Neural Networks 43 (2013) 8–21

Fig. 6. Model of associative learning in the hippocampus explaining the secondary place fields. The arrowheads indicate the transmission of neuron states. EC state prediction
neurons in CA3 learn to predict future EC sensory states based on the DG memory, which provides the time elapsed since the beginning of the current EC state. Secondary
predictions are learned when a new EC state (sound) occurs simultaneously with reaching the goal, by means of a feedback signal from the mPFC (drive satisfaction) to the
EC. Each CA3 pyramidal cell corresponds to one predicted EC state. However, goal-related reward leads to a wide activation of EC states. During this phase, a CA3 neuron
learns to code specifically for this prediction (i.e. predicts the hearing of the sound corresponding to the release of the food pellet when at the goal location). Moreover the
width of the activation profile allows other CA3 cells to learn secondary associations since their EC states are also active. All EC prediction cells in CA3 consequently learn to
predict the hearing of the soundwhen the animal is at the goal, as a secondary prediction. This prediction shows as a secondary field when their activity is spatially recorded.
All hippocampal neurons thus code for two different features: the genuine place-related prediction (primary place field) and the prediction of the sound signal produced by
the activation of the food dispenser at the end of the 2 s period spent by the animal at the goal location (goal-related firing).

past and current activities in the computation of the sliding mean.
Parameter values are the following: ↵ = 0.5, �1 = 0.01, �2 =
0.001, � = 0.5, ✓ = 0.05.

These equations make the system more sensitive to quick
changes in the input signals, allowing transient signals to be
quickly learned but slowly forgotten. This property is related to
the role of the hippocampus in novelty detection. It is known that
the hippocampus is involved in the memory of contextual or place
novelty, but not in thememory for objects (Mumby, Gaskin, Glenn,
Schramek, & Lehmann, 2002). These findings have led researchers
to developmodels of hippocampal encoding and retrieval based on
novelty detection (Meeter, Talamini, & Murre, 2004). Such mod-
els rely on the role of acetylcholine, which modulates learning in
hippocampal neurons and prevents interference between previ-
ously learned memories and new memories (Hasselmo & Schnell,
1994). However the long time course of acetylcholine modulation
(Hasselmo & Fehlau, 2001) has led some researchers to rely on the
phase of the theta rhythm for encoding and retrieval for short pe-
riods of time (Hasselmo, Bodelón, & Wyble, 2002). Our learning
equation thus represents the ability of the hippocampus-septum
system to quickly encode new information by acting as a novelty
detector.

This new global model (see Fig. 6) is able to account for the out-
of-field activity in the hippocampus. When EC neurons coding for
the goal place (‘‘place G’’) and the sound are activated, then the
global state in EC is ‘‘Place G + sound’’. This EC state occurs simul-
taneously with the goal-related reward because the sound (pro-
duced by the activation of the automated food dispenser) signals
the availability of the reward and happens solely at the goal lo-
cation. When the goal is satisfied through a reward (finding food,
or hearing the sound of the automated pellet dispenser), then the
drive disappears. This change of the drive from ‘‘on’’ to ‘‘off’’ is
transmitted through the projections from the mPFC to EC, indif-
ferently targeting the neurons coding for EC states (see Fig. 6). The
reason for this non-topological feedback projection is the diversity
of the coding between the mPFC and EC. If we accept the hypoth-
esis that the mPFC codes for a motivational context related to the

current task, the association between this context and EC states
needs to be learned. When the goal of the motivational context is
reached, mPFC–EC connections could learn to associate the con-
text with the active EC states. Later the context could then selec-
tively activate relevant EC states. The widespread activation of EC
stateswould thus be a side effect of this learning process.Modeling
the coding of motivational contexts and their associations with EC
states is still ongoing work.

Activation of the EC states also leads to learning in CA3 neurons
of the association between EC state place G coming fromDG and EC
state ‘‘place G + sound’’ coming from EC. Therefore, transition cells
have learned a primary association (the association with the state
they are normally linked with in CA3) and a secondary one (the as-
sociation with the goal-related reward). The process for the learn-
ing of the secondary associations is shown in Fig. 6. All neurons
in CA3 now also have the ability to predict the occurrence of the
goal-related rewardwhen entering the goal place. This accounts for
both the out-of-field activity at the goal place for all cells recorded
in the hippocampus and the fact that this activity persists after in-
activations of the mPFC (Hok et al., in press). The latter is indeed
necessary to learn the associations of a place with the goal-related
reward but, once this is done, goal-predicting activation occurs at
the level of the hippocampus.

Even though secondary learning of transition cells in CA3 and
CA1 can account for the secondary fields recorded in CA1, another
plausible explanation for the spreading of the predictive activity at
the goal location could be the effect of CA3 recurrent connections.
This would not remove the need for some feedback signal from the
mPFC to the hippocampus during the learning phase, required to
explain why this activity only occurs at the goal location. However
this signal could be transmitted to CA3 to mark an important tran-
sition leading to a rewarding state, and trigger synaptic learning in
the recurrent connections so that the transition cell would project
widely to other transitions cells. Upon arrival at the goal location,
the transition cell would then predict the arrival of a rewarding
sensory event and spread that activity to other transition cells, thus
creating a secondary firing field for those neurons.
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(a) EC (before competition).

(b) EC (after competition).

(c) CA3.

(d) CA1.

Fig. 7. Spatial activity of various neurons during the experiment. Scale is normalized between 0 and 1. The circle indicates the location where the goal was learned (as a
visual place). All CA3 and CA1 prediction cells display amain firing field for some location in the environment and a secondary firing field at the goal (see Fig. 2 for comparison
with in-vivo recordings from a rat).

4. Experiments

We have implemented the global model (Section 3.3) in the
rate-coded neural simulator Promethe (Lagarde, Andry, Gaussier, &
Giovannangeli, 2008). Experimentswere first conducted in a simu-
lated open environment with 20 perfectly identifiable visual land-
marks (and next confirmed by real robot experiments (see Fig. 10)).
During the initial phase of the experiment, a simulated mobile
robot was allowed to explore the environment. During this explo-
ration, place cells were autonomously learned based on a mini-
mumactivity threshold, using information about visual landmarks.
Information about the azimuth and identity of the landmarks is
merged in a model of the perirhinal and postrhinal cortices to cre-
ate the pattern used to encode a place cell (Banquet et al., 2005;
Cuperlier et al., 2007). Transitions between these places were also
learned by the hippocampal system using the system presented in
this paper (see Fig. 7). Finally the transitions were linked together
by the cognitive map to create a representation of the possible
paths in the environment. The robot was given enough exploration
time to form a comprehensive representation of its environment,
mapping available paths and learning the actions to perform to

move from one place to the other. An unmarked goal location was
located in the bottom-left corner of the environment. In addition,
an automatic systemproduced the sound signaling goal-related re-
ward when the robot stayed in the goal zone for two seconds. Dur-
ing the exploration phase, the robot moved too fast to stay long
enough on the goal zone to produce the sound, and consequently
the robot had no knowledge of the goal in the environment. During
the second part of the experiment, the robot was made to stop at
the goal location by a direct supervision by the experimenter. After
two seconds a sound was simulated, signaling the goal-related re-
ward of the robot. The robot consequently learned to associate the
prediction ‘‘goal ! sound’’ with the action of not moving. With
the goal-related reward, the feedback from themPFC to EC allowed
secondary associations for CA3 pyramidal cells, leading to the sec-
ondary fields at the goal location. The activity of neurons located
in various parts of the architecture was recorded throughout the
whole experiment (see Fig. 7).

Spatial correlates of neuronal activity in EC before and after the
WTA competition are represented in Fig. 7. Before WTA compe-
tition, EC place cells display broad and noisy place fields. The ac-
tivity resulting from the WTA competition corresponds to much
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Fig. 8. Spatial correlates of activity of an entorhinal neuron coding for the sound
modality. The neuron firing pattern resembles that of a place cell even though it is
triggered only by the sound.

narrower place cells. The width of the place fields is highly depen-
dent on the number of place cells coding a particular environment,
which is regulated by a vigilance threshold (see Section 3.1). Fig. 8
shows the spatial correlates of an EC neuron coding for the sound.
Since the sound is always produced at the goal location, the neu-
ron firing pattern resembles that of a place cell even though it is
triggered only by the sound.

After competition, CA3 pyramidal cells display larger fields than
EC cells because the former are state prediction cells, which pre-
dict the arrival in a place from neighboring places. Spatial activ-
ity clearly shows a secondary activity at the goal location even for
cells with a main firing field away from the goal. This is due to
the prediction of the perception of the sound while waiting at the
goal location, learned by secondary association. In contrast, CA1
cells show a lower activity secondary field. Using information from
CA3 state predicting cells and EC place cells, CA1 cells can iden-
tify which transition is being predicted. They mostly code for one
transition from a place to another, so their place field is a subset
of a CA3 field. CA3 prediction activity alone can excite CA1 cells
to a lesser extent, which is why they retain the secondary activity
(see Fig. 9). However this secondary activity is not propagated to
the cognitive map, because it is below-threshold. A virtual lesion
of the mPFC cuts the feedback link to EC. Hence in this case there
is no secondary activity.

Fig. 9 shows the temporal pattern of activity of CA3 cells while
at the goal. The bell-shape activity is a result of the spectral tim-
ing model and a peak of activity predicting the expected percep-
tion of the sound marks the prediction. The shape of the activity is
similar to the activity recorded in hippocampal neurons in the rat
during the same experiment. The prediction is higher for one par-
ticular neuron that codes explicitly for the prediction of the sound.
In a real biological system, a population of neuronswould certainly
code this prediction. Other pyramidal cells emit the same predic-
tion activity but with a lower rate of firing, due to the fact that this
is a secondary association. These cells primarily code for other tran-
sitions in the environment.

Finally, we performed extinction trials when the expected re-
ward was not given after the waiting period. Weights are decreas-
ing and secondary activity hits noise level (Hirel, Gaussier, & Quoy,
2011).

The experiment is also currently tested on a real robot (robulab
10 by Robosoft, 2012) in an indoor office environment. Preliminary
results show that we obtain the same neuronal activities as in the
simulated environment (Hirel, 2011). In that experiment, without
direct supervision, the robot will not wait long enough in the goal
location to learn the task. Therefore, the experimenter makes the
robot stop by staying in front of it. The obstacle avoidance system
will prevent the robot from moving further and thus provides a
basic interaction mechanism to teach the task. The robotic setup
being used is shown in Fig. 10.

5. Discussion

Model significance. Originally, the aim of the model was three-
fold:

1. To design a coherent architecture that combines the processing
specificities of the different hippocampal fields. Here the one-
way connectivity of the hippocampo-entorhinal loop (Gaussier
et al., 2007) is devoted not just to spatial processing, but also to
sequential temporal processing.

2. To insert this hippocampo-entorhinal loop into a hippocampo-
cortical system that stores in the long term this spatio-
temporal information in the form of a cognitive map usable for
navigation.

3. To render the functioning of the whole system coherent and in-
tegrated, in order to serve as a control system for robotic arti-
facts evolving in real indoor or outdoor environments.

The hippocampal-entorhinal loop has been shown to integrate
both allothetic (visual) and idiothetic (path integration, proprio-
ception) information in a way that is capable to account for the
generation of both grid cells and place cells (Gaussier et al., 2007).
The concept of transition cells (Banquet et al., 1997; Gaussier et al.,
2002) was found to be necessary for appropriate integration of al-
lothetic and idiothetic information. More importantly, it lends it-
self to a straightforward implementation of the cortical cognitive
map in relation to the motor actions required when decisions are
to be taken at choice points. In the time domain, transition learning
in the tri-synaptic hippocampal loop also allows to predict future
events and to learn sequences of events.

Convergence between the global model and experimental observa-
tion. The globalmodel presented here is grounded on recent exper-
imental data (Burton et al., 2009; Hok et al., 2007, 2007, 2005) for
which it provides mechanistic interpretation. These data are im-
portant for the general conception of the model because they con-
firm previous assumptions that contributed to its elaboration:

• One such assumption concerns the dual function of hippocam-
pal principal cells which is not only spatial but also temporal as
it has been suggested by several authors, among others (Ban-
quet et al., 2005; Fortin, Agster, & Eichenbaum, 2002; Gilbert,
Kesner, & Lee, 2001; McDonald et al., 2011). It is confirmed by
recent results from Hok et al. (2007).

• A related assumption concerns the respective roles of hip-
pocampus and mPFC during temporal assessment, which ap-
parently are not symmetrical. The origin of the evidenced
timing information is in question. It could be prefrontal, hip-
pocampal or elsewhere in the brain. In the modeled hippocam-
pal system and in particular in DG, granule cells–mossy cells
loop where supposed to be the locus of time dependent activi-
ties. This choice is reinforced by the experimental results which
show that the inactivation of mPFC has no effect on the tempo-
ral profile of the secondary field activity (Hok et al., in press).
Conversely, hippocampal inactivation suppressed the temporal
profile of the mPFC activity (Burton et al., 2009).

• The long-term cortical storage of the cognitive map including
several spatial goals was an essential feature of the original
model (Banquet et al., 2005; Gaussier et al., 2002). The experi-
mental results confirm this specific role of themPFC in rats dur-
ing goal-oriented navigation which is to link together spatial
information and valence information related to a stimulus (pos-
itive or negative reward). With regard to the neural substrate
of the cognitive map it is plausible that the whole map could be
stored in the posterior parietal cortex and only the elements rel-
evant for the task at hand, such as the current goal of the animal,
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(a) CA3. (b) mPFC (drive).

(c) EC before competition. (d) EC after competition.

(e) CA1.

Fig. 9. Activity of individual cells near the goal location in different regions. (a) Activity of individual CA3 pyramidal cells near the goal location. There is a primary wave of
activity that predicts the upcoming occurrence of the sound, andwhich depends on the time spent at the goal. The peak of activity precedes the expected timing of the sound.
Secondary sound predictions, given by most cells because of the secondary associations, show the same pattern of activity with a lower firing rate. Other transitions are also
predicted (corresponding to transitions from the goal place to neighboring places). (b) Activity of the reward satisfaction signal in mPFC. (c) Activity of EC neurons before
competition with primary response (top line), secondary response (other lines) and noise activity of neurons not coding anything in the task (activity below 0.2). There is a
sound prediction activity at the end of the 2 s period. (d) Activity of EC neurons after competition. There is only one winner because the robot is not moving. There is a sound
prediction at the end of the 2 s period. (e) Activity of CA1 neurons giving the possible transitions and the sound prediction. Without the secondary sound predictions (they
are below threshold), these activities are the same for mPFC neurons of the cognitive map.

could be activated in the mPFC (Whitlock, Sutherland, Witter,
Moser, & Moser, 2008).

• Finally, these results emphasize the role of the hippocampal-
prefrontal connections, which provide for both a bottom-up
transfer of spatio-temporal information from hippocampus to
mPFC, and a top-down semi-direct transfer of motivational or
reward-related information from mPFC to the hippocampus.
This top-down transfer is expressed under the form of sec-
ondary fields in hippocampal place cell activity.

Significance of the results for hippocampal and mPFC functions.

• Transient function of mPFC and hippocampus during learning.
During conditioning paradigms such as trace eye blink condi-
tioning and complex conditioning, forebrain structures, in par-
ticular hippocampus and mPFC, are necessary only during a
transient period before the full acquisition of the conditioning
response (Berger & Thompson, 1978; Oswald, Maddox, Tisdale,
& Powell, 2010). This fact could explain why inactivation of the

mPFC after overtraining does not suppress the secondary field
activity of hippocampal place cells.

• Secondary fields and their temporal aspect. In addition to their
main place fields, hippocampal place cells display a secondary
peak of activity at the goal location. This new finding suggests
that the spatial function of hippocampal place cells is only one
aspect of their attributes. Of course, because this secondary ac-
tivity takes place when the animal is in the goal zone, it may
have a spatial meaning. However, that this activity concerns
most of the place cells that map the experimental arena atten-
uates the specificity of the conveyed spatial information. The
temporal aspect of this activity is important, as it may predict
the end of the 2 s period by its ramping profile. As such it is rem-
iniscent of similar activities recorded in CA3 cells during trace
eye blink conditioning (Berger & Thompson, 1978; Solomon,
1980). Nevertheless, this secondary, goal-related place cell ac-
tivity could also be interpreted as a learning signal indicating
that the goal has been reached. Making this information avail-
able to the hippocampus is useful since in our model the global
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Fig. 10. Robotic setup used for the learning and reproduction of the continuous place navigation task. Walls are wooden panels. The white square is the goal location. It is
not used by the robot, but serves as a trigger for the sound after 2 s. It also enables the experimenter to see if the robot is staying at the goal location or not. Boxes are not
landmark cues. They are obstacles that may be moved around.

cognitive map (where the goals could be represented) is as-
sumed to be located only in the cortex.

Temporal profiles of mPFC neurons supposed to encode for
transitions follow the temporal profile of CA1 neurons. There-
fore an anticipatory activity is reported in the mPFC and in the
hippocampus (Burton et al., 2009). The same authors also find
in themPFC an activity corresponding to the reward satisfaction
signal arriving when the sound is perceived.

• Main place fields in different hippocampal structures. With regard
to spatial information coding, our model posits the existence of
large, stable place fields in the entorhinal cortex (i.e. the place
cells in our model) and narrow, context-dependent place field
in areas CA3 and CA1 (i.e. transition cells) (see Fig. 7 which
shows EC place fields before and after competition, and Ban-
quet et al., 2005). Although we cannot compare these results
to those reported in Hok et al. (2007, 2007, 2005) who did not
record EC cells, lesion studies indicate that the medial EC is in-
volved in the detection of spatial novelty whereas the lateral
EC is involved in the detection of both spatial and non spatial
(object) novelty only when the environment is complex (Hun-
saker, Mooy, Swift, & Kesner, 2007; Parron & Save, 2004; van
Cauter et al., 2013). Furthermore, activation of lateral EC fol-
lowing new visual cues is also reported in c-fos studies (Jenk-
ins, Amin, Pearce, Brown, & Aggleton, 2004; Van Elzakker, Fe-
vurly, Breindel, & Spencer, 2008; Vann, Brown, Erichsen, & Ag-
gleton, 2000) as well as neurophysiological recordings (Desh-
mukh, Johnson, & Knierim, 2012; Deshmukh & Knierim, 2011).
These properties of the lateral and medial entorhinal cortices
were modeled by Gorchetchnikov and Grossberg (2007) (see
below paragraph on related models).

• Transition cells. The concept of transition cells emphasizes the
spatio-temporal aspects of hippocampal processing and has
received some experimental support. For instance, recent re-
sults suggest that the hippocampus does not only encode places
but also accessible paths in the environment (Alvernhe, Cauter,
Save, & Poucet, 2008). In this study, opening a shorter path in
a well-explored maze strongly affects place cell activity in the
vicinity of the novel shortcut. Transparent walls were used to
dismiss the hypothesis that place cells were affected by visual
changes in the environment caused by the new shortcuts. Ori-
ented place fields may also be interpreted in terms of tran-
sition cells in constraint environments (Markus et al., 1995;
Muller, Bostock, Taube, & Kubie, 1994) or when going to a goal
(Samsonovich & McNaughton, 1997). Wiener, Berthoz, and Zu-
garo (2002) suggest that ordered activation of neurons having

adjacent or overlapping place fields may be achieved by syn-
chronization with theta rhythm. The overlapping field between
successively activated place cells could be the basis of transition
cells. As stated byMarkus et al. (1995) ‘‘it seems that place fields
are more directional when the animal is planning or following
a route between points of special significance’’. Transition cells
are also akin to the reported retrospective and prospective cells
that seem to code either previous or future trajectories to be
taken. On a short time-scale, hippocampal place responses have
been shown to be modulated by the immediately previous or
imminent trajectory of the rat in a maze (Ainge, Tamosiunaite,
Woergoetter, &Dudchenko, 2007; Ferbinteanu&Shapiro, 2003;
Johnson & Redish, 2007;Wood et al., 2000). Prospective activity
can also be demonstrated as the rat is forced to wait between
trials (Ainge et al., 2007), but only if the task requires the rat to
make amemory-based choice (Gupta, Keller, &Hasselmo, 2012;
Pastalkova et al., 2008). This so-called delayed activity could
provide a potential key to the mechanisms that bridge tempo-
ral gaps on a time scale of seconds and minutes. It is tempting
to consider this as a temporary memory buffer of the behavior
to be executed, or even a possible locus for the decision mech-
anisms. The report of prospective activity at choice points (van
der Meer & Redish, 2010) may also be a signature of possible
transitions from the current location. In our model, these pos-
sible transitions are located in CA1. The mPFC is biasing these
transitions in the ventral striatum in order to allow for only one
choice (Banquet, Gaussier, Quoy, Revel, & Burnod, 2004; Poucet
et al., 2004). Transitions also enable a straightforward imple-
mentation of the Q-learning algorithm as developed in Hirel,
Gaussier, Quoy, and Banquet (2010).

Finally, it is important to note that, in our view, transitions
could be conceived as a sliding window of activation in a whole
cell population rather than being encoded by individual cells
(Harvey et al., 2012; McDonald et al., 2011).

The activity of our CA3 prediction cells, aswell as CA1 transi-
tion cells (see Fig. 9), may be related to ‘‘time cells’’ as reported
by McDonald et al. (2011). These cells correspond to particular
key moments in a task and they can ‘‘retime’’ when a key tem-
poral parameter is altered just as our cells if the delay period
is modified. These time cells may also disambiguate overlap-
ping sequences. However our model only codes transitions and
not sequences. Closing the loop between the Subiculum and EC
would be a step towards learning ‘‘transitions of transitions’’,
thus the beginning of a sequence.
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Fig. 9 also shows that several cells respond in parallel near
the goal location. Only one iswinning because it has learned the
timing of the expected event. All these cells could be viewed
as ‘‘goal cells’’ (Okatan, 2010; Viard, Doeller, Hartley, Bird, &
Burgess, 2011).

Predictions. The global model entails that timing is achieved in
DG granule cells. Therefore, lesions of DG should be detrimental to
timing activity unless other structures shown to be important for
timing (such as the striatum or the cerebellum Drew et al., 2007;
Thier, Dicke, Haas, & Barash, 2000) overcome this deficit through a
circuit not based on the hippocampal tri-synaptic loop. In contrast,
DG lesions should not impair the learning of transitions in CA1
because they rely on the current state in CA3 and the previous state
in EC. Furthermore, without DG and CA3, the perforant path from
EC to CA1 could create place cells in CA1 (copy of the EC state).
Therefore, CA1 neurons should bemore resilient to changes in new
paths or a remapping of the environment as observed in Alvernhe
et al. (2008). However, learning transitions in CA1 would need
to have more than one winner in EC because the direct pathway
from EC to CA1 carries information about previous EC states, and
without CA3, there is no prediction of a next EC state. Therefore,
navigation tasks should be impaired as reported in Brun et al.
(2002).

Our model addresses the functioning of the hippocampo-
prefrontal loop in the steady-state when the task is well learned
and perfectly performed by the agent. It is therefore likely that
manipulations that would make the task less automatic, such as
changing the location of the goal zone from one session to the next,
should still require the integrity of the mPFC–hippocampal loop.
More specifically, we predict that inactivation of the mPFC should
prevent the development of the secondary fields in hippocampal
cells, contrary to when the task is performed automatically during
overtraining. Our model also predicts that the secondary temporal
activity observed for hippocampal place cells should be stronger
in CA3 pyramidal cells than in CA1 because of the spatial context
coming directly from EC to CA1. Hippocampal prediction cells also
have the property of having broader and less precise fields in CA3
than in CA1 (see Fig. 7).

Related models. Samsonovich and Ascoli (2005) have proposed
a model of the relationship between the spatial and the memory
functions of the hippocampus. In their model the connectionist
part is limited to CA1 and CA3, where CA3 codes for the recently
active place cells and CA1 for the future goal. The gradient of firing-
rate distribution of each place cell is used by an external ‘‘control
module’’ for determining the direction towards the goal. They do
not take into account the timing properties of the hippocampus.

In the model by Hasselmo and Eichenbaum (2005) EC layer III
stores all possible sequences (which is the role devoted to CA3
coding transitions in our global model) and EC layer II stores the
path previously taken. All information coming fromEC ismerged in
CA1 cells, which learn to fire depending on the previous sequence.

Yoshida and Hayashi (2007) have designed a model where CA1
neurons learn to respond to a sequence of inputs in CA3, andnot EC.
Activation of a pool of CA3 neurons leads to the sequential activity
of pools of neurons in CA1.

Lisman, Talamini, and Raffone (2005) propose a model of
sequence learning and phase precession. Like in our model, it is
based on interactions between DG and CA3. There is however no
spatial response.

Finally, some models have implemented directional place cells
in order to bridge the gap between the place cell and the direction
to take in order to go to a particular goal location (Brunel & Trullier,
1998; Chavarriaga, Sauser, & Gerstner, 2003; Gerstner & Abbott,
1996; Hafner, 2000).

None of these models take into account both the spatial and
temporal processing properties of the hippocampus. To the best

of our knowledge, only Gorchetchnikov and Grossberg (2007)
proposed a model of EC–DG learning of space and time. Spatial
activity comes frommedial entorhinal grid cells to DG. At the same
time, the timing of event information from lateral entorhinal cue
cells is coded in DG. They use grid cells whereas we only use place
cells. However, in their model, convergence on CA3 is still to be
done, as well as modeling CA1 and the mPFC.

Shortcomings. Our model has some limitations. First, there is
no strong experimental support for time batteries to be localized
in DG granule cells. We could however make some parallel with
cerebellar granule cells providing the timing of movements (Thier
et al., 2000).

Lesion simulations remain to be done. They are not straight-
forward for several reasons. First our model only relies on WTA
mechanisms. For instance, wewould need several winners in EC in
order to be able to learn a transition in CA1 without inputs from
CA3. The same holds true for predictions in CA3 when DG is le-
sioned. Thus, we would also need a population coding in the struc-
tures involved rather than one neuron corresponding to a state.
Second, learning in CA1 is performed on the links between CA3 and
CA1, and should also be done on the links fromEC to CA1 in order to
overcome a lesion of CA3. Similarly, learning should exist between
EC and CA3 in order to overcome a lesion of DG. Third, it is pos-
sible that the EC–CA1–subiculum–EC loop could help in learning
transitions when CA3 is lesioned.

Concerning the localization of the cognitive map, our model fo-
cuses on the mPFC while current literature emphasizes the role
of the mPFC in working memory, and a role of the parietal cor-
tex in goal navigation (Harvey et al., 2012). Indeed, patterns of ac-
tivation of neural assemblies in the posterior parietal cortex are
consistent with the successive activation of neurons of our cogni-
tive map. Therefore, it would be possible to upgrade the model so
that the parietal cortex stores the whole map and only part of the
map needed for the ongoing task could be ‘‘uploaded’’ in the mPFC
(Viard et al., 2011).

The decrease in firing rate activity observed in the medial en-
torhinal cortex by Gupta et al. (2012) during a cue-delayed task is
not yet reported by our model because we only consider excita-
tory activity coming from mPFC that is coding for the goal loca-
tion. However, this reduced activity may be due to the decrease of
some inputs to EC like reported by van Cauter, Poucet, and Save
(2008) in CA1 and simulated in Bray-Jayet, Quoy, Goodman, and
Harris (2010).

Ourmodel implements analogical neurons (mean frequency ac-
tivity) and does not use spiking neurons. The major reason for this
choice is its simplicity for running in real time a control architec-
ture of a robot. Furthermore we do not see the need (for now) to
have spiking neurons in order to find the same behaviors as found
by neurobiologists. Lastly, ourmodel does not address the question
of phase precession and oscillations in the theta and gamma range.

Future work. The hippocampal temporal predictions could be
used in a variety of ways in bio-inspired robotic systems. In recent
works, they have been used to predict the occurrence of different
types of events (visual, proprioceptive) and the evolution of various
signals (Hirel, Gaussier, & Quoy, 2010). In addition, the temporal
predictions are necessary for the animal during extinction trials,
i.e. when the reward is omitted at the end of the delay. Without an
accurate time estimation mechanism, the rat would wait forever
for its reward with no knowledge of the timing when the reward
should have been expected. A non-occurrence detection system
was recently developed and used to solve the continuous place
navigation task with normal and extinction trials with a mobile
robot (Hirel et al., 2011). In this model, the basal ganglia play an
important role in associating predictions with satisfaction signals.
By combining this model with a previously developed model of
reinforcement learning in the basal ganglia (Hirel, Gaussier, Quoy,
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& Banquet, 2010), we hope to obtain a detailed predictive model of
the interactions between the hippocampus, the prefrontal cortex
and the basal ganglia.

A model of grid cell activity using the hippocampal loop was
later created and integrated to the place cell architecture to provide
a more accurate spatial description of the environment (Gaussier
et al., 2007). In this model, place cells are created as a combination
of grid cells of different spatial frequencies. It was used in a navi-
gation model that does not include the timing prediction (Jauffret,
Cuperlier, Gaussier, & Tarroux, 2012). Therefore, integration of grid
cells in the global model is still to be done.
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