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Abstract. Inspired by the emotional conditionings performed by the
amygdala, we describe a simulated neural network able to learn the mean-
ing of a previously neutral stimulation. A robot using this neural network
can learn the conditioning of a non specific sensor activated by the ex-
perimentator and its internal state of pain or pleasure. This biologically
inspired adaptative and natural way to interact with the robot is tested
with a mobile robot learning navigation tasks in a real environment.

1 Introduction

This study focuses on the interest of an adaptative and biologically plausible
neural network used to interact with a robot in a non predifined but meaning-
full way. The ability to give a meaning to a non specific stimulation is used
by the robot as a source of information to improve its behavior. This learning
by interaction mechanism is congruent with neurobiological studies of emotional
conditioning. A large number of studies have shown the implication of the amyg-
dala in emotional conditioning [13] and specifically for both aversive [6,9] and
appetitive [4,5] emotionally conditioned behaviors. Anatomical studies [18] have
also shown that the amygdala afferent neural pathways are carrying information
for both aversive and appetitive events. The main role of amygdala is to give a
positive or negative emotional valence to incoming stimulations [17]. Among the
many functions of these emotional conditionings, one is to use them to regulate
neuromodulation of learning. Computational models of these mechanisms can be
found in [2,14]. If the robot is able to express its positive or negative emotional
internal state, interactions with the experimentator can teach it the meaning of
the stimulation of a sensor through classical conditioning [19-21]. Later activa-
tion of this sensor can then be used as an external source of positive or negative
rewards [3,8]. Our aim is to illustrate the potential of this interactive learning
neural network in situations of interaction between the robot and the human. In
homing tasks, the robot can easily get lost when moving outside the attraction
basin build around the goal. Though, conditioning a non specific sensor to the
expression of an internal state of pain or pleasure allows the experimentator to
reinforce (positively or negatively) the robot’s behavior interactively and teach
it to reach the goal. Figure 1 shows the robot and its environment. Section 2 de-
scribes the robot sensorimotor navigation and motivation system. Results from
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Fig. 1. The experimental set-up. The environment is a 6m x 8m area. The robot is a
Robulab 10 from Robosoft with a 360 degree pan camera and a magnetic compass.

robotic experiments with traditional supervised learning are shown in section 3.
Section 4 describes how to give a meaning to a non specific sensor. Results from
robotic experiments with interactive learning using the conditioning of the non
specific sensor are shown in section 5. Section 6 contains the discussion.

2 DMotivated sensorimotor navigation

Following the animat appraoch [7], the robot is viewed as an animal motivated
to survive by fullfilling its needs [16]. The robot must maintain a set of artificial
physiological variables inside safe levels. It has to find in its environment the sim-
ulated resource corresponding to its active motivation. When one of these vari-
ables gets too low, a pain signal is produced and expressed on a display screen
as a corresponding iconic face. Similarly, when the robot finds and consumes
a resource it was looking for, a pleasure signal is produced and expressed. The
navigation architecture is based on sensorimotor visuo-motor learning [11,12] in-
spired by neurobiological models of rodent visual navigation [10,15]. The robot
has to manage raw sensory inputs to construct real environment place cells.

Synthetic physiology and motivational system : a synthetic physiology
simulates the physiological variables dynamical evolution (e.g. food level). These
variables levels decrease with time (as the robot consumes its internal resources)
and increase by recolting the corresponding simulated resource. Figure 2 de-
scribes this system. A low-level drive system reacts to the physiological state
perception e.g. as food level gets low, hunger drive gets high. A distinction is
made between the inner drives, drives as they are computed directly from the
physiological variables levels, and integrated drives, temporal integration of the
inner drives. The integrated drives offer the possibility to modulate drives ac-
cording to higher order sources of information without manipulating the physio-
logical state of the system. The most active drive dictates the robot’s behaviour.
When a needed resource is detected, the corresponding physiological variable
level increases and the temporal integration of the corresponding drive is reset
to 0. A pain signal (equation 1) is produced if the level of one physiological vari-
able is critically low (below a definite threshold). A pleasure signal (equation 2)



hal-00538402, version 1 - 22 Nov 2010

physiological /inner ~ temporal expressed
varilables drives integration drive
-€

" Drives
@ integration neuron e
@ non-linear neuron (threshold=T)
—Y »excitatory link of weight w (when absent, w = 1)
—Y einhibitory link of weight w (when absent, w = 1)

Fig. 2. Physiological variables levels decrease with time. Inner drives are the comple-
mentary values of physiological variables levels. Integrated drives can be manipulated
whitout affecting the inner states of the system and the expressed drive is the most ac-
tive integrated drive. Pain results from the criticaly low level of a physiological variable
and pleasure from the satisfaction of an active drive.

is produced when consumption of a resource satisfies a physiological need. A dis-
play interface, allows the robot to express visually, via prototypical expressions
of anger and joy, its internal state of pain and pleasure.

Pain — {1 if PV,(t) < pain threshold ()

0 otherwise

1 if Rgetect * Wrqd + Dy % wyq > pleasure threshold
0 otherwise

Pleasure = { (2)

PV, (t) is the level of the physiological variable n at time t .The pain threshold
is a fixed low value. Rgetect €quals 1 when the resource R is detected and D,
equals 1 when the drive corresponding to resource R is active. Pleasure thresh-
old is higher than both w,.q (connection weight from resource detection) and wy,q
(connection weight from the winner drive) acting as an ” AND” operator.
Visual navigation : the visual system is a simulated neural network able to
characterize different places of the environment learning place cells [15] i.e. neu-
rons that code information about a constellation of local views (visual cues) and
their azimuths from of a specific place in that environment [12]. Place cells ac-
tivity depend on the recognition levels of these visual cues and of their locations.
A place cell will then be more and more active as the robot gets closer to its
learning location. Associative learning allows sensorimotor learning (place-action
groups on figure 3). Place cells are associated with the goal direction to build a
visual attraction bassin around the goal. Due to the generalization property of
place cells, only a few place cells are necessary to construct an attraction basin.
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Fig. 3. Sensorimotor visual navigation : a visual place cell is constructed from recogni-
tion of a specific landmarks-azimuths pattern and an action (a direction) is associated
to it. When one neuron of the Place-Action group receives a neuromodulation from the
reward (positive reward in this example), it learns the association between the current
robot location and its direction. The positive conditioning group activates the learned
direction while the negative conditioning inhibits the learned direction.

3 Robotic experiments : results and limitations of the
supervised learning

The environment contains one simulated resource (specific color on the ground).
A supervised procedure allows the robot to learn sensorimotor associations (place-
actions) around the resource. If the action associated with each place cell is a
movement in direction of the resource, an attraction basin is constructed. As
long as the robot is in the attraction basin, it can discriminate correctly the
different learned places and its actions will lead it to the resource. However, if
the robot is too far away from the resource it needs and thus from the associated
learned places, it is not able to discriminate them correctly. Figure 4 shows the
robot trajectories. When it is placed inside the attraction basin, the robot reachs
the resource. When it is placed too far away from the places it has learned, the
robot is lost. Being lost, the robot navigation is similar to a random navigation.
The robot thus needs a mecanism to extend the frontiers of the attraction basin
it has learned.

4 Learning a reinforcement signal via stimulation of a
non-specific sensor

Looking at the robot performing its task, the experimentator is able to evaluate
if the robot is doing well or badly i.e. going toward or away from the needed
resource. While the robot is lost, reinforcing its actions positively when it is
heading toward its goal or negatively otherwise, is a natural, interactive and
less constraintfull way to teach the robot to perform a given task than totally
supervised learning. But in order to do so, the robot has to learn what is a
positive or a negative reinforcement. Our objective is to show that the robot can
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Fig. 4. Trajectories of the robot. Place-action associations are learned 0.8 meter from
the goal and the attraction basin is approximately 4 meters wide. When the robot
is inside its attraction basins, it successfully navigates toward its goal. Outside the
attraction basin the robot is lost. Even with this raw strategy, the robot sometimes
reachs the attraction basin (by mere chance) and then converges toward its goal. These
trajectories are obtained via infra red video tracking.

learn the meaning of an initially non specific sensor (NSS) stimulation through
stimulus-stimulus conditionings similar to those performed by the baso-lateral
amygdala. Because the robot has the ability to express its internal states of
pain and pleasure, the experimentator disposes of the information needed to
teach the robot to associate consistently a non-specific sensor stimulation to
its internal state of pain or pleasure. The robot learns the association between
this stimulation and its internal state making the sensor a specific one through
interactive associative learning. The sensor is said to be non specific because
the experimentator is entirely free to choose to which internal state he wants to
associate the sensor. After this learning has been made, the robot can use this
stimulation to reinforce accordingly its behaviors. This learned reinforcement
signal can be used to perform an interactive semi-supervised learning in case
the robot is lost and cannot use its supervised learned attraction basin to reach
the resource. Figure 5 shows the neural network used to enable this learning.
A conditioning neuron functionning with the Widrow and Hoff learning rule,
the least mean square learning rule [21], uses the difference between its output
and the desired output to compute the amount by which the connexions weights
have to be changed (weight adaptation due to learning). In our case, conditioning
neurons using the least mean square rule learn (equation 3) to predict the pain
and pleasure signals from the NSS activity :

Aw =¢ex S(Sd—95) (3)

Aw is the difference between the old and the new weight, € is the learning rate
(neuromodulation of the neurons), S is the output (of the conditioning neurons)
and Sd the desired output (the pain or pleasure signal). As shown in figure 6,
the reward signal associated with the sensor activation is the difference between
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Fig. 5. NSS conditioning : neural network used to learn the association of the sensor
stimulation and the robot internal state. In this example, a needed resource is detected
and a pleasure signal is thus produced (the active drive will then change) The NSS
sensor is activated. The robot learns the conditioning of the sensor to its internal
pleasure state. The generated reward is used as an AcH neuromodulation signal to
control learning of the sensorimotor navigation.

positive and negative (associated with pleasure and pain) predicted rewards.
This network learns only when the conditionnal stimulus is present (stimulation
of the sensor). The learning control of this network is designed such as when
the inconditionnal stimulus is present (the internal state of pain or pleasure),
the associated conditioning network learns fast (¢ = 1) and in absence of the
inconditionnal stimulus, the associated conditioning neuron learns slowly (e =
0.01). Furthermore, when one inconditional stimulus is present (e.g. pain), the
conditioning neuron associated to the other inconditional stimulus (pleasure) also
learns (e = 0.1). This enables this network to learn fast, to forget slowly without
any new conditioning and to forget fast in case of a new conditioning. This gives
flexibility to this network, allowing the online reconditioning of the NSS from
one internal signal to the other. Someone interacting with the robot can teach it
the association of two different kinds of reinforcement with the NSS. If the NSS
is associated with the pleasure signal expressed by the robot, activation of the
sensor gives the robot a positive reinforcement signal. When the robot is lost
but is heading toward its goal, activation of the sensor allows the robot to learn
visually where it is (visual place cell learning) and associate this perception with
its current direction (place-action R+). If however the sensor is associated with
the pain signal, activation of the sensor gives the robot a negative reinforcement
signal and the robot learns a place cell and associates it with the inhibition of
its current direction (place-action R-).
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Fig. 6. Adaptative learning of how to give a meaning to the NSS (in terms of positive
or negative reward). We first conditioned the NSS to predict the robot’s pleasure state.
Then, the NSS is activated during the robot’s pain expressed state. The pleasure con-
ditioning is quickly forgotten while the conditioning between the NSS and the robot’s
pain expressed state is learned. The NSS now produces a negative reward.

5 Robotic experiments : learning interactively to reach a
goal when the robot is lost

In the following experiments, the robot uses the attraction basin learned in
the first experiment. The robot was first trained to associate the NSS with the
pleasure signal and thus using it as a source of positive rewards. If the robot
seems lost, the experimentator stimulates the sensor whenever he judges the
robot’s behavior as being the right one. Figure 7 shows the robot trajectories.
All trajectories are obtained by infra red video tracking.This interactive learning
allows to enlarge to attraction basin around the goal. The robot is now able to
reach the goal from farther distances. The robot was then trained to associate the
NSS with the pain signal and thus using it as a source of negative rewards. If the
robot seems lost, the experimentator stimulates the sensor whenever he judges
the robot’s behavior as being wrong. Figure 8 shows the robot trajectories.

6 Conclusions and perspectives

Robotic experiments are a way to test psychological or neurobiological mod-
els. In particular, models of emotional conditionings. The NSS conditioning is
inspired by the way baso-lateral amygdala performs stimulus-stimulus condition-
ings. Figure 9 shows how the robotic control architecture presented in this paper
can be understood in terms of a network of cerebral structures. Pain and ple-
saure signal are constructed from the robot physiological state (hypothalamus).
The baso-lateral amygdala learns stimulus-stimulus associations i.e. it learns the
conditioning of the NSS perception by the pain or pleasure signals. The ventral
tegmental area receives connections from the amygdala and send neuromodula-
tion connections to the amygdala (conditioning learning), the parahippocampus
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Fig. 7. Trajectories of the robot when it is lost but learns interactively to reach its
goal. The robot is placed outside the attraction basin and the sensor is associated with
the robot’s positive emotional state. When the robot behavior is considered as being
7good” (e.g. heading toward the attraction basin around the goal), stimulation of the
sensor allows the robot to reinforce the current direction.

(landmarks-azimuths learning), the enthorinal cortex (place cells learning) and
the nucleus accubens (sensorimotor learning). Furthermore, these experiments
showed how someone interacting with a robot could use information displayed by
this one about its internal state to teach it the meaning of an otherwise neutral
stimulation. The experimentator is able to make the conditioning of any kind of
non specific sensor to any kind of the robot’s expressed internal state. Different
stimulations could then be associated with different robot internal states. One
stimulation could also be associated with a combination of expressed internal
states. Furthermore, these conditionings allow a very easy and natural way to
interact with the robot and to assist its learning.

In this experiment, we used simplified versions of joy and anger expressions to
express the pleasure and pain signals. But as the signals to express become more
abundant or if the realism and complexisity constraints increase, the simplifica-
tion we used (pleasure equals joy and pain equals anger) becomes an issue of its
own. A very promising future development of this architecture would be to give
the robot the ability to monitor its progress toward its goals via predictions of its
goals through its different perceptions (mainly visual and proprioceptive). Being
able to evaluate its behaviors according to its goal should be one of the major
source of information to bootstrap the development of emotional behaviors and
thus of a greater autonomy. But even if a self monitoring system coupled with
a reinforcement learning mechanism is sufficient to discover and learn a solu-
tion [1], the interaction with the human in a non predefined way allows the use
of the same sensor in different ways a thus speed up learning. In future studies,
we plan to test the interactions between the interactive emotional signals (via a
non specific sensor and/or via emotional facial expressions recognition) and the
robot’s own emotional state issued from its automonitoring abilities.
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Fig. 8. Trajectories of the robot when it is lost but learns interactively to reach its
goal. The robot is placed outside the attraction basin and the sensor is associated
with the robot’s negative emotional state. When the robot behavior is considered as
being ”bad”, stimulation of the sensor allows the robot to learn to inhibit the current
direction. Eventually, and by elimination, the robot will head for the attraction basin.
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Fig. 9. The robot control architecture can be understood as a network involving the
following cerebral structures : inner perception of physiological variables are done by the
hypothalamus. The baso lateral amygdala learns the conditioning of the NSS with pain
or pleasure signals. The ventral tegmental area neuromodulates this conditioning as
well as the visual place cell learning. From the parahippocampus (landmark-azimuths)
to the enthorinal cortex (place cells). This conditioned signal is used as a reward to
control the learning of sensorimotor associations in the nucleus accumbens which are
finally used for motor control.
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