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Abstract. We propose a model of the hippocampus aimed at learning
the timed association between subsequent sensory events. The properties
of the neural network allow it to learn and predict the evolution of con-
tinuous rate-coded signals as well as the occurrence of transitory events,
using both spatial and non-spatial information. The system is able to
provide predictions based on the time trace of past sensory events. Per-
formance of the neural network in the precise temporal learning of spatial
and non-spatial signals is tested in a simulated experiment. The ability of
the hippocampus proper to predict the occurrence of upcoming spatio-
temporal events could play a crucial role in the carrying out of tasks
requiring accurate time estimation and spatial localization.

1 Introduction

When an animal moves along a particular trajectory, its movement can be in-
terpreted with two complementary perspectives: (i) as a purely spatial strategy
using visual input to provide information about the current localization and
adapt the behavior accordingly; (ii) as a series of actions cued to particular
events, triggered by an internal time representation or path integration infor-
mation. Lagarde et al. [1] showed that a robot can learn a desired trajectory
both by using place-action associations or timed sequences of actions. But what
about the tasks where both spatial and temporal dynamics are needed ? Is
temporal and spatial information processed in different structures and somehow
integrated in a larger neural network allowing spatio-temporal strategies, or is
there a neural substrate directly capable of learning both spatial and temporal
properties ? Some experimental tasks involve both spatial and temporal aspects
[2]. In that context the animal needs time estimation, reward prediction and
navigation capabilities, and a way to merge these modalities.
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In this paper we propose a model where the hippocampus can learn and
predict transitions between multi-modal sensory events. The model provides an
internal time representation allowing the learning of timed sequences of stimuli.
Using a memory of past events, we can then predict the occurrence of future
transitory events or estimate the evolution of a continuous signal. Using the
same architecture we are able to learn the temporal properties of various sig-
nals, spatial and/or non-spatial, in accordance to the multi-modality observed
in hippocampal cells [3]. The model is tested in a simulation where a single
neural network is used to learn to predict place cell activities and an unrelated
non-spatial sequence of sensory stimuli.

2 Model

We previously presented a model of the hippocampus as an associative mem-
ory capable of learning the correlation between past and present sensory states
and of predicting accessible states [4]. This architecture has been mainly used
in two experimental contexts. First, a version using a simple memory of past
states has been used in robot navigation to learn transitions between places [5].
Second, a timed memory inspired from the spectral timing model [6] was used
to learn timed sequences of sensory events [7] and later for the reproduction of
sequences of motor actions in a robotic experiment [1]. As previously discussed,
the carrying out of certain tasks requires a strategy which integrates both tem-
poral and spatial components, the two closely intertwined. To process all sorts
of information, spatial or not, we gave our neural network the ability to predict
the occurrence of punctual events as well as estimate the evolution of continuous
signals over time. As an evolution over previous models, the “one-shot” learning
of timings was replaced by a continuous learning. This allows the predictions to
adapt their timing over time or to be forgotten if they are never fulfilled.
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Fig. 1. Model of the state prediction neural network.

In our model, EC contains the current sensory states of the robot. Multi-
modal signals (e.g. vision, sound, odometry etc.) are integrated. A Winner-Take-
All (WTA) competition ensures that the activity of the most active state (i.e.
current state) is transmitted to the DG memory. Each state is connected to a
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corresponding battery of neurons with various temporal properties in DG [7].
When the current state changes, the memory is reset and the battery corre-
sponding to the new state is activated. This battery then gives a time trace of
the delay elapsed since the state was triggered. Topological distal connections
transmit state activity from EC to CA3. The activity of CA3 neurons in (1)
is computed using DG-CA3 synapses only and corresponds to the prediction of
future states. The learning (2) takes place in the DG-CA3 synaptic weights and
is based on the Normalized Least Mean Square (NLMS) algorithm [8], with the
addition of a synaptic learning modulation η.

xCA3
i (t) =

∑
k∈DG

WDG−CA3
ik .xDG

k − θ (1)

WDG−CA3
ij (t+ dt) = WDG−CA3

ij (t) + α.ηi(t).
(xEC(t)i − xCA3

i (t))∑
k∈DG x

DG
k (t)2 + σ1

.xDG
j (t) (2)

where θ is an activity threshold, WDG−CA3
ij is the synaptic weight from DG neuron j

to CA3 neuron i, α is the learning rate, ηi a learning modulation (see eq. 3), xEC
i is the

activity transmitted to neuron i by EC (i.e. the target signal for the LMS). The particu-

larity of the NLMS over the standard LMS is the normalization term
∑

k x
DG
k (t)2 +σ1

representing the energy of the input vector. σ1 is a small value used to avoid the

divergence of the synaptic weights for very low DG values.

Each neuron of a DG battery displays a pattern of activity defined by a
Gaussian function of the time elapsed since the battery was activated, with its
own particular mean and variance [7]. Using the NLMS rule and a continuous
signal as EC input, the neural network is capable of predicting the evolution of
the signal using its internal time representation. When working with transitory
input signals, like punctual events generating short bursts of neural spiking, the
model learns to predict the timing of the event in relation to the time passed
since the last event. The result is a bell shaped rate-coded activity, with a peak
predicting the event. Since learning is performed online, the use of a LMS algo-
rithm is problematic (the samples are not randomly distributed). As soon as a
battery of DG cells is activated, the NLMS starts to learn to approximate the
EC input signal and minimize the estimation error. The prediction of an event
can start well before the onset of the burst of neural activity coding for this
event. As a result, a predictive output signal is present while there is no activity
on EC. The NLMS learning rule will converge to correct this error, thus leading
to the decay of synaptic weights. Once the predicted event occurs and neural
activity arises in EC, the previous decay will be balanced by the new learning
of the input signal. Yet, the NLMS learning rule intrinsically leads to the same
decay and learning speeds. Since transitory signals have short periods of activity
(learning phase) and their prediction activity can start well in advance of their
occurrence (decay phase), the previous learning of a transition is quickly forgot-
ten. In order to learn online transitory events, the CA3 learning rule needs to be
more reactive to the short period of EC activity than to the periods with no in-
put activity. Therefore, our model includes a local modulation η of the synaptic
learning rule. Its equation (3) uses the difference between the current value of the
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EC input signal and its mean value over a certain period of time. This results in
the modulation of the synaptic learning of DG-CA3 plastic proximal connections
by the variability of the activity coming from EC-CA3 distal connections. The
modulation leads to a higher sensitivity of the associative learning to transitory
signals: rapidly changing signals are learned faster than stable ones.

ηi(t) = |xEC
i (t)−mEC

i (t)|+σ2 with mEC
i (t) = γ.mEC

i (t−1)+(1−γ).xEC
i (t) (3)

where mEC
i is a sliding mean of xEC

i , σ2 is a low value setting a minimal learning

modulation for CA3 and γ a parameter controlling the balance between past and

current activities in the computation of the sliding mean.

Interestingly, the model is both able to approximate continuous input signals
and to predict transitory events. Due to the modulation η, the synaptic weights
are slowly decaying when the predicted transitions do not occur. As a side effect,
the system is slower in the learning of stable continuous signals.

3 Results and Discussion

A navigation experiment where a simulated robot follows a defined trajectory
was conducted (Fig. 2). Place cells are learned on a minimum activity threshold
basis and their activity is computed using the azimuth of the recognized land-
marks in the visual field. Each battery of DG cells is composed of 15 neurons
giving a spectral decomposition of time on a period of 5 seconds.
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Fig. 2. 9m “∞-loop” trajectories taken by the agent in the
3x3m simulated environment. 20 perfectly identifiable land-
marks are placed regularly along the walls. The robot has a
constant speed of 0.5m/s. One loop requires at least 18s to
be completed. Time is discretized into a series of 100ms steps.
The colors correspond to the most activated place cell at each
location (labeled by letters).

Three types of EC signals are presented concurrently as input to CA3:
Raw place cell activity: Activity of all place cells. The DG memory gives a trace of

the time passed since the arrival on the last place. The neural network learns to predict

the evolution of place cell activity based on the time spent in the current place.

“Place entered” transitory signal: When the current place changes, EC triggers a

short burst of activity. The DG memory is the same as for raw place cell activity. The

timing of transitions from the current place to accessible neighbor places is predicted.

Non-spatial timed sequence of events: A recurring series of events, signaled by

short transitory activity, forms a sequence which could represent the interaction with a

person presenting various stimuli. A separate WTA competition and DG memory keeps

a trace of the last event. The prediction of the timed sequence of events is learned by

CA3, independently of the spatial context.
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After a long period (over 50 ∞-loops) of learning1, we turn off synaptic modifi-
cations in order to analyze the predictions of the CA3 neurons based solely on
DG activity. Figure 3 shows the EC input signal and CA3 predictions after the
learning, over a period corresponding to one complete ∞-loop. Even though the
three types of signal are learned online concurrently by the same neural network,
they are represented separately for more clarity. We can see that the system cor-
rectly learns to predict the evolution of place cell activity, the timing of place
transitions and the sequence of non-spatial events. Small drops of raw place cell
prediction activity can be observed when the most active place cell changes. This
is due to the reset of the DG memory and the short interval of time (100ms)
needed by the first DG cells to be activated. The sum of the mean square errors
(MSE) of raw place cell activity prediction, after learning and over a period of
10 ∞-loops, is 0.035. Event predictions are learned for both spatial information
(a change of the most active place cell) and non-spatial information (a repeated
sequence of events, i.e. 1-2-3-2-1). All the possible events are predicted by a
bell-shaped pattern of activity with the maximum value corresponding to the
expected timing arrival. Predictions with a low activity can be observed for spa-
tial events. The noise on the place cell activity can indeed lead to rare transitions
between non-successive places, the low activity is a characteristic of the rareness
of these occasions.

A B C D E F G H C D EA B C D E F G H C D EE 1 32 2 2 231

a) b) c)

Timed sequencePlace enteredPlace cells
E A

Fig. 3. a) Continuous prediction of all place cell activity based on the time passed
since entry on the current place. b) Event prediction of the timing of the arrival in the
next place. c) Prediction of the timing of the occurrence of the next non-spatial event.

In order for the network to learn properly, the mean in (3) needs to use a
short sliding window (γ = 0.5 in the simulation) so that, when the prediction of
an event begins, the previous peak of activity for this event is already forgotten.
This supposes local synaptic learning mechanisms for pyramidal neurons in CA3
with properties of short-term memory. A learning rate α = 0.5 can seem high for
LMS-based learning. Yet, it allows the fast learning of transitory events (which

1 Parameters used for learning: α = 0.5, σ1 = 0.01, θ = 0.05, σ2 = 0.01, γ = 0.5.
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have a high η value during the short period of activity) and the slow learning of
continuous signals (which have a low η value due to their low variability) needed
for the stability of the LMS algorithm. Finally, an interesting property of the
neural network is that, as the network learns the timing over and over, the peak
of event predictions becomes more and more narrow. As fig. 3 b) and c) show,
the long period of learning in the experiment leads to very sharp predictions,
with a peak of activity centered on the predicted occurrence of the next event.

In conclusion, we have presented a neural network capable of learning spa-
tial and non-spatial, continuous and transitory signals. The learned association
between past and current signals results in predictive capabilities. Experimental
observations of our model suggest that the learning of the timing goes through
two phases: i) a short learning phase during which the amplitude of the predic-
tions rises to reach a maximal value; ii) A long adaptation phase during which
the prediction peak of activity gets progressively narrower and centered on the
precise expected timing of the next event. In repetitive tasks where place transi-
tions or sensory events have low variability in their timings, we expect to observe
progressively sharper peaks of activity and reduced temporal precession for pre-
dictions. As the learning starts, it is not always clear which aspects of the task
will be crucial to perform efficiently. A hypothesis is that dedicated structures
learn specific components of the task (e.g. cerebellum for timed conditioning,
basal ganglia for reward expectations, prefrontal cortex for movement inhibi-
tion etc.) and that superfluous information is discarded. We propose a model of
the hippocampus as an associative memory extracting not only spatial but also
temporal characteristics of the sensory stimuli experienced during the task. This
allows to reconcile Eichenbaum’s view [9] of the hippocampus as a memory and
O’Keefe’s view [10] of the hippocampus as a cognitive map. Finally the ability
of the neural network to predict the evolution of state activity could be used in
pair with the actual state activity to compute the error between the prediction
and the current context. In well rehearsed tasks where the prediction should
have reached a certain level of accuracy, the error signal could be used to detect
anomalies or novelty. The robot would then be able to detect that the conditions
of the task may have changed and adapt its behavior accordingly.
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