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ABSTRACT

The aim of this study is to show how robots learning could bsiezaand accessible to non
experts if it relies on emotional interactions, more prelison social referencing abilities, rather
than on specialized supervised learning technics. To héstidea, we coupled two systems : a
robotic head able to learn to recognize and imitate emoltiicéal expressions and a mobile robot
able to learn autonomous visual navigation tasks in a reat@mment. Two possible solutions
for coupling these two systems are tested. First, the emaltioteractions are used to qualify the
robot’s behavior. The robot shows its ability to learn howeach a goal-place of its environment
using emotional interaction signal from the experimentatbhese signals are giving the robot
information about the quality of its behavior and allow itlearn place-actions associations to
construct an attraction basin around the goal-place. $kdbe emotional interactions are used
to qualify the robot’'s immediat environment. The robot skdtg ability to learn how to avoid a
place of its environment by associating it with the expenta®r’s anger facial expression. The
first strategy allows the experimentator to teach the robotach a specific place from anywhere
in its environment. However, this strategy takes more liegrtime than the second strategy that is
very fast but seems to be inappropriate to learn to reachce jitestead of avoiding it. While these
two different strategies achieve satisfactory resulesalis no reason why they should be mutually
exclusive. In conclusion, we discuss the coupling of bogietgf learning. Our results also show
that relying on the natural expertise of humans in recoggizand expressing emotions is a very
promising approach to human-robot interactions. Furtleeenour approach can provide new
interesting insights about how, in their early age, humamsdevelop high level social referencing
capabilities from low level sensorimotors dynamics.
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1. INTRODUCTION

Robots able to learn navigation tasks are usually taughgnspervision of an experimentator
[1]. These techniques have the advantage of being fastnmstef learning time but the experi-
mentator has to know exactly how the robot works and to beréxpéts use. In others words,
the experimentator has to strongly adapt itself to the relhatderlying architecture to achieve
satisfactory learning performances. The autonomy of a laabbot can be more easily reached
if the robot has the ability to learn through emotional iat#fons. Social referencing is a concept
issued from developmental psychology describing thetglidi recognize, understand, respond to
and alter a behavior in response to the emotional expressiba social partner [2, 3, 4]. Besides,
being non verbal and thus not needing high level cognitiviitials, gathering information through
emotional interactions seems to be a fast and effcient wasigger learning at the early stages
of human cognitive development (compared to stand alormaiteg). Even not at their full ex-
tent, these abilities might provide the robot valuable tinfation concerning its environment and
the outcome of its behaviors (e.g. signaling good actiofs)that case, the simple sensorimo-
tor associations controlling the robot’s learning are daithroughout their interactions with the
experimentator. This interactive learning does not relttenexperimentator technical expertise,
but on his/her ability to react emotionally to the robot'sibeior in its environment. In that case,
the human and the robot have to adapt reciprocally to eaddr tinough means that are much
more natural to humans. To test this idea, we developped @icobead able to learn online to
recognize emotional facial expressions [5]. The robotrirdeemotional state triggers one specific
expression (e.g. happiness) and the human mimicks the iofraint of it. The robot then learns
to associate its internal emotional state with the humatialfaxpression. After a certain amount
of learning time, the robot is able to recognize the humarafaxpression as well as to mimick
its facial expressions. Moreover, the robot is able to léamavigate autonomously in its environ-
ment using visual and odometric information and is thus &bleach specific places of interest
(figure 1). We study the merging of these two processes as aavarovide the robot the abil-

Figure 1. Experimental set-up : a robotic head that learns faciatesgion recognition and a
mobile robot able of autonomous visual navigation taskenlag. The room size is 7m x 7m, but
the robot’'s movements are restricted to an area of 3m x 3ml@ie @ good video tracking of the
robot’s trajectories).

ity to learn navigation tasks via emotional interactiongcil expression recognition affects the
robot’s behavior by providing information about its enviroent or its behavior. We studied these
two different ways to connect the navigation and the ematiomteraction systems. We think this
approach can be usefull for the design of interacting robot$ more generaly, for the design of
natural and efficient human-machine interfaces. Moredhesr,approach provides new interesting
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insights about how, in their early age, humans can develgfalsmeferencing capabilities from
simple sensorimotors dynamics.

2. EMOTIONAL INTERACTIONSAND NAVIGATION SYSTEM

Our experiments rely on two major systems : an emotionaafasipressions interaction system
that gives a robotic head the ability to learn to recognisgtraimick emotional facial expressions
and a navigation system that gives a mobile robot the alditgarn navigation tasks such as path
following or multiple resources satisfaction problems.

2.1. Sensorimotor based facial expression recognition system

This work was motivated by the question of how a robotic sydiiggure 2, right), able to exhibit
a set of emotional expressions, can learn autonomouslystciede theses expressions with those
of others. Here, "autonomously” refers to the ability torkewvithout the use of any external super-
vision. A robot with this property could therefore be ableassociate its expressions with those
of others, linking intuitively its behaviors with the respges of the others. This question is close
to the understanding of how babies learn to recognize thialfagpressions of their caregivers
without having any explicit teaching signal allowing themassociate, for instance, an "happy
face” with their own internal emotional state of happinddsing the cognitive system algebra [6],
we showed that a simple sensorimotor architecture (figutef§),using a classical conditioning
paradigm could solve the task if we suppose that the babyupexdfirst facial expressions ac-
cording to his/her internal emotional state and that nextghrents imitate the facial expression
of their baby allowing in return the baby to associate theg®essions with his her internal state
[7]. Moreover, psychological experiments [8, 9] have shdiaat humans reproduce involuntary a
facial expression when observing and trying to recogniziterestingly, this facial response has
also been observed in presence of our robotic head. Thisdegl tesonance to the facial expres-
sion of the other can be considered as a natural bootstrapddraby learning ("empathy” from
the parents). Because the agent representing the baby otust explicitly supervised, a simple
solution is to suppose the agent representing the pareothisng more than a mirror. We obtain
an architecture allowing the robot to learn the "internatst-"facial expression” associations. We

oot with DOG foas ot

Internal state \Qcial expression ~

Interaction rhythm Face/ non Face

Figure 2: Architecture used to associate a collection of local vieveaind feature points extracted
from the visual flow with the expressed emotion by the robd& lhuman comes in front of the
robot and imitates the robot's expressions, (s)he will €ltiee loop between vision and proprio-
ception and allows the system to learn to recognize thelfagf@ession of the human partner.
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also showed that, learning autonomously to recognize adanée really more complex than to
recognize a facial expression. We proposed an archite(figree 2, left) using the rhythm of the
interaction to allow first a robust learning of the facial eegsion without a face tracking [10], and
second, to stop the learning when the visual stimuli (fagigdression or absence of face) are not
synchronized with the robot facial expression.

2.2. Sensorimotor based navigation system

The robot’s navigation abilities are based on a bio-ingbgensorimotor associations learning
system : the PerAc architecture [11]. This architecturevedl the robot to learn the conditioning
of an action by a sensory input. More precisely, the robdssial system is inspired from visual
navigation models issued from neurobiology [12]. It cotssia a simulated neural network able
to learn to characterize (and thus recognize) differerda¢pk” of its environment using place cells
i.e. neurons that code information about the location afiai€ues of the environment from of a
specific place in that environment [13, 11]. The activity o tifferent place cells depends on the
level of the associated visual cues recognition (landmakd of their location (azimuth). A place
cell will then be more and more active as the robot gets cltasés learning location. The area
where a given place cell is the most active is called its pfaatd. A conditioning neural network
enables the learning of the association between a placeafielén action (e.g., a direction to head
for). Later recognition of this place field will trigger thenked action.

3. BEHAVIORAL AND ENVIRONMENTAL COUPLING BETWEEN THE NAVIGATION
AND THE FACIAL EXPRESSION RECOGNITION SYSTEMS

Social referencing can refer to an object, a person, anractiglace in the environment and
probably different other things. This means that there aamyrways for the recognition of an
emotional facial expression to be interpreted and useddpairigation system. In our case, when
the experimentator displays an expression of happinessralfiot can use this expression as a
signal qualifying its behavior. In that case, its action ispecific place must be learned as having
a positive value. But the robot could also use this signalualify its surrounding environment
indicating a usefull place that the robot should eventuséigk. We studied these two different
possible couplings between the navigation and the emdtiotaaction part of our architecture.

3.1. Coupling behaviorsand emotions

The behavioral coupling refers to the situation where thegeition of an emotional facial
expression is used to qualify the behavior of the robot. Retance, when the human displays
a happy face, it means the robot must reinforce its currehtider positively while an angry
face means the robot must reinforce its current behavioatnegly. In order to do this, we have
adapted the PerAc architecture [11] to be able to learnigesittions such as negative action con-
ditionings. To ensure this classical conditioning, we usedleast mean square learning rule [14]
that uses the difference between the neural network outplitree desired output to compute the
amount by which the connexions weights have to be changedtihadaptation due to learning) :

Aw;; = e;.(0f — O;) @)
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Auw is the difference between the old and the new weigid,the learning rate (neuromodulation
of the network),I is the input,O is the output (of the conditioning network) aGdf the desired
output. A positive conditioning refers to a direction to téar (to reach the goal), while a negative
conditioning refers to a direction to inhibit (to avoid a d@nous place). Instead of one sensorimo-
tor association neural network that can only learn positimeditionings, we used one association
neural network for positive and one for negative conditigys. A third group of neurons is used
to compute the sum of these two outputs (see figure 3). Whal@dsitive conditioning group of
neurons has a positive connection with this summative gobumegurons (activations), the negative
conditioning group of neurons has a negative connectidmilfition). This solution allows to store
much more information about what is learned by the robot thaputs with positive or negative
values (and is also more biologically plausible). For ins&g having learned that one particular
behavior is good and later that the same behavior is wronlglecoean that something has changed
in the very nature of the environment or in the experimemi&tubjectives. If both reinforcements
had been learned on the same group of neurons, they woulddeaveaveraged and the conflict-
ual nature of the learning would be invisible. The model isaled in figure 3. When the robot
receives a social interaction signal (the display of an @mnat facial expression of anger or hap-
piness), it triggers the learning of a new visual place ceiiall as the learning of the conditioning
between this visual place cells and the current action. Mahess, if an existing place cell is too
close to the robot current position (defined by a thresholtherplace cells recognition level) the
learning of a new place cell is inhibited and the sensorimotmditioning is learned according
to the nearest place, completing an eventually previowsiynled sensorimotor conditioning. The
robot is thus able to learn progressively which directioatoid and which direction to head for in
the different "places” of its environment and accordingtie goal of the person interacting with
it. We tested this architecture in the following situatiohe robot’s environment contains one

place cells

—#—>modifiable link
——>non modifiable link

-------- > neuromodulation link
——e inhibition link

Figure 3. Behavioral coupling model. When one of the “conditionirgfbups of neurons using
equation 1 receives neuromodulation from the recognititin® corresponding facial expression
(happiness in this example), it learns the associationdwtvihe current robot location (perceived
as a specific winning place cell) and its direction (summeti what has already been learned by
this group of neurons). Happiness and Anger are neuronsiasst to the recognition of an happy
or an angry human face.

place of interest and the experimentator want to teach thetreow to reach it. Each time the
experimentator thinks the robot's behavior is wrong, heregges anger toward the robotic head
and, conversly, he smiles for good behaviors (happinesgiiré4 is an illustration of the learning
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chronology (as explained above). Figure 5 shows the robaiectories after learning. The robot

Place A recognition Place B recognition

/Place A learning Place B learning \

c) _robot l —— —_—> l
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Figure4: a) place cell signal. b) The experimentator’s facial espiens recognized by the robot.
c) current robot direction of movement. d) action learnedh®yrobot (an arrow means a direction
to activate and a dot a direction to inhibit). The experiragmtfacial expressions give the robot the
information needed about its behavior to learn the necgssarsorimotor associations between
the visu signal (recognition of the current place) and tlaerimg of the activation or inhibition the
current movement direction.

is dropped from different positions of the environment. sliaiways able to reach the interesting
place. Nevertheless, it is important to take into accouetféict that the robot learns much more
information about the task when its behavior is qualified ggotl” by the experimentator than
when it is qualified as bad (although both are needed). Knpwinat is “good” is a faster way to
converge to a solution than knowing what is “bad”. The leagrof the attraction basin around the
goal place (i.e. set of place-actions that ensure a comgprgavigation dynamics) takes between
three to five minutes.
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Figure 5: Robot’s trajectories from different starting points : tlubot is able to reach the place
associated with the happiness facial expression. The gnegy rpresents the goal place. These
trajectories are obtained by video tracking. The size okt@erimental area is 3m x 3m.
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3.2. Coupling environment and emotions

The environmental coupling refers to the situations whieeerécognition of an emotional facial
expression is used to qualify the robot’'s immediat envirenmWhen the experimentator displays
a happy face, this means that the robot has to learn the @édgead” (e.g. containing a resource
needed by the robot) and conversely for an angry face thaplthee is “bad”. The robot has to
seek good places and to avoid the dangerous ones. To do thissed one more time a modified
version of the PerAc architecture. When the robot receitessbcial interaction signal, it has
to learn a new place cell characterising its location ancegon to predict the interaction signal
(happyness or anger) which is treated as a reward assodidgiedhis place (figure 6). As the
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Figure 6: Environmental coupling model. Using the least mean sqlemning rule, the condi-
tionning neurons allow the association between a place(a@albne of the environment) and an
experimentator’s facial expression (modifications of vissge™ andw ™~ follow equation 1). The
predicted expression signal temporal derivate is used am#rcement signal (Sutton and Barto
learning rule) to maintain or change the direction on theangtoup (modifications of weights
w,y, follow equation 3). The bias on the conditioning groupswafiche learning of the frontier
between the zone associated with a facial expression amdghef the environment

Motor group

[o}-#—0 o8]

bias

robot gets closer to the learned place, the place cell respaill increase, such as the associated
predicted reward. The opposite happens as the robot gétefdrom the learned place. Instead
of using a conditioning learning between a perception (ag)land an action (a direction), the
derivative of the predicted reward is used as a reinforceraigmal for neurons using the Sutton
and Barto learning rule [15] (figure 6) :

dPredH B dPredA

AR = ( 7 7 )+ (H — A) 2
dR dO,
+/7 — R _j .
Aw T I 3

AR is the reinforcement signaf™=¢42 is the predicted happiness signal deriva#&?4 is the
predicted anger signal derivaté, is the happiness facial expression recognition signal Amnsl
the anger facial recognition signahw™ /— is the difference between the old and the new weight,
e is the learning rate (neuromodulation of the netwoﬁﬁ,is the temporal variation of the reward
R, O is the ouput and is the input. A motor group only connected to a constant inputsed

to control the robot movements. Without any reinforceméns motor group basically produces
random outputs (a small noise is added to the output) allpuwhe robot to “try” another action.

A positive reinforcement will make it reinforce its curremtitput while a negative reinforcement
will make it inhibit its current ouptut. We used the ouputsctitrol the robot actions. To test

this architecture, we assigned various fixed directionsheorbbot after it has learned through
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interactions with the experimentator that the place at tvdar of its environment is dangerous
(i.e. associated with the anger expression). Figure 7 sthamsdirections that produce positive
predicted reward derivative (going away from the dangepase) are reinforced positively while
directions that produce negative predicted reward devieggoing toward the dangerous place)
are reinforced negatively. Figure 8 shows the robot’s ttajges from different starting points

Predictor
Activity!

07—+

0
Reinforcement: i
Activity 03 .

Figure 7. a) The reward prediction (positive with happiness and tiegavith anger) informs
the robot about its behavior outcome in the environment. &)vatives of this value are used
as a reinforcement signal(see equation 3). c¢) when theatimvis negative, the robot direction
changes and when it is positive it is maintained and reimfdrc

with different fixed directions while, at the same time, isha avoid the dangerous place of its
environment. The referencing of that place through intiwas with the experimentator allows
the robot to quickly learn to avoid it (the first interactianalready allows the robot to avoid the
“dangerous” place). Nevertheless, the task would be muaie dhfficult if we wanted to teach the
robot to reach one place instead of avoiding it. Indeed,dingia place needs to be efficient at the
vicinity of the place in question. This is the role of the basthe conditioning groups shown in
figure 6. Reaching a place means being able to use variatitreaforresponding place cell but
far from the learning place. Yet, the place cells dynamiesrast meaningfull when the robot is
too far away from the learning location.

K
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Figure8: Robot's trajectories from different starting points (kv fixed direction) after interactive
learning of the association of the grey zone to the angealfagpression. The robot is able to avoid
the place associated with the anger facial expression.fdwigbion of the negative reinforcement
is sufficient to inhibit a movement in direction of the darmes zone (when it is near it).
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4. DISCUSSION

While the behavioral (associating emotions to the robattioas) and the environmental (as-
sociating emotions to the robot’'s environment) couplinggehboth shown their possibilities and
limitations, one could easily argue that a more completecamdincing solution would be to give
the robot the ability to perform both with the same architeet Nonetheless, this complete cou-
pling is far from trivial because of the intrinsic ambiguity the emotional interaction signal. In
our case, the same signal can be used to learn two differfamtriation : "this place is good” as
well as "this place/action is good”. One way this problem Iddoe solved is to give the robot
the ability to recognize more than the two different facigpession we used in the earlier ex-
periments. For instance, an anger facial expression coalhrthat the robot’s behavior is "bad”
(according to the experimentator and/or to its environmeiitile a fear facial expression could
mean that the robot is in a dangerous part of its environméenertheless, this solution cannot be
scaled to more complex problems because it does not provigs eoupling of these two possible
types of learnings. This solution relies more on the expenitator expertise about the robot’s
architecture than on the natural ability to interact emmdiy. Another solution to this problem
could be the way the system treats the interaction inputsiléfte behavioral coupling uses a
phasic signal (the moment the signal appears), the envieatahcoupling uses a tonic signal (the
whole time the signal is present). This way, both couplingsl@ function with the same inputs
but used differently. Of course, the question of the cohegesf what is learned is asked : if the
robot is doing something wrong (e.g. going away from a reseur needs) the experimentator
will display an angry face and the robot will learn at the saime that its behavior was wrong
but also that the place it is in has to be avoid. The problerhdg tusually, only one of the two
learnings was intended by the experimentator. Nonethetessuse of the continuous nature of
neural networks learning algorithms, the coherence of ¢laening should not be reached at the
early stages of the interaction but rather for the more @bast ones. A place will have a well
defined emotional value (given by the social referencingy drthe reinforcement signal it re-
ceives is coherent over time. In conclusion, we describegstesn where a human interacting
with a robotic head is able to help a mobile robot to learnedéht navigation tasks. Yet, one can
argue that in these experiments, there is no real interatt@ween the experimentator and the
robot. The facial expressions are used more as commanditieaaction signals. In a sense, the
robot’s behavior acts like a communication signal on theegixpentator which reacts to it in order
to improve the robot’s learnings. But in a "real” interactjadhe robot should be able to express
its internal states in order to give the experimentator monfermation about how it is dealing
with its environment. Future works will focus on the need ohare realistic interaction where a
bidirectionnal communication must exist between the hu@nach the robot. The robot head can
express the robot internal state and it can mirror the huraeialfexpression. The problem is that
currently, the robot head always mirror the human faciareggion to allow the experimentator to
see that his/her mood has been well understood by the rollotviAg a real interaction means to
find a solution for expressing something related both to #meessive feedback of the experimen-
tator and the robot’s internal state. Control of the expoesmitensity and its duration is a lead we
will explore. Moreover, for the moment, the robotic head dimel mobile robot are two distinct
devices. Having a more sophisticated and realisitic seteuytd have a major impact on the way
the human and the robot interact.
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