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ABSTRACT

The aim of this study is to show how robots learning could be easier and accessible to non

experts if it relies on emotional interactions, more precisely on social referencing abilities, rather

than on specialized supervised learning technics. To test this idea, we coupled two systems : a

robotic head able to learn to recognize and imitate emotional facial expressions and a mobile robot

able to learn autonomous visual navigation tasks in a real environment. Two possible solutions

for coupling these two systems are tested. First, the emotional interactions are used to qualify the

robot’s behavior. The robot shows its ability to learn how toreach a goal-place of its environment

using emotional interaction signal from the experimentator. These signals are giving the robot

information about the quality of its behavior and allow it tolearn place-actions associations to

construct an attraction basin around the goal-place. Second, the emotional interactions are used

to qualify the robot’s immediat environment. The robot shows its ability to learn how to avoid a

place of its environment by associating it with the experimentator’s anger facial expression. The

first strategy allows the experimentator to teach the robot to reach a specific place from anywhere

in its environment. However, this strategy takes more learning time than the second strategy that is

very fast but seems to be inappropriate to learn to reach a place instead of avoiding it. While these

two different strategies achieve satisfactory results, there is no reason why they should be mutually

exclusive. In conclusion, we discuss the coupling of both type of learning. Our results also show

that relying on the natural expertise of humans in recognizing and expressing emotions is a very

promising approach to human-robot interactions. Furthermore, our approach can provide new

interesting insights about how, in their early age, humans can develop high level social referencing

capabilities from low level sensorimotors dynamics.
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1. INTRODUCTION

Robots able to learn navigation tasks are usually taught under supervision of an experimentator

[1]. These techniques have the advantage of being fast in terms of learning time but the experi-

mentator has to know exactly how the robot works and to be expert in its use. In others words,

the experimentator has to strongly adapt itself to the robot’s underlying architecture to achieve

satisfactory learning performances. The autonomy of a mobile robot can be more easily reached

if the robot has the ability to learn through emotional interactions. Social referencing is a concept

issued from developmental psychology describing the ability to recognize, understand, respond to

and alter a behavior in response to the emotional expressions of a social partner [2, 3, 4]. Besides,

being non verbal and thus not needing high level cognitive abilities, gathering information through

emotional interactions seems to be a fast and effcient way totrigger learning at the early stages

of human cognitive development (compared to stand alone learning). Even not at their full ex-

tent, these abilities might provide the robot valuable information concerning its environment and

the outcome of its behaviors (e.g. signaling good actions).In that case, the simple sensorimo-

tor associations controlling the robot’s learning are defined throughout their interactions with the

experimentator. This interactive learning does not rely onthe experimentator technical expertise,

but on his/her ability to react emotionally to the robot’s behavior in its environment. In that case,

the human and the robot have to adapt reciprocally to each other through means that are much

more natural to humans. To test this idea, we developped a robotic head able to learn online to

recognize emotional facial expressions [5]. The robot internal emotional state triggers one specific

expression (e.g. happiness) and the human mimicks the robotin front of it. The robot then learns

to associate its internal emotional state with the humans facial expression. After a certain amount

of learning time, the robot is able to recognize the human facial expression as well as to mimick

its facial expressions. Moreover, the robot is able to learnto navigate autonomously in its environ-

ment using visual and odometric information and is thus ableto reach specific places of interest

(figure 1). We study the merging of these two processes as a wayto provide the robot the abil-

Figure 1: Experimental set-up : a robotic head that learns facial expression recognition and a

mobile robot able of autonomous visual navigation tasks learning. The room size is 7m x 7m, but

the robot’s movements are restricted to an area of 3m x 3m (to allow a good video tracking of the

robot’s trajectories).

ity to learn navigation tasks via emotional interactions. Facial expression recognition affects the

robot’s behavior by providing information about its environment or its behavior. We studied these

two different ways to connect the navigation and the emotional interaction systems. We think this

approach can be usefull for the design of interacting robotsand more generaly, for the design of

natural and efficient human-machine interfaces. Moreover,this approach provides new interesting
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insights about how, in their early age, humans can develop social referencing capabilities from

simple sensorimotors dynamics.

2. EMOTIONAL INTERACTIONS AND NAVIGATION SYSTEM

Our experiments rely on two major systems : an emotional facial expressions interaction system

that gives a robotic head the ability to learn to recognise and mimick emotional facial expressions

and a navigation system that gives a mobile robot the abilityto learn navigation tasks such as path

following or multiple resources satisfaction problems.

2.1. Sensorimotor based facial expression recognition system

This work was motivated by the question of how a robotic system (figure 2, right), able to exhibit

a set of emotional expressions, can learn autonomously to associate theses expressions with those

of others. Here, ”autonomously” refers to the ability to learn without the use of any external super-

vision. A robot with this property could therefore be able toassociate its expressions with those

of others, linking intuitively its behaviors with the responses of the others. This question is close

to the understanding of how babies learn to recognize the facial expressions of their caregivers

without having any explicit teaching signal allowing them to associate, for instance, an ”happy

face” with their own internal emotional state of happiness.Using the cognitive system algebra [6],

we showed that a simple sensorimotor architecture (figure 2,left) using a classical conditioning

paradigm could solve the task if we suppose that the baby produces first facial expressions ac-

cording to his/her internal emotional state and that next the parents imitate the facial expression

of their baby allowing in return the baby to associate these expressions with his her internal state

[7]. Moreover, psychological experiments [8, 9] have shownthat humans reproduce involuntary a

facial expression when observing and trying to recognize it. Interestingly, this facial response has

also been observed in presence of our robotic head. This low level resonance to the facial expres-

sion of the other can be considered as a natural bootstrap forthe baby learning (”empathy” from

the parents). Because the agent representing the baby must not be explicitly supervised, a simple

solution is to suppose the agent representing the parent is nothing more than a mirror. We obtain

an architecture allowing the robot to learn the ”internal state”-”facial expression” associations. We

Figure 2: Architecture used to associate a collection of local viewsaround feature points extracted

from the visual flow with the expressed emotion by the robot. If a human comes in front of the

robot and imitates the robot’s expressions, (s)he will close the loop between vision and proprio-

ception and allows the system to learn to recognize the facial expression of the human partner.
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also showed that, learning autonomously to recognize a facecan be really more complex than to

recognize a facial expression. We proposed an architecture(figure 2, left) using the rhythm of the

interaction to allow first a robust learning of the facial expression without a face tracking [10], and

second, to stop the learning when the visual stimuli (facialexpression or absence of face) are not

synchronized with the robot facial expression.

2.2. Sensorimotor based navigation system

The robot’s navigation abilities are based on a bio-inspired sensorimotor associations learning

system : the PerAc architecture [11]. This architecture allows the robot to learn the conditioning

of an action by a sensory input. More precisely, the robot’s visual system is inspired from visual

navigation models issued from neurobiology [12]. It consists in a simulated neural network able

to learn to characterize (and thus recognize) different ”places” of its environment using place cells

i.e. neurons that code information about the location of visual cues of the environment from of a

specific place in that environment [13, 11]. The activity of the different place cells depends on the

level of the associated visual cues recognition (landmarks) and of their location (azimuth). A place

cell will then be more and more active as the robot gets closerto its learning location. The area

where a given place cell is the most active is called its placefield. A conditioning neural network

enables the learning of the association between a place fieldand an action (e.g., a direction to head

for). Later recognition of this place field will trigger the linked action.

3. BEHAVIORAL AND ENVIRONMENTAL COUPLING BETWEEN THE NAVIGATION

AND THE FACIAL EXPRESSION RECOGNITION SYSTEMS

Social referencing can refer to an object, a person, an action, a place in the environment and

probably different other things. This means that there are many ways for the recognition of an

emotional facial expression to be interpreted and used by the navigation system. In our case, when

the experimentator displays an expression of happiness, the robot can use this expression as a

signal qualifying its behavior. In that case, its action in aspecific place must be learned as having

a positive value. But the robot could also use this signal to qualify its surrounding environment

indicating a usefull place that the robot should eventuallyseek. We studied these two different

possible couplings between the navigation and the emotional interaction part of our architecture.

3.1. Coupling behaviors and emotions

The behavioral coupling refers to the situation where the recognition of an emotional facial

expression is used to qualify the behavior of the robot. For instance, when the human displays

a happy face, it means the robot must reinforce its current behavior positively while an angry

face means the robot must reinforce its current behavior negatively. In order to do this, we have

adapted the PerAc architecture [11] to be able to learn positive actions such as negative action con-

ditionings. To ensure this classical conditioning, we usedthe least mean square learning rule [14]

that uses the difference between the neural network output and the desired output to compute the

amount by which the connexions weights have to be changed (weight adaptation due to learning) :

∆wij = ǫ.Ii.(O
d
j − Oj) (1)
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∆w is the difference between the old and the new weight,ǫ is the learning rate (neuromodulation

of the network),I is the input,O is the output (of the conditioning network) andOd the desired

output. A positive conditioning refers to a direction to head for (to reach the goal), while a negative

conditioning refers to a direction to inhibit (to avoid a dangerous place). Instead of one sensorimo-

tor association neural network that can only learn positiveconditionings, we used one association

neural network for positive and one for negative conditionings. A third group of neurons is used

to compute the sum of these two outputs (see figure 3). While the positive conditioning group of

neurons has a positive connection with this summative groupof neurons (activations), the negative

conditioning group of neurons has a negative connection (inhibition). This solution allows to store

much more information about what is learned by the robot thanouputs with positive or negative

values (and is also more biologically plausible). For instance, having learned that one particular

behavior is good and later that the same behavior is wrong could mean that something has changed

in the very nature of the environment or in the experimentator’s objectives. If both reinforcements

had been learned on the same group of neurons, they would havebeen averaged and the conflict-

ual nature of the learning would be invisible. The model is described in figure 3. When the robot

receives a social interaction signal (the display of an emotional facial expression of anger or hap-

piness), it triggers the learning of a new visual place cell as well as the learning of the conditioning

between this visual place cells and the current action. Nonetheless, if an existing place cell is too

close to the robot current position (defined by a threshold onthe place cells recognition level) the

learning of a new place cell is inhibited and the sensorimotor conditioning is learned according

to the nearest place, completing an eventually previously learned sensorimotor conditioning. The

robot is thus able to learn progressively which direction toavoid and which direction to head for in

the different ”places” of its environment and according to the goal of the person interacting with

it. We tested this architecture in the following situation :the robot’s environment contains one

Figure 3: Behavioral coupling model. When one of the “conditioning”groups of neurons using

equation 1 receives neuromodulation from the recognition of the corresponding facial expression

(happiness in this example), it learns the association between the current robot location (perceived

as a specific winning place cell) and its direction (summed with what has already been learned by

this group of neurons). Happiness and Anger are neurons associated to the recognition of an happy

or an angry human face.

place of interest and the experimentator want to teach the robot how to reach it. Each time the

experimentator thinks the robot’s behavior is wrong, he expresses anger toward the robotic head

and, conversly, he smiles for good behaviors (happiness). Figure 4 is an illustration of the learning

ha
l-0

05
38

38
6,

 v
er

si
on

 1
 - 

22
 N

ov
 2

01
0



chronology (as explained above). Figure 5 shows the robot’strajectories after learning. The robot

Figure 4: a) place cell signal. b) The experimentator’s facial expressions recognized by the robot.

c) current robot direction of movement. d) action learned bythe robot (an arrow means a direction

to activate and a dot a direction to inhibit). The experimentator facial expressions give the robot the

information needed about its behavior to learn the necessary sensorimotor associations between

the visu signal (recognition of the current place) and the learning of the activation or inhibition the

current movement direction.

is dropped from different positions of the environment. It is always able to reach the interesting

place. Nevertheless, it is important to take into account the fact that the robot learns much more

information about the task when its behavior is qualified as “good” by the experimentator than

when it is qualified as bad (although both are needed). Knowing what is “good” is a faster way to

converge to a solution than knowing what is “bad”. The learning of the attraction basin around the

goal place (i.e. set of place-actions that ensure a converging navigation dynamics) takes between

three to five minutes.

Figure 5: Robot’s trajectories from different starting points : therobot is able to reach the place

associated with the happiness facial expression. The grey zone represents the goal place. These

trajectories are obtained by video tracking. The size of theexperimental area is 3m x 3m.
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3.2. Coupling environment and emotions

The environmental coupling refers to the situations where the recognition of an emotional facial

expression is used to qualify the robot’s immediat environment. When the experimentator displays

a happy face, this means that the robot has to learn the place is “good” (e.g. containing a resource

needed by the robot) and conversely for an angry face that theplace is “bad”. The robot has to

seek good places and to avoid the dangerous ones. To do this, we used one more time a modified

version of the PerAc architecture. When the robot receives the social interaction signal, it has

to learn a new place cell characterising its location and to learn to predict the interaction signal

(happyness or anger) which is treated as a reward associatedwith this place (figure 6). As the

Figure 6: Environmental coupling model. Using the least mean squarelearning rule, the condi-

tionning neurons allow the association between a place cell(a zone of the environment) and an

experimentator’s facial expression (modifications of weightsw+ andw− follow equation 1). The

predicted expression signal temporal derivate is used as a reinforcement signal (Sutton and Barto

learning rule) to maintain or change the direction on the motor group (modifications of weights

wm follow equation 3). The bias on the conditioning groups allows the learning of the frontier

between the zone associated with a facial expression and therest of the environment

robot gets closer to the learned place, the place cell response will increase, such as the associated

predicted reward. The opposite happens as the robot gets farther from the learned place. Instead

of using a conditioning learning between a perception (a place) and an action (a direction), the

derivative of the predicted reward is used as a reinforcement signal for neurons using the Sutton

and Barto learning rule [15] (figure 6) :

∆R = (
dPredH

dt
−

dPredA

dt
) + (H − A) (2)

∆w+/− = ǫ.
dR

dt
.
dOj

dt
.Ij (3)

∆R is the reinforcement signal,dPredH
dt is the predicted happiness signal derivate,dPredA

dt is the

predicted anger signal derivate,H is the happiness facial expression recognition signal andA is

the anger facial recognition signal.∆w+/− is the difference between the old and the new weight,

ǫ is the learning rate (neuromodulation of the network),dR
dt is the temporal variation of the reward

R, O is the ouput andI is the input. A motor group only connected to a constant inputis used

to control the robot movements. Without any reinforcement,this motor group basically produces

random outputs (a small noise is added to the output) allowing the robot to “try” another action.

A positive reinforcement will make it reinforce its currentoutput while a negative reinforcement

will make it inhibit its current ouptut. We used the ouputs tocontrol the robot actions. To test

this architecture, we assigned various fixed directions to the robot after it has learned through
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interactions with the experimentator that the place at the center of its environment is dangerous

(i.e. associated with the anger expression). Figure 7 showshow directions that produce positive

predicted reward derivative (going away from the dangerousplace) are reinforced positively while

directions that produce negative predicted reward derivative (going toward the dangerous place)

are reinforced negatively. Figure 8 shows the robot’s trajectories from different starting points

Figure 7: a) The reward prediction (positive with happiness and negative with anger) informs

the robot about its behavior outcome in the environment. b) Derivatives of this value are used

as a reinforcement signal(see equation 3). c) when the derivative is negative, the robot direction

changes and when it is positive it is maintained and reinforced

with different fixed directions while, at the same time, it has to avoid the dangerous place of its

environment. The referencing of that place through interactions with the experimentator allows

the robot to quickly learn to avoid it (the first interaction is already allows the robot to avoid the

“dangerous” place). Nevertheless, the task would be much more difficult if we wanted to teach the

robot to reach one place instead of avoiding it. Indeed, avoiding a place needs to be efficient at the

vicinity of the place in question. This is the role of the biason the conditioning groups shown in

figure 6. Reaching a place means being able to use variation ofthe corresponding place cell but

far from the learning place. Yet, the place cells dynamics are not meaningfull when the robot is

too far away from the learning location.

Figure 8: Robot’s trajectories from different starting points (with a fixed direction) after interactive

learning of the association of the grey zone to the anger facial expression. The robot is able to avoid

the place associated with the anger facial expression.The prediction of the negative reinforcement

is sufficient to inhibit a movement in direction of the dangerous zone (when it is near it).
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4. DISCUSSION

While the behavioral (associating emotions to the robot’s actions) and the environmental (as-

sociating emotions to the robot’s environment) couplings have both shown their possibilities and

limitations, one could easily argue that a more complete andconvincing solution would be to give

the robot the ability to perform both with the same architecture. Nonetheless, this complete cou-

pling is far from trivial because of the intrinsic ambiguityof the emotional interaction signal. In

our case, the same signal can be used to learn two different information : ”this place is good” as

well as ”this place/action is good”. One way this problem could be solved is to give the robot

the ability to recognize more than the two different facial expression we used in the earlier ex-

periments. For instance, an anger facial expression could mean that the robot’s behavior is ”bad”

(according to the experimentator and/or to its environment) while a fear facial expression could

mean that the robot is in a dangerous part of its environment.Nevertheless, this solution cannot be

scaled to more complex problems because it does not provide areal coupling of these two possible

types of learnings. This solution relies more on the experimentator expertise about the robot’s

architecture than on the natural ability to interact emotionaly. Another solution to this problem

could be the way the system treats the interaction inputs. While the behavioral coupling uses a

phasic signal (the moment the signal appears), the environmental coupling uses a tonic signal (the

whole time the signal is present). This way, both couplings could function with the same inputs

but used differently. Of course, the question of the coherence of what is learned is asked : if the

robot is doing something wrong (e.g. going away from a resource it needs) the experimentator

will display an angry face and the robot will learn at the sametime that its behavior was wrong

but also that the place it is in has to be avoid. The problem is that, usually, only one of the two

learnings was intended by the experimentator. Nonetheless, because of the continuous nature of

neural networks learning algorithms, the coherence of the learning should not be reached at the

early stages of the interaction but rather for the more consistent ones. A place will have a well

defined emotional value (given by the social referencing) only if the reinforcement signal it re-

ceives is coherent over time. In conclusion, we described a system where a human interacting

with a robotic head is able to help a mobile robot to learn different navigation tasks. Yet, one can

argue that in these experiments, there is no real interaction between the experimentator and the

robot. The facial expressions are used more as commands thaninteraction signals. In a sense, the

robot’s behavior acts like a communication signal on the experimentator which reacts to it in order

to improve the robot’s learnings. But in a ”real” interaction, the robot should be able to express

its internal states in order to give the experimentator moreinformation about how it is dealing

with its environment. Future works will focus on the need of amore realistic interaction where a

bidirectionnal communication must exist between the humanand the robot. The robot head can

express the robot internal state and it can mirror the human facial expression. The problem is that

currently, the robot head always mirror the human facial expression to allow the experimentator to

see that his/her mood has been well understood by the robot. Allowing a real interaction means to

find a solution for expressing something related both to the expressive feedback of the experimen-

tator and the robot’s internal state. Control of the expression intensity and its duration is a lead we

will explore. Moreover, for the moment, the robotic head andthe mobile robot are two distinct

devices. Having a more sophisticated and realisitic set-upcould have a major impact on the way

the human and the robot interact.
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