IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 40, NO. 1, JANUARY 2010 13

Interactive Teaching for Vision-Based Mobile
Robots: A Sensory-Motor Approach

Christophe Giovannangeli and Philippe Gaussier

Abstract—For the last decade, we have been developing a vision-
based architecture for mobile robot navigation. Using our bio-
inspired model of navigation, robots can perform sensory-motor
tasks in real time in unknown indoor as well as outdoor environ-
ments. We address here the problem of autonomous incremental
learning of a sensory-motor task, demonstrated by an operator
guiding a robot. The proposed system allows for semisupervision
of task learning and is able to adapt the environmental partitioning
to the complexity of the desired behavior. A real dialogue based
on actions emerges from the interactive teaching. The interaction
leads the robot to autonomously build a precise sensory-motor
dynamics that approximates the behavior of the teacher. The
usability of the system is highlighted by experiments on real
robots, in both indoor and outdoor environments. Accuracy mea-
sures are also proposed in order to evaluate the learned behavior
as compared to the expected behavioral attractor. These measures,
used first in a real experiment and then in a simulated experiment,
demonstrate how a real interaction between the teacher and the
robot influences the learning process.

Index Terms—Cooperative systems, intelligent robots, learning
systems, mobile robots, navigation, robot vision systems.

1. INTRODUCTION

ASK specification in autonomous robotics has attracted

increasing interest in recent years. It is now acknowledged
that autonomous mobile robots should be designed with min-
imal prior knowledge about the tasks to be performed so that
the robot can adapt to unpredictable situations that characterize
the dynamic nature of real environments. The robots should
also develop their skills via interactions with their physical and
social environment, where they experience sensory-motor inter-
actions [1], allowing for the emergence of their own cognition
and the building of a subjective enacted world [2], also called
Umwelt [3]. In this context, human—robot interactions (HRIs)
are thought to be a very efficient means for specifying various
tasks to a robot [4] and catalyzing its sensory-motor learning
[5]. HRIs are, moreover, crucial for designing operational or
social and interactive robots [6], [7]. These statements can be
extended to robot—robot interactions [8]. This paper investigates
the use of HRI for the learning of navigation tasks.
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In [9], several problems linked to the autonomous local-
ization and mapping of an environment are pointed out. We
summarize here the main points in our approach: 1) The na-
ture of the “noise” on the physical measurements is generally
context dependent. For example, a noncalibrated panoramic
camera can induce a biased error of the landmark position mea-
surement, depending on the robot’s orientation [10]. Whereas
several statistical methods can deal with centered noises, it
is much more difficult to detect a conditionally biased noise
because such noise is characterized by a mean value and a
standard deviation, which depend on the unexpected (hidden)
dimensions of the robot’s state. 2) The required memory (and,
consequently, the required computation time) increases with
the size of the environment and the complexity of the internal
representations. In the future, it will be crucial to give a bound
to the size of the internal representations in order to develop a
real-time robotics architecture for pseudoinfinite environments.
3) The algorithms must be able to handle the correspondence
problem (or data association problem) to reliably determine
whether two sensorial measurements taken at different time
steps correspond to the same physical point in the environ-
ment [11]. For a long time, this problem has been treated as
stochastic, leading the community to develop algorithms that
try to reveal the hidden Markovian model of the environment.
Yet, psychology, long ago, identified the ambiguous nature
of perception (Gestalt theory): The so-called multistability of
perception implies that a perfectly well-defined sensory stim-
ulus can have two opposing interpretations (Necker’s cubes,
Rubin’s figure, and other artistic creations are good examples).
This ambiguous nature of perception should cause roboticists
to question whether such a hidden Markovian model of the
environment really does exist or it is meaningless to try to
remove sensorial ambiguities. 4) The dynamic nature of the
environment induces environmental changes. Localization cues
used by a robot may disappear during its lifetime. When the
environment changes, the functioning domain of classical al-
gorithms shrinks until the system no longer works. Hence, a
crucial issue in the future will be to provide our robots with
relearning strategies, enabling them to adapt their knowledge
to the environmental changes before their behaviors become
completely irrelevant. Finally, 5) the robot is confronted with
an action selection problem during the building of its internal
representations. Robots will have to be endowed with planning
strategies in order to select interesting actions in a partially
known environment. The metalearning theory, for instance,
claimed early on that a smart selection of the prototypes for
learning can increase the developmental speed of the robot
[12], [13]. Recent works insist that selecting the action that
maximizes the learning progress makes the robot curious and
enables it to develop faster [14], [15]. The complexity of greedy
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mapping algorithms in deterministic environments was studied
in [16]. Moreover, developers are confronted with a tradeoff
between learning speed and system reliability: The accuracy of
fast incremental algorithms strongly depends on the quality of
the sensory measurements, whereas statistical methods, which
are asymptotically more accurate, require numerous examples
of the environment to build a consistent map. Despite these
limitations, simultaneous localization and mapping (SLAM)
methods exhibit impressive performance in long-term naviga-
tion when coupled with visual recognition systems to help them
deal with the correspondence problem and the environmental
changes [17]. Nowadays, it is possible to map large indoor en-
vironments with monocular, stereoscopic, or catadioptric vision
systems, although the scaling factor for larger and less con-
trolled environments raises some rarely addressed questions:
size explosion of the internal representations, fusion of isolated
maps, unreliability of the wheel-based odometry on a rough
terrain, and the ground planarity hypothesis. The sensory-motor
system for mobile robot navigation that is the focus of this paper
has already proved its efficiency with regard to some of these
drawbacks [18], [19].

In the following, we will propose a visual navigation archi-
tecture that is bootstrapped for task specification by imitation
and can be useful in many domains in which patrolling or
exploring missions are considered. This system will be shown
to enable a naive human operator to intuitively teach an au-
tonomous robot to follow a visual path or to perform a homing
task. The teacher guides the robot in a task such as visual
path following or homing, and the robot has to reproduce it.
The robot will be guided by a joystick that will be used as
an approximation of an imitation process (other works in our
laboratory focus on this aspect [20], [21]). In [22], the problem
of task specification is treated as the estimation of a sequence
of concurrent behaviors already mastered by the robot (which
are likely to have been acquired during the learning phase).
Nicolescu and Mataric also point out that acting can provide a
basis for a nonverbal human—robot communication and appears
as a smart way for the robot to exhibit that it requires some
help from the teacher. The idea that the robot could ask its
teacher questions has already been evaluated, for example, in
the collaborative control in [23]. The robot asks questions to
the human... (which are translated into a comprehensive human
language) in order to obtain assistance with cognition and
perception. The answers are translated into a symbolic language
that the robot understands. As a general rule, task specification
is performed at a very high symbolic level (as highlighted in
[24]), under the autocratic rule of the teacher. Other recent
works focus on this kind of cooperation [25] in navigation.
However, most of the learning systems based on imitation need
to separate the learning phases and the performance phases.
Yet, constraints on lifelong learning [26] imply that the robot
must be able to learn while freely evolving in the world. A
less unilateral process for task specification could emerge from
an interaction of training in which the teacher corrects the
robot while the robot tries to imitate the teacher, as proposed
in this paper. Imitation has already proved to be of interest in
machine learning and, more specifically, in robot skill learning,
as illustrated by various studies in the last 15 years [27]-[34].
Theoretical studies have also been undertaken, as in [35],
which presents a general formalism for performance metrics on

humanoid imitation tasks and illustrates the need for a general
framework in order to evaluate the relative accuracy of different
algorithms. However, the imitation as a real dynamic and
continuous HRI has hardly ever been stressed (rare examples
are [20], [21], and [33]). Most of the imitation learning and
teaching methods are composed of a demonstration phase (the
learning) and a performance phase (the reproduction of the
knowledge). Rarely, however, has the imitation been treated as a
real dialogue based on a language of actions between the robot
and the teacher, alternating between learning and performance
phases. In [36]-[38], for example, a demonstrator tries to teach
a humanoid robot to grasp an object. The study compares an
imitation strategy based on the recording of the joint positions
of a human and an embodied demonstration based on the
recording of the joint position of the robot while the teacher
physically moves the robot’s arms in order to demonstrate the
task. The authors point out that the recording of the teacher’s
demonstration does not take into account the embodiment of
the robot, whereas the passive execution of the task by the
robot during the learning phases does and, hence, is far more
pertinent. Although the authors insist that the observation of the
performed task plays a role in helping the teacher understand
the robot’s skills and prepare the subsequent demonstration, the
proposed system does not benefit from the intervention of the
teacher during task realization.

Indeed, in the context of interactive teaching, learning and
demonstration phases ought to be combined in order to provide
rich and natural communication that could improve the devel-
opment of the robot’s skills: By imitating a teacher, the robot
could test the behavior that has to be learned. By acting and
reacting to the teacher’s orders, the robot should freely exhibit
its mastery of the task while improving its learning [5]. At the
same time, observing the robot’s behavior enables the teacher
to see and intuitively measure the effect of his teaching and
can help him to discover how to efficiently correct the robot.
Although this procedure appears to be nonverbal nonsymbolic
communication, we claim that it is, nevertheless, a very rich
type of communication [20] that is able to catalyze the robot’s
learning. In such an interactive context, a strong autonomy of
decision, as well as a strong autonomy of learning, is necessary.
As humans are involved, rapidity, precision, and adaptation of
the learning are also required.

This paper first presents our robots and the visual systems
for the creation of a continuous state space. Then, we propose a
bootstrap! for the perception—action (PerAc) architecture [39]
that enables the semisupervised learning of a sensory-motor
behavior (a visual path and a homing behavior). The pairs of
architecture equations allow for the environmental partitioning
to be adapted to the complexity of the task. The system does not
separate learning and performance phases, which are scattered
in time according to the rhythm of the interaction. The system
will be evaluated in a real indoor environment by means of two
complementary accuracy measures that are used to compare the
performed trajectory to the optimal one. The importance of the
interaction between the robot and the teacher during learning,
particularly with regard to adopting a proscriptive teaching

! A parallel and supplementary architecture supervising a first architecture to
control its learning dynamics.
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Fig. 1. Block diagram of the architecture. Our architecture for place recog-
nition is composed of a visual system that focuses on points of interest and
extracts small images in log-polar coordinates (called local views), recognized
as landmarks (see Fig. 2). Next, a merging layer compresses the what and where
information, to allow place recognition. By incorporating our visual place
recognition system in a PerAc architecture, it is possible to create an attractive
behavior to the goal. Each new learned place is associated with a movement
which is executed when the robot recognizes the place. The vigilance signal
triggers waves of one-shot learning of the landmarks related to the current
location, of the current place code, and of the current place and the current
place—action association.

strategy allowing the robot to commit its own errors, will be
experimentally illustrated using the proposed measures.

II. METHODS AND MATERIALS

Among the various methods for creating spatial behaviors,
the PerAc architecture [39] has been demonstrated to be par-
ticularly well adapted to online sensory-motor learning. A
PerAc architecture may underlie many various skills in mobile
robotics: guidance [40], local navigation in indoor [18] and
outdoor environments [19], planning [41], and reproduction of
a temporal sequence of actions [30], as well as in the control
of actuators with multiple degrees of freedom (robotic arm
control [33], [42] and gaze direction control). This architecture
is able to learn online sensory-motor associations. In this paper,
the PerAc architecture is coupled with a bio-inspired model
of visual place cells computing a robust localization gradient
in indoor as well as in outdoor environments [43], in order to
perform local navigation tasks [18], [19].

Fig. 1 shows the visual processing chain for place re-
cognition. A place is defined by a spatial constellation
of online learned visual features (here, a set of triplets
landmark—azimuth—elevation) compressed into a place code.
The constellation results from merging what information and
where information provided by the visual system, which ex-
tracts local views in log-polar coordinates, centered on points
of interest. Fig. 2 shows the autonomous landmark extraction
mechanism.

The built-in generalization capability of the system has a
remarkable property (see [43] for more details). To summarize,
a place cell encoded in location A responds maximally in A
and creates a decreasing place field around A over a wide area.
In the experiment in Fig. 3, the robot learns 5 x 5 positions
regularly located in a classic workroom [Fig. 3(a)]. Fig. 3(b)
shows the created place field for each place cell in the whole
environment, corresponding to a localization gradient. A simple
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10:0.9246 5 :0.9249 17:09089  21:09114 16:09304 19:09146 0 :0.8934 2 :09166
25:09221 6 :09190 7 :09073  32:0.9059 29:09301 25:0.9040 26:0.8934 22:09116
11:0.9056 2 :0.8937 37:08830 13:0.9022 14:0.8980 2 :0.9029 12:0.8912 12:0.9096
Fig. 2. Tllustration of the landmark extraction mechanism: The gradient of a

panoramic image is convolved with a difference-of-Gaussian filter. The local
maxima of the filtered image correspond to (center of the circles) points of
interest. Here, the first eight focal points are displayed. The system focuses on
these points to extract local views in log-polar coordinates corresponding to
landmarks. The bearing of the focal points is provided by a magnetic compass.
For each extracted local view, the identities of the four most recognized
landmarks and their recognition levels are given.

approximation of a place cell activity can correspond to a noisy
Gaussian curve

_le—ew)® o
P (t) e 7 e (1)
with p,, (t) representing the activity in z(t) of the place cell
encoded in x;, o expressing the extent of the place field which is
linked to the distance of the landmarks, and €” (¢) representing
the noise induced by the uncertainty of the azimuth measure-
ments, the camera discretization, and the dynamic environment.

The learning of several locations creates overlapping place
fields and also leads to the paving of the space when the
learning of new locations is triggered each time all the place
cell activities are less than a given threshold. As a mathematical
consequence of what and where, the shape of the place fields is
homothetic with the shape of the environment [42], [43] (i.e.,
the place fields extend with the distance to the landmarks). With
regard to the problem of the size of the internal representations,
our system is particularly interesting in that it builds its own
metrics based on the azimuthal shifts of the landmarks and their
recognition levels. Hence, the dimensionality of the internal
representation is not given by the Cartesian size of the explored
area but rather by its visual regularity (i.e., if the distance to
the landmarks were infinite, the world description would be
reduced to a single place cell) [43]. The computational load
and the memory requirements have been proved to be a linear
function of the number of learned landmarks [10]. Hence, the
learning of a loop in a large outdoor environment requires as
much computation load and memory as the learning of a loop in
a smaller indoor environment (see experiments in Section IV).
To the best of our knowledge, very few algorithms exhibit such
a property. Moreover, neither Cartesian nor topological map
building is needed for the localization since the world acts as
an outside memory [45]. As long as the learned features of a
location persist in its neighborhood, the robot is able to self-
localize without map building.

The addressed problem in this paper concerns a more gen-
eral class of algorithms that are based on place recognition
and can lead to adaptive environmental paving. For exam-
ple, GPS measurements, a triangulation system via external
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Fig. 3. (a) Workroom used in the experiment in (b). Twenty-five places are
regularly learned and tested. (b) Activity of 5 x 5 place cells regularly encoded
in the workroom in (a). The competition between all the place cells leads to the
paving of the environment.

references, classical SLAM, vision-based SLAM, or topolog-
ical approaches provide the information that is necessary for
using the methods we will present. An intuitive approach to
achieve visual navigation using a localization gradient could be
to use a hill-climbing algorithm on the place recognition level
of a goal cell (a particular place cell). Unfortunately, even if the
robot could maintain a given direction as long as the recognition
level increases, a serious initialization problem occurs each
time a new action has to be chosen. The noise on the place
recognition level can also induce local maxima. The duration
of each movement represents a critical parameter for the con-
vergence of such an algorithm. Minimization parallax between
a learned place and the current location, inspired by models
of insect navigation [46], [47], could be used to avoid pure
1-D hill-climbing methods. As actions are directly computed
rather than learned (although learning them is possible [48]),
the behavior is not adaptive, and the trajectories are stereotyped.
Moreover, the learning of a trajectory requires massive efforts
either on the problem of learning a sequence of places and of
place reaching (also called milestone points in [49]) or on the
problem of the cognitive mapping of the learned locations [50].
Finally, the question of the robustness evaluation has rarely
been raised [51]. Nevertheless, recent studies [52], [53] propose
an improved version of the average landmark vector algorithm

(b)

Fig. 4. (a) Wheeled and legged robots used to study bio-inspired navigation.
The left robot uses an omnidirectional camera, the right robot uses a FireWire
camera mounted on a gyrostabilized pan-tilt platform, and the wheeled robot
in the center uses a classical pan-tilt camera. All the robots are provided with
a magnetic compass (CMPS03). However, in [60] and [61], we showed that
the magnetic compass can be replaced by a visual compass associated with a
path integration system. We are also trying to adapt the system to legged robots
such as AIBO. (b) Gyrostabilization platform used for experiments on rough
terrains.

[47] that can maintain a constant performance level independent
of the size of the environment. Several of these limitations can
be overcome by using a PerAc Architecture: Simple associative
learning between places and actions is able to create a sensory-
motor attraction basin, for homing or path-following behaviors
(see Fig. 1 for the architecture). The problem of building a
policy of actions has often been stressed in the literature of
reinforcement learning [54]-[59], but we claim that the PerAc
architecture is extremely efficient for spatial behavior learning
since it embeds the problem of the environmental partitioning,
as well as that of action policy learning.> The next section will
address the problem of the autonomous building of behavioral
attraction basins by HRIs. The problem is treated as a machine
learning problem through an interactive demonstration.

We used the following platforms and electronic equipment to
study mobile robot navigation [see Fig. 4(a)]:

1) Koala K-Team, pan-tilt camera, magnetic compass;

2) Koala K-Team, omnidirectional camera, magnetic

compass;

2We prefer, in our school of thought, the term behavioral dynamic instead of
the action policy, referring more to the psychological literature on learning and
control of human coordination and perception.
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3) Pioneer 2 AT ActivMedia, gyrostabilized platform,
pan-tilt camera, magnetic compass.
For outdoor experiments on rough terrains, we built a gy-
rostabilization platform in order to deal with the effects of a
nonplanar surface [see Fig. 4(b)].

III. LEARNING AND REFINEMENT OF A SPATIAL
BEHAVIOR: A SENSORY-MOTOR APPROACH

The presented work proposes a reformulation of the problem
of autonomous spatial behavior learning already addressed
by many reinforcement learning methods [62], [63], such as
Q-learning [56], [57], TD(\) [55], policy gradient reinforce-
ment learning [58], or value and policy search [59]. Our ap-
proach differs from these because the continuity of the state and
action spaces is not a particular context in which the algorithm
has to be extended but a basic assumption that guides the
design of our architecture. Our approach also differs because
our goal is to design a complete architecture (able to control
real robots) rather than a theoretical algorithm isolated from its
architectural layout. Moreover, classical reinforcement learning
algorithms try to assign a score to each encountered state or
state—action event of the environment, corresponding to an
expected reward. Reinforcement algorithms that are based on
the propagation of rewards converge too slowly in a continuous
environment because they first need to partition (adaptively or
not) the environment before the reinforcement learning algo-
rithm can perform. Methods for the partitioning of the whole
state-action space have also been proposed [64]. As far as
HRIs are concerned, we cannot accept a slow acquisition of
the behavior (even if sure and optimal). Rather, the behavior
must be acquired (and the knowledge must be usable) in a very
short time. If an algorithm is allowed to spend time estimating
the state space, this time should be used in parallel to the
estimation of the topology of the environment. The estimation
of the state space topology gives access to a cognitive map
which can compute the latent learning of many unrewarded
paths [41], [44], [65]-[70]. Evidence of a such latent learning in
mammalian species was demonstrated in 1948 by Tolman [71],
who showed that the time it takes for a rat to find a goal does not
decrease once the reward is found but decreases latently with
the number of times the future goal path is experienced before
the reward is discovered. Thus, once a reinforcement occurs in
a given state, efficient (but suboptimal) strategies are directly
available from each visited place.

Moreover, continuous state and action spaces are generally
treated as discrete after quantization. What has been encour-
aging researchers in reinforcement learning is the proof of
optimality which already exists for various algorithms, mostly
in discrete and nonstochastic state and action spaces [56],
[72], [73]. However, convergence toward optimal solutions in
stochastic and continuous spaces is not guaranteed for most of
the reinforcement learning methods. Q-learning, for example, is
proved to converge only locally for a certain class of problems
that have continuous state and action spaces [74]. It has also
been noted that reinforcement learning algorithms may diverge
when a function approximation is used instead of a lookup
table [75]. In contrast, our sensory-motor architecture takes
into account the continuity of both the state and the action
spaces. This paper will show that a continuous action space
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Fig. 5. Real trajectories of homing in an indoor environment with an omnidi-
rectional camera. (Black circles) Eight places are learned at 1 m from the goal
(size of the square on the floor). The theoretical place fields are superposed with
the map and the trajectories.

enables the measure of an error that aids in the adaptive
partitioning of the continuous state space. Moreover, since the
suboptimal solutions found in nature for animal navigation are
more robust than the current robotics solutions, we can wonder
about the need for an optimal algorithm for the learning of
spatial behaviors. We can also wonder whether convergence
proofs are of interest, considering the time it takes to obtain
an efficient suboptimal behavior (with regard to an external
measure). Works like [76] have emphasized that reinforcement
learning algorithms perform better when they are initialized
with a suboptimal policy. The suboptimal solutions computed
by our architecture could be used to initialize reinforcement
learning algorithms.

Some limitations of classical reinforcement learning algo-
rithms can be overcome by bootstrapping a PerAc architecture
(see Fig. 1) [39]. Each place cell is associated with a movement
to trigger when the corresponding place is recognized. If the
place cells and the actions are defined in the frame of a com-
petitive structure, a minimum of three place-action associations
around a goal creates a behavioral attractor, leading the robot
trajectories to converge toward the goal from each place in the
attraction basin. Learning is equivalent to shaping this basin
in order to create an accurate behavioral attractor. Homing or
route-following behaviors (see Figs. 5 and 6) can be learned
in one shot. Even though human assistance could speed up the
convergence [76], classical reinforcement learning methods are
not efficient with so few learning samples.

A. HRI and the PerAc Architecture

We investigate here how the PerAc architecture can underlie
the learning of navigation tasks in the framework of an intuitive
HRI. In our previous experiments on visual homing or path
following (see Figs. 5 and 6), the learning was completely
supervised by a human, who positioned the robot in a precise
location with a precise orientation, or was generated by an
ad hoc process (moving around a goal position to learn it from
different positions). Yet, the PerAc architecture is particularly
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Fig. 6. Outdoor environment and looped sensory-motor trajectory. The arrows
represent the learned positions and the associated movements. The robot closes
the loop of about 100 m in 20 min. The system is slow because the entire
architecture was executed by a single sequential program (September 2005).

well designed for the real-time online learning of skills, in the
sense that its goal is to learn associations that occur through
direct voluntary experience (concept of enaction [77]). Hence,
guiding the robot through the task is more ergonomic than the
explicit symbolic communication used in [23] and [78] and
should be sufficient for specifying the task to the robot.

In the context of lifelong learning [26], we are presently in-
terested in addressing the problem of the semisupervised build-
ing of a behavioral dynamics and its refinement. In addition,
we focus here on the capability of the robot to autonomously
learn a sensory-motor task by interacting with a human. Being
guided by the human, the robot learns places and is able to
merge the action associated with the current state (here, places)
to the action imposed by the teacher. We use a joystick to
guide the robot in the same way as a dog could be guided
with a leash, but visual tracking of the teacher is also possible
(closely resembling to an imitation process). We propose here
an autonomous architecture enabling the robot to learn in one
shot a new place-action association and to adapt the movement
associated with the previous place according to the sensory-
motor error generated during its traversal.

In the PerAc architecture, two learning stages can be con-
trolled: the sensory learning (environmental partitioning) and
the sensory-motor learning (policy of action learning). In clas-
sical task specification in an unknown environment, the envi-
ronmental partitioning has to be stabilized before navigation
can be performed. Here, we save time by the simultaneous one-
shot learning of both the sensory state space and the sensory-
motor associations. Each time a sensory state is learned, a motor
action is instantaneously associated with it. A vigilance signal
will be responsible for triggering this wave of learning (see
Fig. 1).

B. Movement Adaptation

We consider two binarized signals for the bootstrap of the
sensory-motor learning. The first signal is the vigilance signal
V (t), which triggers the waves of one-shot learning. The sec-
ond signal €(t) corresponds to a learning rate. It is used as a
modulation for both the one-shot learning and the adaptation.

The neural architecture is shown in Fig. 7. In our architecture,
e(t) spikes each time a place transition occurs (hence, also
each time the vigilance signal spikes). The group of motor
learning neurons A" (whose elements are af,) is inspired by
the Widrow—Hoff (WH) learning rule [79], but other rules are
possible.® The main difference between a classic WH learning
rule and ours is that our rule is composed of two terms: one
term for one-shot learning computed as the classic gradient
of a WH learning rule and a term computed according to
the previous gradient computation, corresponding to a delayed
learning rule.

In the following, the activity of the place cells is binarized:
pj (t) is the normalized activity of the most activated place cell
i (pj (t) = 1 if the current place is the place 4, and p; (t) =0
otherwise). The signal €(t) corresponds to a place transition
(e(t) = 1 when a place transition occurs, and €(t) = 0 other-
wise). It can be defined as €(t) = S_1'7, [pi (t) — pi (t — dt)] T,
with n p being the number of place cells, and [z] T = x ifx > 0.

The actions are defined by a population of neurons: Each
neuron k in an action group corresponds to a particular ori-
entation (2 - k - 7)/na, with n4 being the number of neurons
coding an action (n4 = 61 in our architecture). The activity of
the group A% (t), providing the performed movement between
t — dt and t in the direction 6(t), is a Gaussian curve, centered
on the neuron corresponding to the orientation 0(¢). Hence

C[atof

alf(t)y=e 7 - (1)

with Af(t) €] — 7, 7] being the shift between the preferred
direction (2-k-7)/na of the neuron k and the performed
movement 0(t) (here, o = 7/6).

The neurons of the group A provide the mean movement
and are defined as

a (1) = M - af(t) + [aff (t —dt) — 7 - ()] (@

with €M being a rate guaranteeing that a}!(¢) will not be
greater than one until 1 /¢ steps without reset (¢ = 0.001 for
example) and with I being a strong positive signal that resets
the memory of a (It > 1/eM for example).

The activity of the kth input neuron for motor learning a’ (t)
(output to learn) is computed as follows:

1

ab(t)=al(t—dt)-V(t) + D]

aM(t — dt)

€(t)-(1=V(t) 3
with aM

M (t) = maxg_1,.  n,(a}(t)), used for the normaliza-
tion (with a? being already normalized). af (t) provides either
the previous performed movement when the vigilance spikes
(enabling the one-shot learning) or the mean movement since
the last place transition (enabling the delayed adaptation). The
mean movement is reset by the ¢(¢) signal (see Fig. 7), each
time a place transition occurs.

3The Hebbian learning rule has been rejected because the time to learn a new
action would have been greater or equal to the entire learning period (the longer
the system has already learned, the longer learning something else will take).
Moreover, the Hebbian learning rule needs to be shunted by means of a multi-
plicative term 1 — wj;, so that the weight can be in [0, 1] (corresponding to a
Grossberg rule), creating a dynamics that is very close to the WH learning rule.



GIOVANNANGELI AND GAUSSIER: INTERACTIVE TEACHING FOR VISION-BASED MOBILE ROBOTS 19

N
Place

WTA

Vigilance |

ﬂf = Place transition

Teacher

i wPA
i ki
i Mt to learn Learned mvt
CO800)] i——|— OO0k

Action selection

Motor control

| | [COOC@—~{OF 1 —

Mvt performed Mean mvt

oooe

Increasingly active neurons
Modifiable link
One to one link unmodifiable

B Neuromodulation

Excitation
Inhibition

Fig. 7.

Modified PerAc architecture enabling either the one-shot learning of places and place—action associations or the refinement of the sensory-motor

dynamics. The computation of a signed angular error between the mean performed movement and the predicted movement in a given place allows us to adapt the
movement associated with this place. The one-shot learning of the landmarks, the constellations, the places, and the place—action associations is triggered by a
vigilance signal, whereas the adaptation is performed continuously, each time a place transition occurs.

The equation for updating the activity of the sensory-motor
learning neurons a; is the following:

selt) = el 0wt 1) @

B sx(1)
af (6) = V(1) - ak(t) + (1 - V(1)) (m’“(t)) L ®

In this equation, sk (t) is the predicted activity of the kth
neuron of the group. wﬁcA is the weight of the connection
between the ith place cell and the kth action neuron. Finally,
Smax = MaXk=1__n,(Sk) is used for the output normalization.
More precisely, aﬁ (t) is the desired output (the future action to
predict, explicitly given by the input group A” and called Mvt
to learn in Fig. 7). Equation (4) corresponds to the predicted
output, and (5) provides the effective output computed either
as the normalized prediction or as the desired output (which
is also normalized) during a one-shot learning cycle (with no
prediction being available before the one-shot learning). Most
of the signals (inputs and outputs) are normalized in order to
compute the sensory-motor error F,, defined as the difference
between the mean movement and the learned movement for a
given place: E,(t) = Y 14, [aM(t) — af (1)].

The update of the synaptic weights is performed after the
update of the activity according to the following equations:

% = (G (t) + G (t —dt)) - (1) (6)

with
Giyp(t) = (ag (t) = sk () - (1) - V(1) )
Gii(t) = (ag (1) = su(t) -2 (1) - (L—e(t)).  (8)

In this equation, two gradient terms are computed: G,
(instantaneous gradient), which is the classical WH gradient
with a term of vigilance modulating the learning, and G?k

(delayed gradient), which computes a gradient if no learning or
adaptation occurs. During a one-shot learning cycle (when V' ()
and €(t) spike), the new place is associated with the current
action by means of the non-null terms G, (¢) in (6). Otherwise,
a delayed adaptation is performed each time ¢(¢) spikes because
of the term G¢ (t — dt) (the previous gradient). Hence, the
adaptation of the movement in a place is performed only once
the robot has left the place and will only be available the next
time the robot reenters it. As a general rule, the adaptation
of a sensory-motor association requires a kind of learning
evaluation and can only be performed after the sensory-motor
association has occurred. In the context of sensory-motor learn-
ing, this delayed adaptation seems to be crucial for controlling
the instants and the contents of the learning.

The remaining question is related to the control of the vigi-
lance signal: What are the important signals for the autonomous
partitioning of the environment (corresponding to a refinement
at the sensory level)?

C. Adaptive Partitioning of the Environment

In the context of the reproduction of a trajectory, the impor-
tant criterion is the precision of the reproduced trajectory, which
is directly linked to the spatial discretization of the behavioral
dynamics. The simplest solution for triggering the coding of
a new place is to fix a low threshold ¢, on the place cell
activity. If the activity p™ () = maxp—1__ ., (pk(t)) of the
most activated place cell is under this threshold, a new place
is learned: V' (t) = I'g(tp — p™), with T, being the Heaviside
function (I';(y) = 1 if y > «, and zero otherwise). This will
lead to a regular partitioning of the environment. The threshold
tp5 has to be low enough in order to use the generalization
capabilities of the place field and to minimize the number
of encoded place cells. Such a vigilance signal implies that
the size of the place fields (and also the precision of the
spatial encoding) is fixed, as shown in Fig. 8(a) and (b). Since
the sampling of the state space controls the precision of the
behavioral dynamics, the partitioning of the environment
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(a) Example of a regular spatial partitioning with large cells. A movement direction is associated with each cell. The precision of the reproduced

trajectory depends on the precision of the state space coding (the size of the cells). (b) Example of a regular spatial partitioning with small cells. The precision of
the reproduced trajectory is higher than that in (a). However, the cost of the spatial coding is also higher.
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Fig. 9. Example of an adaptive spatial partitioning. The size of the cells is
adapted to the complexity of the trajectory. Small cells are used to precisely
follow the bend, whereas big cells are used to create a convergence around the
trajectory.

should not be regular but adapted to the desired precision and
to the complexity of the trajectory (see Fig. 9). For instance,
more place-action associations should be encoded during a
sharp bend than during a straight line. The system could use the
discrimination capabilities of place recognition in the complex
parts of the trajectory and its generalization capabilities in the
easier parts. In a more general context, the assumption that a
given sensory-motor function D : .S — M is better approxi-
mated if the discretization factor of the sensory space S evolves
as the variation AD/AS of the sensory-motor function remains
valid (the compression factor is adapted to the variation in the
information).

The difference between a regular paving (corresponding to
a threshold on the sensory dimension) and an adaptive paving
(corresponding to a threshold on the action dimension) is
illustrated in the 1-D example in Fig. 10. With the regular
partitioning, the more the function varies, the higher the error
is. Yet, when the function varies, the probability of generating
diverging trajectories is higher. On the contrary, with the adap-
tive partitioning, the density of the encoded place cells increases
with the variation of the function to approximate: Fewer place

Regular approximation
(a) Threshold on the sensation

Action

Sensation

Adaptative approximation
(b) Threshold on the action

\Posilion of the leaming/

Function to approximate

—— Approximation of the function

Fig. 10. Illustration of a 1-D example of two approximation methods.
(a) Regular partitioning, based on a low threshold on the place cell activity
(here, corresponding to a given distance between the position of learning on the
“sensation” axis), under which a new place is learned. (b) Adaptive partitioning,
based on a high threshold between the learned action and the action to be
learned, over which a new place is learned. The adaptive partitioning is able to
reduce the error when the variation of the sensory-motor dynamics (the function
to be learned) is high and to create large place cells in monotonic parts of the
sensory-motor dynamics.

cells are recruited when the function is monotonic, and more
are used when the function varies. Hence, the more the function
varies, the lower the error is.

The sensory-motor error F,(t) in each place has been de-
fined as the difference between the predicted and the per-
formed action. It stands for the parameter AD/AS. Indeed, the
sensory-motor error is higher in complex parts of the trajectory
than in easier parts because more changes of the direction occur.
Hence, the sensory-motor error appears to be a pertinent signal
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for controlling place learning. A threshold tJbCa on the sensory-
motor error is responsible for the accuracy of the behavior
during a bend. For example, if tga corresponds to an error
of about 30°, then a 90° bend should be encoded by at least
three place cells. Thus, this measure can be used to control
the vigilance signal in order to adapt the learning location of
the place cells to the complexity of the desired behavior. The
vigilance signal is defined as

V(O =To(th—p"®) - (B3] +[tp—p" (1)) -
©)

In order to avoid overcoding the environment, a safety thresh-
old t}; over which a place is considered as recognized can
be fixed. If the maximum of the place cell activities p™ (¢) is
higher than ¢}, the coding of new place cells is inhibited. This
threshold can be as high as the discrimination capabilities of the
place recognition. We finally use a low threshold ¢}, to trigger
the learning of a new place when all the other encoded places
are not sufficiently recognized. ¢, must be correlated with the
generalization capabilities.

D. Simulated Environment and Simulated Teacher

In order to theoretically validate our approach, a simulated
environment is used. In this environment, the system creates
perfect place cells because all the possible landmarks, as well
as their identity and their exact azimuth, are provided. In order
to simulate human guidance of the robot, an ordered set D of
points d; that parameterizes the desired trajectory is predefined.
A dynamic process, where trajectories converge toward an
attractor considered as the optimal trajectory, is then used. The
process consists in identifying the closest point d; in the desired
trajectory and in heading for the point d; 1 A .. Ap > 0 depends
on the distance* d between two points d; and d; 11 (Ap = 5 in
our simulated environment with d < 7.5 x /2) and on the dis-
tance d, traveled by the agent between each step (here, d,, < 1).
The dynamic system for human guidance is shown in Fig. 11(a).
Fig. 11(b) shows, for a given set D that parameterizes the
desired trajectory, the trajectories generated by the dynamic
human guidance system. The generated attractor corresponds
to the expected robot behavior after learning (i.e., the attractor
corresponds to the desired trajectory).

E. Validation of the Proposed System

The experiment in Fig. 12 illustrates the capability of the
system to adapt the spatial partitioning to the complexity of
the desired trajectory. In this experiment, a human presses a
button in order to correct the robot’s behavior and teach it
the desired trajectory. The strategy of the teacher (deciding
when the button should be pressed) is the subject in the next
section. Fig. 12(a) and (b) shows the resulting trajectories, as
well as the attractor of the sensory-motor dynamics of the
robot. The attractor is defined as the mean position of the
robot for different starting points in the attraction basin after
a long time of convergence. Fig. 12(c) also shows the position
of the learned places, superimposed with the attractor. The

4The unit used to measure a distance is the pixel. The size of the simulated
environment is 750 x 750 pixels.
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Fig. 11. (a) To simulate human guidance, an ordered set D of points d; that

parameterizes the desired trajectory and a dynamic process, where trajectories
converge toward an attractor considered as the optimal trajectory, is used.
(b) Trajectories generated by the dynamical process in (a). The trajectories
converge toward an attractor defining the optimal trajectory.

simulated robot adapts the density of learned locations to the
complexity of the desired trajectory: During bends, the robot
uses the discrimination capabilities of the place cells in order
to accurately approximate the desired behavior, whereas the
system uses the generalization capability of the place cells in
easier parts of the desired trajectory such as straight lines.

The use of the sensory-motor error F,(t) to control the
learning of a new location allows the precision of the spatial
partitioning to be adapted to the complexity of the task. More-
over, precise thresholds do not have to be estimated but only
confidence thresholds for recognition and nonrecognition. The
threshold tJEra on the sensory-motor error could also be learned.

IV. HRIs AS A COGNITIVE CATALYST FOR THE LEARNING
OF BEHAVIORAL ATTRACTORS

In this section, accuracy measures of the reproduced trajec-
tories as compared with the optimal trajectory are proposed.
The importance of the interaction loop between the human
and the robot during learning, particularly the importance of
allowing the robot to commit its own errors, is demonstrated
using these measures. Finally, we use these measures in a real
indoor environment by means of a vision-based system which
corrects the perspective and enables the robot’s position to be
tracked in the Cartesian space. An experiment in an outdoor
environment is also proposed.
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Fig. 12. Training a simulated robot to perform a given trajectory: A human pushes a button to trigger the guidance process defined in Fig. 11. (a) Trajectories
generated after the learning. (b) Generated attractor: Mean position of the robot for different starting points in the attraction basin, after a long time. (c) Position
of the learned places, superimposed with the generated attractor. The system has adapted the density of the encoded locations to the complexity of the desired
trajectory. More locations are learned in bends than in straight lines. The system uses the discrimination capabilities of the place cells in complex parts of the

desired trajectory and the generalization capabilities in the easier parts.

A. Proposition of an Accuracy Measure of the
Trajectory Reproduction

The reproduction of a trajectory is a problem frequently
addressed in mobile robotics. As optimality is not always
reached or tracked among the various algorithms, we propose
a measure that could help to compare the generated trajectories
to an optimal path (the expected behavioral attractor). Since it
could take a very long time to evaluate the complete behavior
in the whole environment or to estimate the optimal behavior
in each position, we prefer to compare algorithm performance
by trying to evaluate the precision of the generated trajectory,
from its starting point to its endpoint with respect to a desired
trajectory.

Evaluating the spatial precision of a trajectory independently
of the temporal variable is an extremely hard problem. Indeed,
comparing trajectories without time aspects is equivalent to
comparing the sequence of points defining the two trajectories.
We propose two measures for comparing the optimal trajec-
tory {z;(p)/p € {1,...,P}} with the reproduced trajectory
{z,(t)/t € [ti,...,ts]}. The first equation evaluates the mean
distance between the robot’s position and the closest point of
the desired trajectory

=ty p
J min |2, (t) — z:(p)]| - dt
t=t, P=1
e = — (10)
ty —1;

This measure is not enough because the robot can navigate
very close to the desired trajectory but stay very far from a given
point. For example, if the robot does not move, the measure e;
is constant. Hence, a second equation has to be introduced. It
verifies that the robot has traveled close enough to each point
on the desired trajectory

Potf
2 win [z () — zi(p)]|
J— p:l o

€p = P

(1)

This second equation is also insufficient because the robot
can navigate close to each point of the desired trajectory and
then go far off course without increasing the measure e,,. How-

ever, the conjunction of both equations allows us to evaluate
whether each robot’s position was always close to a point on
the desired trajectory or the robot traveled close to each point
on the desired trajectory. Hence, a combined measure, such as
(et + ep), may also be used.

It should be noted that each measure varies in an opposite
manner. The first measure e; is low at the beginning and
increases with the error of reproduction, whereas the second
measure e, is high at the beginning and decreases with the
accuracy of the reproduction. At the end of a relatively correct
reproduction, e; should have increased to a weak mean value
(the robot has never been far from a point on the desired
trajectory), and e, should have shrunk to a weak value (the
robot has been close to each point on the desired trajectory).

However, it is still possible to find some trajectories which
are well scored but correspond to a wrong reproduction. For
example, if the robot reproduces the trajectory in the opposite
direction, the score will be the same as that in the correct
direction. Moreover, oscillating around the ideal trajectory may
provide the same score as a straight trajectory. An angular term
could be useful. The duration or the length of the performed
trajectory could give another estimation of the quality of the
reproduction. We consider that the robot has to be able to
reproduce the trajectory in the correct direction and with few
oscillations before using these measures.

In the following, these two measures will be used in a
simulated environment and in a real indoor environment. How-
ever, because they require precise measurements of the robot’s
position, it is far more difficult to use these measures in larger
environments. In real outdoor environments, a differential GPS
seems necessary. In indoor environments, systems based on
a network of calibrated cameras that track the robot across
several rooms might be possible. However, we did not have
access to these technologies for our experiments. Hence, in
the outdoor experiment, the difficulty in estimating the robot’s
precise position precluded the use of these two measures.

B. Effects of the Interaction Strategy

Our main objective in this section is to demonstrate the
importance of HRI and real human guidance as opposed to a
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Fig. 13.

Left figures show the trajectories during the four laps of training. The figures in the center show some generated trajectories. The behavioral attractors

and their attraction basins are displayed on the right figures (the attractors correspond to the mean position of the robot after a long time for different starting
points, and the attraction basin is deduced from the figure of the trajectories). Each line corresponds to a given teaching strategy. In the first experiment, the
prescriptive teaching is simulated. The trajectories either diverge or converge toward a bad attractor. For this attractor, e; = 45, and e, = 40. A second parasitic
attractor has also been created. In the second experiment, the proscriptive teaching is simulated. The simulated teacher never shows the precise trajectory to the
robot. The program only corrects the robot when it escapes too far from the desired trajectory according to a given threshold (here, 20 pixels). As a result,
the attraction basin is far wider. The robot oscillates around the desired trajectory but has difficulty stabilizing on it. Only one attractor has been created.
For the generated attractor, e; = 10.7, and ep = 12.4. The last experiment evaluates the human teaching. The human chooses when he wants to correct or
to guide the robot by simply pressing a button. The robot trajectories no longer “bifurcate,” and the robot is able to precisely follow the desired trajectory. For the

generated attractor, e; = 6.5, and e;, = 6.9, which is the best score among the three experiments.

predefined strategy such as purely proscriptive or prescriptive
training.

1) Expected Results: The proposed PerAc architecture for
local navigation enables a teacher to specify a task to a robot.
Even if the communication is based on a very simple medium,
different strategies may be adopted by the teacher to interact
with the robot. The teacher may guide the robot perfectly
by adopting a prescriptive teaching strategy or, on the con-
trary, adopt a proscriptive teaching approach that consists of
correcting the robot when it is too far from the center of
the trajectory. These two opposing strategies bring to mind
the opposing objectivist and constructivist approaches in robot
autonomy, pointed out in [80]. In both cases, the robot should
be able to extract the information and use it as well as possible.
The result of the experiment shown in Fig. 13 highlights that
both kinds of learning are necessary to obtain a more accurate
behavioral attractor. The teacher must let its robot commit
errors to obtain a convergent behavior and must also show the
precise trajectory to refine the center of the attraction basin. If

the teacher only adopts one of the two strategies, the resulting
behavior is expected to be worse than if both strategies are used.
An interesting point is that the course of the interaction with
the robot should logically imply both kinds of learning. These
expected results are validated using the same experimental
conditions described in the previous section.

2) Experimental Validation: Let us first consider a prescrip-
tive teaching strategy (first line in Fig. 13). As the teacher
always performs the same action in the same places without
observing the robot’s behavior, he never knows whether the
robot learns or it is able to reproduce the behavior. Hence,
neither the teacher nor the robot knows whether the resulting
behavior is correct. Since no interaction has really occurred
and no error has been committed, the algorithm is not able to
efficiently generalize: The created dynamics has two attractors
[some starting point can lead either to a convergent behavior
(but the generated trajectory is quite unsatisfying) or to a para-
sitic fixed point (in the middle of the environment)]. Although
this strategy enables the robot to learn the best movement in the
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Fig. 14. Rhythm of the interaction between a human teacher and the robot
during an experiment like the last one in Fig. 13 (but with the number of training
laps not constrained). The graph shows when the human presses the button. The
phases of proscription correspond to the Dirac pulses. The phases of prescrip-
tion correspond to the longer steps. Three periods emerge: During period A,
corresponding to the beginning of the interaction, the correction frequency is
high—the teacher has to be authoritarian since the robot knows nothing. Period
B is characterized by an alternation of correction and observation phases. Period
C corresponds to the final step of the learning: The teacher tries to finalize
the training first by a long prescriptive phase and then by selecting particular
proscriptive commands.

center of the trajectory, the resulting attractor is bad because
the robot does not know what to do when it escapes from the
trajectory.

The other strategy that the teacher can adopt is to correct
the robot when it is too far from the center of the trajectory,
using a proscriptive teaching strategy (second line in Fig. 13).
Hence, the robot oscillates from one border of the allowed path
to the other. This strategy has the advantage that the teacher
directly evaluates the precision of the learning by observing the
errors of the robot. Moreover, the locations of the place-action
associations surround the precise trajectory, leading to a real
convergence toward its center. The drawback is that the robot
does not stabilize on the precise trajectory but oscillates around
it. Fig. 13 shows the oscillating effects of using proscriptive
teaching alone. This figure also shows that the approximated
dynamics no longer has any erroneous parasitic attractor and
that the generated attractor is far more accurate (the measures
et and e, are divided by four as compared with the result of
the prescriptive teaching). The simulations of the prescriptive as
well as the proscriptive strategies are, in fact, ad hoc processes
of guidance that do not require any human intervention. If a
human is asked to decide when to correct the robot by pressing
a button (the simulated human guidance is activated as long
as the button is pressed, and the robot performs the learned
behavior when the button is released), both kinds of learning
will naturally emerge from the interaction (see the last line
in Fig. 13). During the natural course of the interaction, the
teacher oscillates between precise demonstrations of the trajec-
tory (prescriptive teaching), observation of the robot’s behavior,
and proscriptive corrections as shown in Fig. 14, which shows
the rhythm of the interaction (the number of training laps in
this experiment was not constrained). The HRI is real, and it
takes place by means of a nonverbal nonsymbolic language
based on the actions (imposed by the teacher and reproduced
by the robot). The teacher alternates between prescriptive and
proscriptive phases. As a result, we can see that the generated
trajectories are more precise than when proscriptive teaching
alone was used. Both strategies have complementary properties
and occur successively during the real interaction. The pro-
scriptive teaching strategy enables the creation of the border
of the attraction basin, guaranteeing a convergence toward
the center of the trajectory, whereas the prescriptive teaching
strategy enables the precise digging of the attraction basin
center.

Place—action association
Desired trajectory
Reproduced trajectory

Fig. 15. Indoor experiment: The robot is guided by a human operator. Three
laps are sufficient to train the robot to perform the task within the path defined
by the black border (not visible to the robot).

Fig. 16. Measure of an indoor trajectory. The perspective effect of the camera
used to record the experiments is first corrected. Then, the user specifies the
optimal trajectory. The tracking of the robot in the corrected image allows e
and e to be computed. In this experiment, e, = 23 cm, and e; = 26 cm (one
square of the grid represents 0.75 m).

C. Experiments With Real Robots

We present here the results in real indoor and outdoor envi-
ronments in order to highlight the usability of the system and to
show the expected course of the real-time interaction.

The experiments proposed here show the accuracy of our
approach in real environments. The indoor experiments (see
Figs. 15 and 16) demonstrate, in favorable conditions (constant
artificial light, horizontal ground, and various and numerous
visual landmarks), that it is quite easy to train a robot to perform
a sensory-motor task with our system. In the experiment in
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Fig. 17.

Outdoor experiment of interactive teaching of a visual path. The 200 m is covered in 9 min. The architecture is split on four processors, but the speed

limitation is due to the low level drivers of the robot actuators. Otherwise, the robot’s speed could be higher.

Fig. 15, three laps were sufficient for the robot to learn a
convergent behavior. The precision could have been further
enhanced by guiding the robot longer. In a second experiment,
we tried to measure e; and e, experimentally. In order to extract
the real trajectory of the robot and compare it with the desired
trajectory, a visual tracking system was used. Fig. 16 shows the
tracking and the perspective correction used to measure e; and
ep. In this experiment, e, = 23 cm, and e¢; = 26 cm.

Outdoor experiments are far more difficult to analyze due
to the constraints of natural and rough environments. Map-
building autonomous systems, which are able to deal with
outdoor constraints, are rare (see [81] for an example). The size
and the nature of the experimental environment prevented us
from recording the precise trajectory: Two or three synchro-
nized cameras would have been necessary, and the GPS fails in
such urban canyons. Moreover, a gyrostabilized platform using
two accelerometers was necessary. The camera and the mag-
netic compass were mounted on this stabilized platform [see
Fig. 4(b)] to deal with the nonplanarity of the ground, leading,
otherwise, to errors in compass and vision measurements. This
platform enables us to limit the effects of a nonplanar ground
on the sensory measurements. For outdoor experiments, we had
to improve the robustness of our vision system to deal with
high and quick variations in luminosity when the robot’s camera
captures buildings directly illuminated by the sun as compared
to shadowed areas. We had developed an exposure time and
gain adaptor to control the parameters of our FireWire CCD
camera. Moreover, the sonar system of the pioneer AT was
almost unusable since it was unable to differentiate a natural
slope of the road from the walls and since it detected the long
grass as an obstacle. In spite of these difficulties, we succeeded
in teaching an accurate trajectory to the robot, within the ex-
pected theoretical precision, with only two laps of proscriptive
teaching (see Fig. 17). Only 14 places were learned, which is
extremely low as compared to the environment size.

V. DISCUSSION

The choice of our adaptive one-shot learning (Section III)
is questionable since it does not aim at guaranteeing an op-
timal policy, yet it offers a lot of advantages. The one-shot
learning creates a first coarse approximation of the desired
behavioral dynamics, which can be used directly. Hence, the

teacher can immediately see the consequences of his guidance
when a place-action association is being learned. The one-shot
learning is also instantaneously usable by the robot, giving real
feedback to the human on how its actions affect the learning.
As a simple one-shot association does not allow the behavioral
dynamics to be refined, it is necessary to modify the sensory-
motor learning rule in order to take into account a possible
adaptation. The adaptation capability is also crucial in order to
deal with imprecise guiding. When the robot crosses a location,
it integrates the performed movements, regardless of whether
they are performed actively or passively (i.e., are decided by
the robot or imposed by the teacher). When the robot enters
another location, the integrated movement can be used to adapt
the learned movement associated with the previous location.
Hence, the corrections provided by the teacher enable the
dynamics to be refined, whereas the autonomous movements
of the robot reinforce the learned dynamics. Such an adap-
tive learning process enables an approximation of the desired
behavior that is as precise as the spatial partitioning and the
behavior of the teacher allow.

A crucial problem in the interaction between humans and ro-
bots is that the human never knows whether the task is correctly
learned by the robot, and the robot never knows whether the
teacher is satisfied with its behavior. As neither one can evaluate
the other, how is it possible for the robot or for the human to
know that the task has been learned? Since the teacher corrects
the robot, he cannot know how the robot would have behaved
if no correction had been made. Hence, prescriptive teaching
alone is insufficient to produce a constructive interaction, as
previously illustrated. The teacher has to evaluate the robot’s
behavior by both prescriptive and proscriptive teaching. More-
over, during such an HRI, a real action-based communication
emerges [78]: The teacher communicates by controlling the
joystick, and the robot communicates by behaving according
to its learned sensory-motor dynamics. The interaction is com-
posed of three alternating phases: prescription, proscription,
and observation/demonstration. The three phases alternate in
time and space as the teaching evolves; these alternating phases
define an interaction rhythm. We pointed out (Section 1V)
that the richness of a real HRI acts as a cognitive catalyst,
enhancing the precision of the reproduced behavior, as well
as its functioning domain (size of the attraction basin) [5].
This is in contrast to a predetermined guidance strategy such
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as prescriptive guidance or a proscriptive strategy consisting
of correcting the robot when it commits errors. Prescriptive
guidance, commonly referred to as programming by demonstra-
tion, is, in fact, far from being an interactive learning process
since the robot’s behavior does not influence the teacher’s.
Proscriptive guidance, on the other hand, is the first step toward
interactive learning since the robot’s behavior does influence
the teacher’s, which, in turn, influences the robot’s and so
forth. The system was finally validated by experiments in real
indoor and outdoor environments. The experiments prove that
the system is mature and could be used in the human world,
even by naive operators, in order to teach a patrol mission in an
a priori unknown environment.

Two major problems remain: the control of the end of the
interaction and the possibility that permanent environmental
changes occur. Indeed, the teacher can finally be satisfied or
dissatisfied with the robot’s behavior. If the teacher is not
satisfied with the robot’s behavior while the learning has al-
ready converged, this must mean that the desired precision is
not reachable by the robot, which has performed the task as
well as it can. However, even if the teacher is satisfied with
the robot’s behavior, the robot may nonetheless be aware of
some states in which it can progress. It could communicate
its desire to progress or even guide the teacher in these states.
The interaction could be more constructive if the robot could
disobey the teacher in known states or express its need for
help in unmastered states. Such variations in behavior would
constitute another excellent feedback for the teacher on the
mastery of the task by the robot. The problem of the self-
evaluation arises. The robot has to know what it knows: It should
be able to know whether its learning enables it to progress or
its predictions are standard with respect to the current situation.
We are currently working on a progress-based approach derived
from [14] and [82] for the metacontrol of the learning, with
the goal of giving self-evaluation capabilities to the robots. In
[10], [83], and [84], we proposed a progress-based neural ar-
chitecture which provides the robot with the capability to detect
phases of progress, phases of stagnation, and novelty. Novelty
detection leads the robot to readapt its erroneous learning.

We also want to investigate how to provide the robot with
specific behaviors in response to its self-evaluation of how well
it has mastered the task at hand, in order to enrich the interaction
and speed up the knowledge transfer. In unmastered situations,
the robot could use repair strategies to regain the teacher’s
attention, by means of a particular behavior (oscillation, stop-
ping, looking toward the teacher, etc.) [85] or by means of
a more easily understandable medium such as an expressive
robot head [86], [87]. Seeing these behavioral oscillations, the
teacher should interact with the robot by giving it the correct
orientation, thus providing additional examples for the learning.
In mastered states, the robot could exhibit curiosity by choosing
not to realize the learned behavior and disobey the teacher in
order to find less mastered states in which it can still progress.
Communication based on the expression of emotional states
could, once again, be very pertinent. Indeed, this could lead the
robot toward states that it would not have experienced if it had
performed what it had learned or if it had performed the pre-
dictable actions imposed by its teacher. Obviously, autoevalua-
tion capabilities also appear to be an excellent starting point to
deal with permanent environmental changes or morphological

changes in the robot: Self-evaluation capabilities could more
easily lead to the development of efficient relearning strategies
in the case of permanent changes.

VI. CONCLUSION AND PERSPECTIVES

This paper investigated the problem of the interactive teach-
ing of a sensory-motor navigation task to a mobile robot.
The proposed sensory-motor learning rule enables the robot to
associate newly learned places with the current action by means
of a classical WH learning rule and to refine the learned behav-
ior by merging the learned movement in each place with the
performed movement by means of a delayed WH learning rule.
By using the sensory-motor error to trigger the learning of new
places, the proposed generalization of the PerAc architecture
adapts the partitioning of the environment to the complexity of
the task to learn. The use of a joystick to teach the robot, despite
its simplicity, creates a real HRI with the emergence of an
action-based dialogue. We have proposed accuracy measures
and highlighted the fact that HRIs catalyze the learning and
speed up its convergence. Experiments in both indoor and
outdoor environments were presented in order to evaluate the
performance of the whole system for the control of a real robot.

Future works will focus on the comparison of sensory-
motor strategies versus planning strategies for the interactive
learning of an arbitrary path and the control of its reproduction.
In our complete biological navigation model, neurons in the
hippocampus proper (CA1/CA3 regions) learn and predict tran-
sitions between successive multimodal states [44]. A cognitive
map performs latent learning of the spatial topology of the
environment [71] and can be used to compute a plan of actions
to reach an arbitrary goal [68]. The system has been recently
validated in a long random exploration experiment (45 min,
3000 steps of the place cell architecture), in a real indoor
environment [41]. The experiment highlights the capability of
the system to predict place transitions, to latently build the
cognitive map of the learned transitions, and thus to plan trajec-
tories to particular goals specified by a simple reinforcement at
the goal position at the end of the exploration. The influence of
our progress-based metacontroller [83], [84] will be evaluated
at every level of this architecture. We will also study how an
agent can autonomously detect that it is not really meeting its
objective. We will ask how an emotional system could be used
as a second-order controller [86] to adjust the shape of the
attraction basins provided by the sensory-motor or the planning
systems when the behavior becomes incorrect.

Finally, we are currently addressing the problem of build-
ing a single architecture that would allow the robot to deal
with spatial as well as temporal modalities (place-action and
duration—action strategy), in navigation as well as in robotic
arm manipulation [42]. Our goal is to build a merged control
architecture for applications in which navigation and object
manipulation are considered. A simple example could be a
robot that must be able to use door handles or press elevator
buttons to achieve its mission. However, such missions also
imply the incorporation of object recognition, visual affor-
dance detection [1], [88]-[90], and more sophisticated mech-
anisms for understanding the natural and/or human world. The
adaptation of our system on unmanned aerial vehicles is also
currently being studied.
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