PALADYN Journal of Behavioral Robotics

T~
VERSITA

Research Article - DOI: 10.2478/s13230-013-0111-y JBR - 3(3) - 2012 - 156-171

A Synchrony-Based Perspective for Partner Selection
and Attentional Mechanism in Human-Robot Interaction

Syed Khursheed Hasnain'*,
Ghiles Mostafaoui’ f,

Philippe Gaussier'

Abstract

Future robots must co-exist and directly interact with human beings. Designing these agents imply solving hard

problems linked to human-robot interaction tasks. For instance, how a robot can choose an interacting partner among
various agents and how a robot locates regions of interest in its visual field. Studies of neurobiology and psychology
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collectively named synchrony as an indispensable parameter for social interaction. We assumed that Human-Robot
interaction could be initiated by synchrony detection. In this paper, we present a developmental approach for analyzing
unintentional synchronization in human-robot interaction. Using our neural network model, the robot learns from a
babbling step its inner dynamics by associating its own motor activities (oscillators) with the visual stimulus induced

by its own motion. After learning the robot is capable of choosing an interacting agent and of localizing the spatial
position of its preferred partner by synchrony detection.

Received 14-12-2012

Accepted 10-04-2013
Keywords

Human Robot Interaction - Synchrony * Focus of Attention + Partner Selection - Dynamical Systems - neural networks

1.

Introduction

Traditionally, robots are designed for a specific set of tasks in determin-
istic and highly constrained environment. The majority of these robots
are used in the industry where the accuracy and speed are the prior-
ity. With technology and artificial intelligence advancements, this field
is now looking to further challenges in non-constrained human social
environments implying more flexible control systems making it possible
to build adaptive agents able to learn dynamically and to achieve new
tasks [1]. These future robots may co-exist with humans as a part of
our social life and are expected to behave as companions by sharing
the same working place in offices, factories and homes [2].

As the robots begin participating in human social environments, agency
and sociality become very important [3][4]. Indeed, designing robots
that dynamically interact with humans implies solving tremendous
harsh questions. Among these issues, we will discuss two questions.
First, how can robots select an interacting partner among many interac-
tants? Second, how can they focus their attention on specific regions
of interest? In other words, how can the robots be able to discriminate
the relevant visual stimulus?

To tackle these two problematics, we will study the notion of "syn-
chrony”, and more precisely, "unintentional synchrony” which was
suggested by both psychological studies of dyadic interactions and
neurobiological data on motor coordination as an important parameter
for human-human interaction.
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In this paper, we study, in a developmental perspective, the uncon-
scious or the unintentional synchronization during human-robot interac-
tion. The presented neural network architectures allow the robot to first
learn his own movements (babbling step) by associating its sensori-
motor (proprioception) information with the induced visual stimuli (op-
tical flow), second, be capable of automatically selecting and locating
(focus of attention) a partner among many interactants using synchrony
detection. In other words, we use immediate synchronous imitation
(adaptation of other's synchronous behavior) as a communication tool.
The robot imitates the other agent if it detects synchrony between its
internal dynamics and the interactant's movements.

The paper is organized as follows: After a global overview on synchrony
in dynamical systems in section 2, the experimental setup and meth-
ods are described in section 3. In section 4, a first simple architecture
for human-robot interactions is presented. The architecture for partner
selection on the basis of synchrony detection is explained in section 5.
In section 6, the model of attentional mechanism or Focus of Attention
(FOA) is detailed. Finally, before concluding, the experimental results
are shown in section 7.

|2. Synchrony in dynamical systems

Synchronization can be defined as an adjustment of frequency of
oscillating objects due to coupling (energy) between them [5]. It is
a non linear phenomena and it is common in physical and biological
systems where two or more oscillating systems interact with each other
and start to move together by adjusting their frequency [6][7]. The
earliest known scientific discussion of synchronization started in 1657
when the famous Dutch physicist Christiaan Huygens observed and
described the synchronization phenomenon. He discovered that two
pendulum clocks mounted on a common base (beam) synchronize
and move at the same frequency in the opposite direction. He did
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not only give the exact description but also the explanation of mutual
synchronization: clocks were synchronized (anti phase) because of the
coupling through the beam (imperceptible vibration of the beam) [5][8].
Blekhman examined experimentally a similar system and found two
possible stable synchronization states (in-phase and anti-phase)[9]. J.
Pantaleone studied a variant of Christiaan Huygens’s original system,
he used two pendulum metronomes (with aimost same frequency)
and deflected the two pendulum bobs in the opposite direction, after
few seconds of asynchronous movements the system evolved to
steady state in-phase synchronization. Pantaleone observed some
very interesting properties of synchronization during his experiments;
1) The anti-phase synchronization state can be made possible in
metronomes system either by enhancing the damping (weak coupling)
associated with the base motion or by going to very large oscillation
frequencies. 2) If the natural frequencies of the two pendulums differ
by more than a few percent, synchronization will not occur. 3) If the
natural frequencies of two metronomes are different significantly but
within an acceptable range, it leads to a synchronized state but with
constant time lag between two oscillators [6]. As we will see in the
next sections, most of these observations made by Pantaleone are
also verified in our experiments.

Synchronizations are ubiquitous in nature. From a biological view, syn-
chronization in coupled oscillators can be seen through out the natural
world and specially conspicuous in living things. A good example of
synchronization in nature is the flashing of fireflies. Thousands of cou-
pled oscillator can be seen in the form of fireflies (paradigm of pulse
coupled oscillators). At night, these insects gather at some place and
flash in synchrony. Each insect has its own rhythm, they interact each
other only when one sees the sudden flash of another and shift its
rhythm [10]. Cricket chirping is another example of pulse coupled os-
cillators [11]. Many examples of the coupled oscillator can be found in
biological systems: in the eighteen century, Jean-Jacques Dortous de
Mairan discovered the circadian rhythm by observing the day and night
oscillation of haricot bean leaves [12]; Birds in flocks synchronize take-
off and landing [13]; Male and female mosquitoes synchronize wing
beats [14]; pacemaker cells beat in the heart together [15] etc.

2.1. Synchrony in social interactions

Synchrony in dynamic systems, such as social systems, is a recipro-
cal adaptation of behaviors (temporal structures) between interactants
[16]. During human communication some nonverbal languages like
gestures, facial expressions and nodding are also involved.

As stated by L. Glass: "Complex bodily rhythms are ubiquitous in liv-
ing organisms” [17]. But the arising query is how these synchronized
behaviors or rhythms interact in human social communications [18].
For instance, singing in unison is a highly synchronized form of social
interaction. Viktor et al. examined and unveiled group dynamics un-
derlying temporally coordinated actions (choir singing). The authors
revealed that phase synchronization in heart rate variability (HRV) and
respiration was much higher during unison singing. They concluded
that respiratory and cardiac coupling patterns render the physiological
foundation for interpersonal temporally coordinated actions [19].

Fred Cummins augmented this discussion with an instance of aperiodic
synchronization of complex action. He found aperiodic synchronization
of complex action in his experimental task of synchronous speaking
[20].

Several researches in psychology took into account the concept of syn-
chrony in early human social interactions, they studied the temporal co-
ordination of nonverbal behaviors as body movements, vocalizations,
gaze and many others [21]. According to psychologists, when two hu-

/
VERSITA

mans interact or communicate with each other, they do not only use
speech to convey the content of a message but also employ a large
variety of non-verbal behaviors [22], for example: hand movements,
pauses during discussion, facial expressions that show their attitude
and their level of attention towards the partner etc. An important pa-
rameter of non-verbal communications is the temporal correlation or
synchrony between the behavioral stats of the interactants [23]. An
interesting aspect of these synchronized behaviors during human in-
teractions is its unintentional nature.

Moreover, developmental psychology also considered synchrony as
an essential parameter for interactions between mothers and their
children. In fact, if the mother loses synchrony, infant struggles to
sustain the interaction [24]. Infants synchronize their legs motion
with adult speech [25]. In addition, synchrony detection mechanism
in young infants plays a pervasive role in learning and cognitive
development [26] (word learning [27], object interaction skills [28],
self-awareness and control [29], learning related to self [30] etc.)

From a neurobiological point of view, neuro imaging techniques enable
us to observe synchrony from local scale (brain’s local field potential
and between distant brain regions) to inter-individual scale (in a social
setting) [31]. Several studies used fMRI and EEG to record the brain ac-
tivities during social interaction. Hasson et al. used fMRI neuro imaging
to scan the brain activities of 5 participants (isolated) during watching
a popular movie, strong functional and anatomical similarity was found
in individuals who were immersed in the same natural settings [32].
Stephens et al. scanned the brain of a speaker and a listener. The au-
thors revealed spatial and temporal correlation between the two brain
signals during the speakers monologue. [33].

Recent work of Dumas et al. [34] using hyperscanning has revealed
the emergence of inter-brain synchronization across multiple frequency
bands during social interaction. The authors selected 11 dyads and
recorded the brain activities during social interaction, more precisely,
during spontaneous exchanges (between two participants) of intran-
sitive bi-manual movements. Examining the phase synchronization
between the two brains, it was revealed that these synchronous ex-
changes exhibit the emergence of an interindividual brain-web (linked
to the sensorimotor information) across several frequency bands. Sym-
metrical patterns were found in low frequency bands (may be due to
coordinated dynamics of hand movements) and asymmetric in higher
frequency.

Interpersonal motor coordination studies also point out this fact of very
low level mechanism of unintentional synchronization or communica-
tion. For instance, when people walk together, they synchronize un-
consciously their foot steps by steadily regulating their step-size or fre-
quency [35]. Neda et al. investigated the dynamics of rhythmic ap-
plause and the development of synchronized clapping, they observed
that after a few seconds of random clapping people synchronizes grad-
ually [36]. Moreover, in [35] Issartel et al. analyzed interpersonal mo-
tor coordination of participants instructed to not synchronize with each
other. Interestingly, subjects could not abstain unintentional coordina-
tion. Consequently, we can deduce that immediate unconscious motor
coordination could not be avoided when the subjects share the visual
information.

Recently, Varlet et al. investigated social motor coordination of patients
suffering from schizophrenia. The participants are advised to oscillate
hand-held pendulums from the wrist. The results demonstrated that
patients intentional motor coordination was altered while their uninten-
tional motor-coordination was retained. This study concludes that un-
intentional motor-coordination preserves even for subjects affected by
social interaction disorder [37].
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2.2. Synchrony in Human-Robot Interaction

Taking into account the importance of synchrony in human-human
interactions, numerous works used synchrony in the field of Human-
Robot interaction. Andry et al. highlighted the importance of a learning
rule associated with synchrony prediction, they presented a biologically
inspired architecture proposing rhythm detection as an internal reward
for learning [38]. Prepin et al. proposed an architecture to detect the
level of synchrony between a robot ADRIANA (Adaptable Robotic for
Interaction ANAlysis) and a human. It was employed as a reinforce-
ment signal for learning [39]. Blanchard et al. improve the reactivity
of two robots by a velocity detection system capable of synchronizing
the movements of the agents [40]. Qiming Shen et al. studied motor
interference and motor coordination in human-humanoid interactions
for different types of visual stimuli (robot, pendulum and moving dot).
The authors concluded that participants tended to synchronize with
agents having a better appearance, which means that a robot per-
ceived as close as possible to a social entity may facilitate human-robot
interaction [41]. In the same line, Marin et al. showed motor resonance
between humans and artificial agents (robots) could enhance and
optimize the social competence of HRIs [42]. Michalowski et al.
developed a dancing robot to analyses the properties and significance
of synchronized movement in general social interaction [43]. |kegami
and lizuka [44] used the genetic algorithm technique and showed
that coupling and turn-taking between two agents are sensitive to
the dynamics of interaction. Crick et al. programmed a robot for
drumming (with human drummers) by integrating multiple sensors
input (oscillators). They showed that precise synchronization between
humans and robots can be achieved by fusing multiple sensors
input although the incoming data is imperfect [45]. Inspired by the
infants development, Rolf et al proposed a model of bottom-up visual
attention guided by audio-visual synchrony [46]. Moreover, Hafner and
Kaplan presented the idea of interpersonal maps. These maps are
the geometrical representation based on one’s own behavior and the
others. Using these maps, different types of interactions (for instance
imitation) can be detected [47].

In the line of this state of the art, we assumed that unintentional syn-
chronization could play a pervasive role for initiating human-robot inter-
actions.

|3. Materials and methods

A minimal experimental setup is used to avoid complexity (Figure 1)
and focuses on the one problem (real size application is the focus of
ongoing work and introduce a lot of other issues that we will discuss in
the conclusion). The experimental setup includes a basic automaton,
a Nao humanoid robot and a human partner. Practically, Nao robot
has the capability of moving with multiple degrees of freedom but we
used one dimentional arm movement only (up-down, one degree of
freedom). The basic automaton (one degree of freedom) has the ability
to oscillate at different frequencies. Instead of Nao's camera (frame rate
limited to 10 Hz through an ethernet connection) an external camera is
used to allow our architecture to work on 30 Hz.

To analyze synchrony, we need to investigate the dynamics of interac-
tion between two signals. To do so, we use the Phase Locking value
(PLV) which is a practical method presented by Lachaux et al. for de-
tecting EEG synchrony in a band of frequencies [48]. The PLV for two
signals is defined by

(b)

Figure 1. Experimental setup. (a) Nao (b) a basic automaton (1 degree of free-
dom) (c) & (d) Overall setup for human-robot interaction.

N
PLVey = oI 3 explilg — 9,)) 1)
=1

Where N is the number of samples and ¢, — ¢, is the phase difference
between two signals. The PLV value is close to 1 for synchronized
signals and approaches 0 otherwise.

Videos of our experiments can be
http://www.etis.ensea.fr/neurocyber/Videos/synchro/

found on:

|4. Human Robot Interaction using optical
flow

As a starting point for human-robot interactions, a dynamical interac-
tion model was developed to synchronize two agents influencing each
other. Specifically, the proposed architecture permits the Nao robot to
adopt the frequency and phase of its partner of interaction. A classical
optical flow algorithm is used to estimate the velocity vectors of the per-
ceived motions (in the robots visual field) [49]. These estimated vectors
act as visual stimuli and inputs to the proposed architecture.

4.1. The oscillator Model

As shown in Figure 2(a) (dotted box), in our architecture, an oscillator
module [50] controls the Nao’s arm movements. It can also be seen
as the signal representing the Nao's internal dynamics. It consists two
neurons N'1 and N2 inhibiting each other proportionally to the variable
B. The oscillating frequency is a function of the variables a1, a2 and

B:
Ny(n +1) = Ny (n) — BNa(n) + a 2)

Na(n + 1) = Ny (n) + BNa(n) + a2 (3)
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Figure 2.

(c) Optical Flow Image

(d) Real image

(a) Oscillator model (b) Dynamical Interaction model (c) Positive and negative activities deduced from optical flow: Upward movements (positive) are

shown as fulfilled black color pixels, downward movements (negative) are shown by unfilled pixels. (d) A real image captured by the camera

In addition, reservoir of oscillators (echo state network) could be used
to work with a larger range of frequencies.

4.2. Dynamical Interaction Model

As shows in Figure 2(b), the oscillator is connected to Nao's arm and
oscillates at its own frequency and amplitude. Motion in the visual field
of Nao is estimated by an optical flow algorithm, velocity vectors are
then converted into positive and negative activities (Figure 2(b)). If the
perceived movements are in the upward direction, the oscillator gets
the positive activity and its amplitude increases on the positive side
depending on the induced quantity of energy (motion). On the con-
trary, if the negative activity is perceived, the amplitude goes down.
Figure 2(c and d) is a snapshot taken during the experiment illustrating
positive and negative activities in the visual field deduced using the op-
tical flow velocity vectors. There are two moving objects in the field
of view of Nao. One moves upward and induces positive activities
(shown by filled black color pixels) whereas the other moves down-
ward and induces negative activities (unfilled pixels). These positive
and negative activities can be learnt by the robot and modify the os-
cillator accordingly. When an agent interacts with a motion frequency
close to Nao’s frequency, Nao's oscillator can be modified (frequency
and phase) within certain limits. Otherwise, it continues to its default fre-
quency. The mathematical equation of the oscillator can be rephrased
as:

Ni(n +1) = Ny(n) — BNa(n) + a1 + (4)
Where f’ is the induced energy computed by an integrating, over time,
all the active pixels in the image. This function can be defined as a
time representation of the quantity of energy produced by the positive
and negative activities in the image. f’ may be negative or positive.
It's worth noticing that this direct feeding of the motor controller by (')
reflects the influence of the visual stimuli on Nao's actions which makes
the robot changing its behaviors (regarding to the motion in the visual
field) in an unintentional manner.

It's important to note that the influence of the visual stimuli ', is
weighted by a coupling factor (or coupling scaling factor) Sy (see Fig-
ure 2(b)). Higher values of S¢ induce a bigger influence of the visual
stimuli on the robot motor controller. Consequently, the robot will be
able to synchronize with a larger range of frequencies.

Figure 3 and Figure 4 illustrate the results of our experiments for two
cases: first for Human-Nao interaction and second for Automaton-Nao
interaction. Figure 3(a) details the motion signals of both Nao's arm and
the human (arm or hand) while entraining each other. First, movements
of both agents are not synchronized. Consequently, PLV (measure of
synchrony) shows lowest value (see Figure 3(b)). As shown in Fig-
ure 3(a) and 3(b), during the interaction between Nao and the human
both are synchronizing successively as time passes. The increasing
tendency in PLV values reflects the emerging synchrony between the
two agents. Figures 3(a) and 3(b) also illustrate that, after a certain
time, both interactants are fully synchronized and the corresponding
PLV values are at its maximum.

Lissajous curves show the dynamics of the two signals. If the signals
have the same frequencies, their Lisssajous curve will be a straight line
with an angle of 45 degree with the horizontal axis. If the signals have
the same frequencies but with a small phase shift, the lisssajous curve
take the form of an ellipse. Gradually, increase in the phase shift makes
the ellipse wider, with a phase shift of 90 degree, the curve becomes a
circle. In our case, if the two signals are identical and synchronized with
each other with small phase shift then the Lissajous curves between
the signals of robot and the interactant should be an ellipse. Figure
3(c) shows Lissajous curve between N(t) (Nao's oscillation) and H(t)
(human’s movements). The elliptic shape of the curve indicates that
both signals are aimost identical. For this experiment, Nao’s standard
frequency was 0.428 Hz and human oscillations were between 0.4615
Hz (7.8% higher than Nao's frequency) to 0.476 Hz (11% higher) and
the scaling multiplying factor (Sy) for f” was 0.15.

Figure 4 shows the interaction and synchronization between Nao and
the automaton. Figure 4(a) shows the motion signals of both automa-
ton and Nao’s arm. Similarly (like for human robot interaction), Automa-
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Figure 3. Robot (Nao)-Human interaction: (a) Motion signals of the human (dotted line) and the Nao's modifiable oscillator (solid line). (b) PLV measurement. (c)
Lissajous curve N(t) (Nao' oscillation) and H(t) (Human's movements). The elliptic shape of the curve indicates that both signals are almost identical.
(d) Lissajous curve between two different time values of Nao (N(t) and N(t + 5)).
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Figure 4. Nao-automaton interaction: (a) Motion signals the automaton and the Nao's modifiable oscillator (b) PLV measurement (1 for complete synchronization
and 0 for completely asynchrony) (c) Lissajous curve between N(t) (Nao's oscillation) and A(t) (automaton’s movements). (d) Lissajous curve between
two different time values of Nao (N(t) and N(t + 5)).
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Motion signals of Nao (Solid line, 0.428 Hz) and Automaton (Dotted line, 0.4545 Hz)
Frequency of Automaton is 6% higher than the frequency of Nao
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Figure 5. (a) and (b) detail the relationships between the quantity of coupling energy and the synchronization time of two agents. Figure 5(a) shows the motion
signals of Nao (solid line, 0.428 Hz) and Automaton (dotted line, 0.4545 Hz), it can be observed that with low scaling for coupling energy (0.15) two agents
take a long time (4.5 cycles) to be synchronized (fig 5(al)). As the scaling factor for coupling energy increases to 0.25 and to 0.3, synchronization time
decreases to 4.5 cycles to 4 cycles respectively (fig 5(a2,a3)). Further increases in coupling energy (0.5) reduce the synchronization time to only 1 cycle.
However, this higher energy induces saturation (clipping) in the Nao’ signal (fig 5(a4)).

ton and Nao are unsynchronized initially. Nao gradually gets the rhythm
and finally synchronize after some time.

The human robot interaction seems to be more dynamic because hu-
man changes his frequency and amplitude continuously. Consequently
Nao has also to adopt new frequency continuously. In fact, in the case
of human-robot interaction, it is clearly observed that both agents got
rhythmic motion in less time compared to the Nao-automaton interac-
tion. It is due to the fact that the automaton has a fixed frequency,
however, in a human-robot interaction both agents modify and correct
themself in order to be synchronized.

Interesting facts are observed during the experiments, some of these
observations were also made by Pantaleone in his study of metronome
synchronization [6]:

1) Our experiments show that the synchronization time between two
agents is directly proportional to the coupling energy (f). Optimized
synchronization time can be achieved by scaling (by Sy) the coupling
energy (f’). Figure 5(a) and Figure 5(b) details the relationships be-
tween the strength of coupling energy and the synchronization duration

of the two agents. Figure 5(a) shows motion signals Nao (solid line)
and Automaton (dotted line). Initially, Nao is oscillating with its default
frequency. As the automaton starts to move with a different frequency
(6% higher than the Nao), Nao starts synchronizing with it. It can be
observed that with low scaling (Sy) of the strength of coupling energy
(0.15), the two agents take a long time to be synchronized (7 cycles of
2.2 seconds as in fig 5(a1)). As the scaling factor (Sy) for the strength
of coupling energy increases to 0.25 and to 0.3, synchronization time
decreases to 4.5 cycles and 4 cycles respectively (fig 5(a2,a3)). Fur-
ther increases in coupling energy (Sy = 0.5) reduce the synchronization
time to only 1 cycle. However, this higher energy induces saturation
(clipping) in the Nao's signal (fig 5(a4)).

2) Itis also interesting to know that if the frequency of the two agents (in
Pantaleon’s case, two pendulums) differs by more than a certain limit,
synchronization will not occur. It is worth noticing that by increasing the
coupling energy (by scaling Sy) feeding the Nao's oscillator, the range
of interacting frequencies (that can be synchronized with Nao) can be
expanded. With a low scaling of the strength of coupling energy, both
agents can be synchronized if their natural frequency differs by no more
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Motion signals of Nao (solid line, 0.428 Hz) and Automaton (Dotted line, 0.638 Hz)
Frequency of Automaton is 49% higher than the frequency of Nao
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Figure 6. (a) and (b) demonstrate the fact that how the range of interacting frequencies Af (difference of interacting frequencies) can be expanded by scaling the
coupling energy. (a) motion signals of Nao (solid line, 0.428 Hz) and Automaton (dotted line, 0.638), frequency of the automaton is 49% higher than the
frequency of Nao. It details that how the coupling scaling factor influences the interaction. Similarly, (b) compares the effect of increasing scaling factor

(coupling) on 4 different Af (6%, 29%, 49% and 72%).

than a few percent. Similarly, a high value of the scaling factor is needed
if the difference of natural frequencies is larger.

Figure 6(a) and Figure 6(b) illustrate how the range of interacting fre-
quencies (that could be synchronized) can be expanded by scaling the
coupling energy. Figure 6(b) demonstrates the influence of increasing
the coupling energy to four different Af, the interactant frequency is
then 6%, 29%, 49% and 72% higher than Nao’s frequency. It can be ob-
served that a scaling of Sy = 0.15 synchronizes only the agents having

a frequency which is very close to Nao’s frequency (Af = 6%). As we
increase the scaling factor to 0.3, for Af = 6%, the agents are synchro-
nized with little saturations (clipping) because this energy is higher than
the one required for this small difference of frequencies; for Af = 29%
the agents are synchronized with a little varying amplitude. The robot
Nao needs a little more energy to be synchronized perfectly. However,
others having Af greater than 29% remain unsynchronized. Now, the
coupling scaling is augmented to 0.5. This induces high saturation for
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Af = 6% and low saturation for Af = 29%, a synchrony is established
with a varying amplitude for Af = 49%.

For the experiment shown in Figure 6(a), the automaton frequency is
49% higher than the frequency of Nao. The plots of the Nao and Au-
tomaton signals illustrate the fact that a small scaling (0.15) of the cou-
pling strength can not synchronize the agents. As we increase the cou-
pling strength by scaling of 0.5, the agents synchronize with a varying
amplitude (little imperfection). A little more coupling strength (between
the scaling (Sy) of 0.5 and 0.7) could establish perfect synchrony as
shown in fig 5(a). However, If the strength of coupling energy is aug-
mented (by scaling of Sy = 0.9 or S; = 1.1) Nao synchronizes with a
clipping (saturation). Higher values for the strength of coupling energy
lead to high saturation.

3) For the same parametric conditions if the natural frequencies of both
agents are the same, no phase lag was observed but as the Af in-
creases to a certain limit, the phase lag increases too. Beyond the
limits corresponding to a given scaling factor, the interaction ends up
with an asynchronous state. We experienced 0° to 90° of phase shift
in our experiments. This fact of phase lagging can be easily noticed in
Figure 5(a) where the difference of frequencies is less (Af = 6%), both
agents are synchronized almost with a same phase. However, for Af
= 49%, a small phase shift could be observed in Figure 6(a) while the
system is in a synchrony state.

|5. Selection of Partner

After developing a basic architecture initiating automatically a human-
robot interaction by synchronizing agent's movements (in an imitating
framework), we developed an architecture capable of choosing an in-
teracting partner among various interacting agents.
We propose a neural network architecture (Figure 7(b)) selecting an in-
teracting partner on the basis of synchrony detection among various
interacting agents. It can be segregated into two parts. The first one
is the dynamical interactions model (presented in the previous section)
and the other one is the signal-prediction part. In the dynamical inter-
action module (section 4.2, Figure 2(b)), the visual stimuli " (optical
flow) was directly connected to the oscillator that controls the Nao’s
arm motion. Now the oscillator is fed indirectly by the signal-prediction
block (f”) (Figure 7(b)). This indirect coupling of f” is made to ensure
that our algorithm will choose an interacting agent that moves with a
frequency approximately similar to the robots inner dynamic (learned
by the signal-prediction block). The equation 4 can be rephrase as
Ny(n +1) = Ny(n) — BNy(n) + a1 + " (5)
Where, " is the coupling strength feed by the signal-prediction block.
The other variables remain unchanged.
The signal-prediction block (represented by y’) is linked to the robot
oscillator (represented by y) with a non modifiable link while the image
of the visual activities (represented by X) is linked with a modifiable
link. The signal-prediction (y’) module learns the robot's oscillation as
a weighted sum of image pixels (X). The neuron activity in the signal-
prediction (y’) corresponding to the predicted future value can be com-
puted using the X — y’ synapses:

yit) =) Wy Xe
keX

(6)

The learning of X — y’ synaptic weights can be computed by the
equation 7 and is based on the NLMS (Normalized Least Mean Square)
algorithm [51].

/
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Where y’ stands for signal-prediction, X for the image of visual activities
and y for the Nao's arm oscillator. « is the learning rate and WX/._,yf

represents the synaptic weights from the image neuron j to signal —
prediction neuron i. y; is the activity transmitted to the neuron i by
the oscillator, it is a teaching signal for the Least Mean Square (LMS)
algorithm [52]. To improve the LMS convergence during online learning,
learning modulation n has been introduced. It modulates randomly the
learning speed by introducing a randomization effect that suppresses
the negative effects of the temporal regularities of the input data. The
normalization term y_, . Xi(t)? + o1 is specific to the NLMS, ¢1 is a
small value used to avoid the divergence of the synaptic weights if the
visual activities (X image values) are too small. The use of the NLMS
is motivated by the fact that the normalization term suppress the effect
of rapid variations in the input data during the online learning. A faster
convergence is then obtained.

For the selection of partner, the architecture works in two successive
phases: a learning phase and a testing phase. During the learning
phase, Nao oscillates according to its standard frequency. To learn its
own dynamics, Nao looks at its own hand. The signal-prediction mod-
ule which was zero due to the non availability of visual stimuli starts
now learning the robot’s modifiable oscillator signal as a weighted sum
of the visual stimuli induced by its own actions. More precisely, the
robot learns the association between its movements (sensori-motor in-
formation) and the induced visual velocity vectors (optical flow). As
a consequence, as described in section 3, it also modifies the Nao's
oscillator (Nao’s arm movement). This process of modifying, learning
and adapting continues and converge after some time. This adjust-
ment can be assumed as a basic process by which infants gain self
reflective abilities as underlined by Rochat [53]. In the same line, Gold
and Scassellati proposed a probabilistic methods for learning the robot
to recognize its own motor controlled body parts or its reflections [54].
After this learning phase, Nao can predict oscillatory movements sim-
ilar to its own movement. When an agent interacts with a frequency
close to the learnt one, weights already learnt are associated with the
visual activities induced by the human movements. Nao's modifiable
oscillator adopts the interacting frequency and phase. If the interact-
ing frequency is different from the learnt one, the weights (modifiable
links) could not be associated with the visual stimuli and Nao contin-
ues to move at its default frequency. The same is true for the multiple
agents case. Among two interactants, only the agent having a similar
frequency as Nao is selected.

In this experiment, three agents are involved, in addition to Nao and
human, a basic automaton is introduced (Figure 1(d)). The coupling
factor was 0.07, Nao's default frequency was 0.407 Hz, the automa-
ton synchronized frequency was 0.4318 (6% higher) and the human
synchronized frequency was 0.36 (11% low) to 0.38 (6% less than de-
fault frequency). When a subject interacts with a frequency close to
the learnt one, this selection of partner algorithm selects this agent as
a good interacting partner and Nao's modifiable oscillator synchronizes
with it. Initially, both agents move with close frequencies (within an
allowable range) but after some time of interaction Nao adopts the hu-
man movements and both oscillate with exactly the same frequency
corresponding to the human motion. Good results are obtained with
this architecture, these are collectively shown in the next sections.

In the presented work, our aim is to use the notion of unintentional
synchrony to automatically initiate the human-robot interaction leading
to learn complex tasks in a development way (during imitation games).
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Hence, to be capable to deal with more complex gestures, Nao should
be able to select partners in a larger range of frequencies.

In order to test a possible generalization of our model to more com-
plex tasks we introduced (using the same model described previously)
three different oscillators A, B and C with the following frequencies f4 =
0.441Hz, fg = 0.83Hz and fc = 1.153Hz respectively. These os-
cillation frequencies are learnt by three different signal-prediction mod-
ules. Nao's oscillating frequency is selected among these three oscil-
lators depending on the visual stimuli. In the absence of visual stim-
uli, the oscillators controlling Naos arm are selected randomly (every 4
seconds). As the human interacts with a certain frequency, one of the
signal-prediction module close to the interactant’s frequency synchro-
nizes with it. Our architecture selects among three oscillators, the one
having the minimal error with the visual stimulus. Experimental results
are shown in Figure 8. In the onset, there is no visual stimulus (till 26.6
seconds or 800 time units). Consequently, one of the three oscilla-
tors are selected randomly. After some time (800 time units), an agent
starts interacting with the oscillations of 0.81 Hz near to the oscillator B
which is, consequently, selected as the robot's current dynamic. After
58 seconds (1750 time units), the agent changes his oscillations close
to the frequency of the oscillator C, so the oscillator C is selected. The
oscillator A is selected in a similar way.

It's worth noticing that during experiments with naive interactants, we
asked the participants to move their arm at their own preferred fre-
quency and style, some of the interactants moved with complex ges-
tures implying the presence of multiple frequencies. In this case, if the
fundamental frequency of the interacting agent was close to the robot’s
internal dynamics Nao was able to synchronize with him (the other har-
monics are neglected) otherwise, Nao was moving at its own default
frequency. These results are available for partner distant from the robot
by 0.5 to 3.5 meters.

|6. Attentional Mechanism

One of the major concerns of interactive robotics is how to focus on
salient features among various visual stimuli. In fact, focusing attention
and discriminating useful data from the others reduce significantly the
big amount of incoming information from sensors and keep computa-
tional resources available for other important tasks.

Current approaches of attentional mechanisms are usually based on
the sole visual information. We propose here to control the attentional
mechanism from a low level motor controller.

Using the selection of partner architecture, in the presence of two visual
stimuli in the Nao’s visual field, the robot will synchronize with the "inter-
acting” partner having a motion frequency close to nao’s own dynamic.
However, Nao will not be able to locate the good interacting partner in
its visual field, because our algorithm works on the perceived energy
irrespective of the spatial information (agent location).

Figure 7(c) shows the architecture to control the Focus of Attention
(FOA). The FOA architecture functions in two steps: learning and test-
ing. When there is no agent, the FOA moves around randomly depend-
ing on the noise. As the human partner start moving his arm with a
frequency close to Nao's dynamics, the image-prediction module (X”)
learns the spatial location (in its visual field) of the interacting partner
as a weighted sum of Nao's synchronized frequency. The architecture
is able to predict the location of the synchronized partner. If another
agent comes and interacts with a different frequency (lower or higher
than Nao, as shown in Figure 1(c)), X” which already learnt the spatial
position of the synchronized rhythmic movements strongly predicts the
location of the synchronized agent even in the presence (in Nao's visual
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field) of an unsynchronized one (because the prediction is made by the
weighted sum of the learnt frequency).

To determine the correct interacting partner and to discriminate be-
tween multiple stimuli, our algorithm modulates the current visual stimuli
with the image-prediction of the moving areas X”. A merging block is
used to calculate a weighted average (modulation) of these current vi-
sual motion and the predicted ones. The higher values of this merging
block are then correlated to the location of synchronous movements. All
the pixels of the merging block are projected on the x-axis (i.e all pixels
in each column are added). A Winner Takes All (WTA) selects the high-
est activated column. This selected column indicates the location of the
synchronized movement and the robot can point to the synchronized
region to show the current Focus Of Attention (FOA). The robot always
focus with the synchronized stimulus even if the partner changes his
location. For this experiment, the resolution of the predicted image is
32x 24 (32 columns or location), these 32 possible locations are in a
range of 60° angles (—30° to 30°, precision of 2°). In our experiments,
Nao’s head direction is used to point the current focus of attention.
The learning rule for the image-prediction (X”) module is near to Heb-
bian learning with a normalization of weights. The weight normaliza-
tion avoids the divergence and allows to forget less used associations.
The neurons activities in (X”) can be computed using the y — X”
synapses (8). The learning of y — X" synaptic weights can be com-
puted by the equation 9.

X/(6) =) Wyxr ys (8)
key
X!
W, oy = =t (9)
Yj i Zkey Wyj"Xi”
with:
W;ﬁxi,,(t + dt) = Wgﬁx{’(t) +ey; U (10)
and:

U=} Wa,xy X (1)

meX

Where X" is the neuron activityin X" group, y is a neuron of the condi-
tional group (Oscillator) and U; is the inconditional stimulus (Image (X)).
X is the activities in the inconditional group (X). Wy,ax{’ represents the
synaptic weights from the oscillator (y) neuron j to the image-prediction
(X”) neuron i, unnormalized weights are shown with “ * ”.

I-. Experimental results

7.1.  Synchrony based focus of attention on a static
platform (fixed camera)

The focus of attention mechanism has been tested in a simple way and
results are shown in Figure 9. In (a) Nao’s oscillations along with the
interacting agent motion signal are shown. (b) indicates the angle of
FOA according to the rhythmic motion. And (c) displays the interac-
tant’s locations in front of Nao. At the beginning, no visual stimuli is
presented to Nao, the FOA moves randomly between —30° and 30°.
After 500 time units (16.6 sec.), a synchronized motion is introduced
from the left side (—28.3°) of Nao. This interaction results in turning the
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Figure 9. (a) Nao’s oscillations along with interacting agent motion signal(b) Fluctuating angle of FOA according to the rhythmic motion (c) It describes the interactant's

location in front of Nao.

FOA to the synchronized location as shown in fig. 9. As the interact-
ing agent moves a little to the right side (—2.79), our architecture force
the FOA to relocate itself in the direction of the synchronized motion.
Next, the agent moves to the left side 25.4° of Nao and FOA again
follows the agent. The same sequence is repeated again to verify that
FOA always follow the interactant. The Figure. 9 corresponds to the
experiment shown on the video available on our website.

After this simple experiment, we examine our selection of partner algo-
rithm along with FOA architecture by extending the study to the case of
two agents: an automaton (one DoF) and a human (only one of them is
synchronized at a time). Results show that when two agents interact si-
multaneously with Nao, the one moving similarly (in terms of frequency)
as the robot, will be selected as an interacting partner, the FOA rotates
the robot's head towards the synchronized partner. Likewise, if the
interactants roles are switched (switch of the moving frequency) con-
sequently, FOA and selection of partner inverse the selected partner.

The experimental results are shown in Figure 10. Figure 10(al)
sketches the curves of the automaton and Nao’s motion signal. Ini-
tially, the automaton is moving from the left side of Nao (about —20°,
see Figure 10(a)). Both agents synchronizes after a short period by
using our partner selection architecture. Figure 10(a3) describes the
quality of synchrony between Nao and the automaton in terms of PLV.
At the beginning, PLV was at its lowest value but as the interaction
continues, it increases slowly to the highest one during the synchroni-
sation phase between the agents. Initially, there is no other agent in
front of robot except the Automaton therefore, FOA turns towards the
Automaton (Figure 10(a4)). After 700 time units (23.33 seconds), the
human starts interacting from the right side of the robot with a different
frequency but he fails to disturb Nao-Automaton interaction (the PLV
continues to its higher values for the automaton) and FOA continues to
point out to automaton.

Now, the roles are switched. Human is advised to make similar move-
ments as Nao while the automaton is adjusted to a lower frequency

(Figure 10(b1) and (b2)). Consequently, Nao also flips its role by syn-
chronizing with the human and selects him as a partner. PLV increases
for the human and decreases for the automaton (Figure 10(c3)). As the
synchrony emerges between human and Nao, FOA also turns from au-
tomaton to human (Figure 10(c4)). To validate our experiment we again
switch the roles of the two interacting agents after 2650 time units (88.3
sec). Consequently, this induces a switch of the focus of attention and
the synchronized agent (Figure 10(b)).

7.2. Synchrony based focus of attention on a mobile
platform (moving camera)

To study the possible generalization of the previously detailed model
to the case of a mobile platform , we embedded the architecture on a
mobile Robosoft Robulab 10 equipped with four wheels, two for direc-
tions and two for stabilization, a proximity sensors for obstacle avoid-
ance, an embedded computer, and for the visual perception, a pan-tilt
camera controlled with a SSC-32 card through a serial communication
(see Figure 11).The experiments were performed in an unconstrained
indoor environment.

Our aim here is to use our synchrony based model to focus the atten-
tion of the mobile robot on a preferred partner to initiate the interaction
for starting to leaning and to gain new knowledge by using synchrony
detection as excitatory and inhibitory signals.

More precisely, in this application, after focusing its attention on a se-
lected partner on the basis of synchrony detection, the mobile robot
must enable or disable the learning of the partners shape relative to
the maintaining or not of a synchronized interaction in order to unsure
that the robot’s visual attention is focused on the preferred partner.

As we are interested by locating a partner in the visual field (using syn-
chrony), a major problematic in the case of a mobile robot is to deal
with the ego-motion induced by the moving camera. In fact, the robot
must be able to predict and compensate the ego-motion induced by
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Figure 10. Results: Every set has 4 graphs with same sequence where first time series of every set shows the raw signals of Nao oscillations along with robotic arm

while second contains raw signals of Nao along with human and third
and finally, forth shows the FOA angle of Nao which follows the synch

time series shows the PLV (quality of synchrony) for the pairs of interacting agents
ronized region. (a) shows start of experiment with single agent and then disturbed

by the other agent. (b) Multiple agent having different frequencies interact (one of them with same as Nao) and Nao always selects similar frequency

partner.

its own movements to be capable of segmenting the moving humans
and objects in the visual field and differentiating them from the static
background.

To do so, we propose a simple bio-inspired model permitting the robot
to learn the cross-modal link between the motor controller (velocities
of the Robulab) and the induced visual stimuli (optical flow) while the
robot is moving. The objective is to be able, after this learning phase,
to predict and compensate the correct optical flow corresponding to a
given robot motion velocity.

As illustrated in Figure 13, the same optical flow algorithm [49] as for
the previous model is used to extract velocity vectors from the images
acquired by the embedded camera of the Robulab. The computed
velocity vectors are modulated by the image gradient to take into ac-
count only highly contrasted regions of the image. The reason behind
this modulation is the unavailability of accurate and salient visual stimuli
(optical flow) in uniform area of the images. This is due to the limitations

of the used optical flow algorithm even more with the small number of
iterations used in this experiment (set to a fixed value of 4) for saving
computational time.

The modulated optical flow feed the component direction-selective
neurons. These neurons simulate those of V1 and MT brain areas
which are designed by neurobiological records as sensitive to preferred
motion directions (called component direction-selective neurons by
Movshon [55]).

These component direction-selective neurons filter the modulated op-
tical flow, the firing of each of these neuron (A;) is proportional to the
angular distance between the visual stimulus (optical flow) and its pre-
ferred direction weighted by the motion intensity as below:

(B B-)Z

(
A =exp 1

V2

(1 —exp (2’2)) (12)
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Figure 12. Partner detection and tracking: Experimental results in real condi-
tions by combining synchrony based and shape based strategies

B is the direction of the computed optical flow, B; is the preferred direc-
tion of the direction-selective neuron i, V' is the motion intensity, 7 and
T, (set to a value of 20) are the coefficients regulating the dynamics of
the neuron activation for the motion direction and the motion intensity,
respectively.

In this experiment, we use only 2 different types of direction-selective
neurons sensitive to the directions 0° and 180°. This simplification
was made due to the fact that the robot, in this specific application,
turns right or left to focus its attention on the partner inducing different
intensities but only in the two horizontal directions of the optical flow.
The outputs of these neurons are then integrated in time by neurons
which are sensitive to different visual motion intensities for a given di-
rection of motion. They are similar to a simplified version of the pat-
tern direction-selective neurons which integrate the component
direction-selective neurons in the MT area of the human brain [55].
Each of these neurons can be seen as an histograms representing the
occurrence in time of visual velocity vectors having a given motion di-
rection (here 0° or 180°) with a given motion intensity (in practice, a
given small range of intensities). For each motion direction we use 20
pattern direction-selective neurons in our model. A weighted mean of
the outputs of the 20 neurons is then computed representing, for each

direction, the mean visual motion intensity extracted from the visual field
over time.

During the learning phase, we rotate the robot with 5 different speeds
on the left side and 5 different ones on right side. The speeds are con-
trolled by 10 motor neurons (5 for each direction) as shown Figure 13.
These neurons represent the unconditional inputs of two LMS network
(one for each direction) which learn to associate the motor controller
orders (motor velocities) to the mean visual motion intensity extracted
from the pattern direction-selective neurons during the experiment.
Consequently, after this learning step, when the robot start moving with
a given velocity, the LMS will be able to trigger (for each direction) the
correct visual motion intensity mean value which can be subtracted
(see Figure 13) from the current optical flow in order to compensate the
induced ego-motion. Therefor, the filtered visual stimuli can be used as
an Input for the previous model to select and locate a partner in the
case of a moving robot.

Lets now consider the complete experimental scenario. First a human
partner moves his arm in front of the robot to teach a preferred fre-
quency of interaction (the robot is in a static position). After this learn-
ing phase, the robot starts moving randomly. The ego-motion induced
by the robot's movements are compensated as explained above. The
learnt frequency can be observed on the robot's pendulum (tail in the
Figure 11). Using the previously described models, when a human in-
teracts with the robot with a dynamic close to the learnt one, the robot
selects and locates this preferred partner on the basis of synchrony
detection.

Consequently, the synchrony based focus of attention enables the
learning of the selected partner shape using the algorithm described
in [56].

The results of this experiment are illustrated in Figure 12. First the mo-
bile robot starts moving by focusing its attention (black line) on random
regions of the visual field due to the lack of salient regions of interest. At
time t = 40 seconds, a human starts interacting with a frequency close
to the one learned by the robot. Consequently, the synchrony based fo-
cus of attention selects and predicts the location of the human partner
(blue line in Figure 12). A neural Field controlling the robot's movements
turns the Robulab toward the partner and kepps him in the center of
the visual field (black line in Figure 12). When the robot attention is
focused on the partner on the basis of synchrony detection, the shape
learning is activated (green areas in Figure 12). From time t = 40 to
t = 80, we can notice that the shape learning is stopped (red areas
in Figure 12) and re-engaged relatively to the maintaining or not of the
synchrony based focus of attention. A refined learning of the partner
shape is consequently obtained. As we can see Figure 12, starting
from t = 80, the shape learning is strong enough, even if the robot
loses the synchrony. If the human move to the left side or the right side
the robot tracks its partner and moves toward his direction in the visual
field using shape recognition.

Videos of our all experiments can be
http://www.etis.ensea.fr/neurocyber/Videos/synchro/

found on

|8. Conclusion

In this paper, we presented a new model allowing the robots to select
an interacting partner among multiple agent based on synchrony detec-
tion. We demonstrated that prediction of synchrony (for spatial position)
could be used as a tool to locate the Focus Of Attention. Our experi-
mental results showed that when several agents interact with Nao and
one of them moves in synchrony with the robot, Nao will select it as a
partner.
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Figure 13. Architecture for a mobile robot.

From a psychological point of view, we were inspired by the uninten-
tional communications between humans. The synchronous exchanges
during social interactions are directly associated to the sensorimotor
information of the two agents. According to the experiments in neuro-
sciences; when two human interact by doing spontaneous exchanges
(between two participants) of intransitive bi-manual movements, re-
searchers have revealed the emergence of inter-brain synchroniza-
tion across multiple frequency bands. Low frequency physical syn-
chronized movements reflect low frequency inter-brain synchronization.
However, inter-brain networks in high frequencies do not correspond to
the physical movements of the interactants. We suppose this synchro-
nization in (inter-brain) high frequencies is related to some higher-level
behavior. In our case, we assume that low frequency behaviour is re-
lated to our arm synchronization and high frequency behaviour may be
related to the Focus of attention [34].

We are actually investigating three applications of synchrony detection
in human-robot interactions. The first and the most important one is to
extend the architecture to a developmental learning of more complex
tasks (complex interactions). In our study, synchrony detection and
partner selection architectures allow to sustain the interaction by syn-
chronizing low fundamental frequencies of interaction. Consequently,
complex gestures (presenting higher temporal frequencies) could be
taught to the robot during imitative interactions. Likewise, we are also
intended to use the proposed architecture for navigation tasks. A mo-
bile robot can choose a synchronized interacting human partner (for in-
stance a human having his legs periodic movements close to the robot's
dynamics), therefore, while moving in synchrony with the robot, the se-
lected human partner can play a role of a tutor to teach navigational
tasks. Finally, as we assume that synchrony detection is not only a
starting point for social interactions but also as a tool to maintain and
re-engage the interaction, we plan to use the selection of partner and
FOA neural models for driving turn-taking games in HRI.

Furthermore, in order to validate our assumptions, on going psycho-
experimental studies analyze the influence of unidirectional and bi-

Ego motion
Compensation

directional interactions on unintentional synchronization during interac-
tions between naive human subjects and: (i) Nao moving with a fixed
frequency of interaction (Unidirectional interaction) (ii) Nao having mini-
mal abilities (by using our synchrony based neural model) to adopt the
human partner frequency of interaction (Bidirectional interaction).
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