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Interactive teaching for vision-based mobile robots:
a sensory-motor approach

Christophe Giovannangeli and Philippe Gaussier

Abstract—For the last decade, we have developed a vision-
based architecture for mobile robot navigation. Our bio-inspired
model of the navigation has proved to achieve sensory-motor
tasks in real time in unknown indoor as well as outdoor
environments. We address here the problem of the autonomous
incremental learning of a sensory-motor task, demonstrated by
an operator guiding the robot. The proposed system enables
a semi-supervision of the task learning and is able to adapt
the environmental partitioning to the complexity of the desired
behavior. A real dialogue based on actions emerges from the inter-
active teaching. The interaction leads the robot to autonomously
build a precise sensory-motor dynamics that approximates the
behavior of the teacher. The usability of the system is highlighted
by experiments on real robots, in both indoor and outdoor
environments. Accuracy measures are also proposed in order
to evaluate the learned behavior as compared to the expected
behavioral attractor. These measures are used first in a real
experiment and then in a simulated experiment enabling to point
out the interest of a real interaction between the teacher and the
robot.

Index Terms—Mobile robots, Navigation, Robot vision systems,
Intelligent robots, Learning systems, Cooperative systems.

I. I NTRODUCTION

T ASK specification in autonomous robotics has received
an increasing interest. It is today admitted that au-

tonomous mobile robots should be designed with a minimal
prior knowledge on the tasks to perform so that the robot can
adapt to unpredictable situations characterizing the dynamical
nature of real environments. The robots should also constitute
their skills via interactions with their physical and social
environment where they build up experiences from their the
sensory-motor interactions [1] leading their own cognition to
enact a subjective world [2], also called theUmwelt [3]. In
this context, Human-Robot Interactions (HRI) are thought to
be a very efficient means to specify some various tasks to a
robot [4] and to catalyze its sensory-motor learning [5]. HRI
are moreover a key point for designing operational or social
and interactive robots [6], [7]. This paper investigates the use
of HRI for the learning of navigation tasks.

In [8], several problems linked to the autonomous local-
ization and mapping of an environment are pointed out. We
summarize here the main points relevant in our approach:
1) The nature of the ”noise” on the physical measurements
is generally context-dependent. For example, a non-calibrated
panoramic camera can induce a biased error of the landmarks
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position measurement, depending of the robot orientation [9].
Whereas several statistical methods can deal with centered
noises, it is much more difficult to detect a conditionally
biased noise, characterized by a mean value and a standard
deviation which depend on unexpected (hidden) dimensions
of the robot state. 2) The required memory (and consequently
the required computation time) increases with the size of the
environment and the complexity of the internal representations.
In the future, it will be crucial to give a bound to the size
of the internal representations in order to develop real-time
robotics architecture for pseudo-infinite environments 3)The
algorithms have to deal with the correspondence problem (or
data association problem) to reliably determine if two sensorial
measurements taken at different time steps correspond to the
same physical point in the environment or not [10]. For a long
time, this problem has been treated as stochastic, leading the
community to develop algorithms trying to reveal the hidden
Markovian model of the environment. Yet, psychology has
early identified the ambiguous nature of the perception (Gestalt
theory): the so-called multi-stability of the perception implies
that a perfectly well defined sensory stimulus can have two
antagonist interpretations (Necker’s cubes, Rubin’s figure and
other artistic creation are good examples). This ambiguous
nature of the perception should question roboticians whether
such a hidden Markovian model of the environment does
really exist or whether it is meaningless to try to remove
sensorial ambiguities. 4) The dynamical nature of the en-
vironment induces environmental changes. During the robot
lifelong, localization cues used by the robot may disappear.
While the environment is changing, the functioning domain of
classical algorithms shrinks until the system no longer works.
Hence, a crucial issue in the future will be to provide our
robots with re-learning strategies, enabling the adaptation of
their knowledge to the environmental changes before their
behaviors becomes totally unrelevant. And finally, 5) the
robot is confronted to an action selection problem during
the building of its internal representations. Robots will have
to be endowed with planning strategies in order to select
interesting actions in a partially known environment. The
meta-learning theory, for instance, has early claimed thata
smart selection of the prototypes for the learning can increase
the development speed of the robot [11], [12]. Recent works
insist on the fact that selecting the action that maximizes
the learning progress makes the robot becoming curious and
enables it to develop faster [13], [14]. [15] also studied the
complexity of greedy mapping algorithms in deterministic
environments. Moreover, developers are confronted to a trade-
off between rapidity and reliability of the system: accuracy of
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fast incremental algorithms strongly depends on the quality
of the sensory measurements, whereas statistical methods,
asymptotically more accurate, require numerous examples of
the environment to build a consistent map. In spite of all this
limitation, SLAM methods exhibits impressive performancein
long term navigation, when coupled with visual recognition
system, in order to deal with the correspondence problem and
the environmental changes [16]. Nowadays, it is possible to
map large indoor environments, with monocular, stereoscopic,
or catadioptric vision systems, though the scaling factor for
larger and less controlled environments raises some rarely
addressed questions: internal representation size explosion,
fusion of isolated map, unreliability of the wheels odometer on
rough terrain, ground planarity hypothesis. The sensory-motor
teaching for mobile robot navigation, this paper focuses on,
has also demonstrated to be very efficient as regards to some
of these drawbacks [17], [18].

In the following, we will propose a visual navigation archi-
tecture bootstrapped for task specification by imitation that can
be useful in many domains in which patrolling or exploring
missions are considered. This system will be shown to enable
a naive human operator to intuitively teach an autonomous
robot to follow a visual path or to perform a homing task.
The teacher guides the robot in a task like a visual path
following or a homing task, and the robot has to reproduce
it. The guidance of the robot by means of a joystick will
be used as a simplification of a process of imitation (other
works in our lab focus on this aspect [19], [20]). In [21],
the problem of task specification is treated as the estimation
of a sequence of concurrent behaviors already mastered by
the robot (which are likely to have been acquired during the
learning phase). The authors also point out thatacting can
provide a basis for a non-verbal human-robot communication
and appears as a smart way for the robot to exhibit that
it requires some help from the teacher. The idea that the
robot could ask questions to its teacher has already been
evaluated for example in the collaborative control of [22].
The robot asks questions to the human...which are translated
into a comprehensive human language... in order to obtain
assistance with cognition and perception. The answers are
translated into the symbolic language the robot understands.
As a general rule, task specification is performed at a very high
symbolic level under the dictatorship of the teacher. However,
most of the robotic architectures dedicated to imitation need to
separate the learning phases and the performance phases. Yet,
lifelong learning constraints [23] imply that the robot must
be able to learn while currently freely evolving in the world.
A less unilateral process for task specification could emerge
from an interactive process of training in which the teacher
corrects the robot while the robot tries to imitate the teacher,
as proposed in this paper.

Imitation has already proved its interest in machine learning
and more specifically in robot skill learning, as illustrated
by various studies since the last fifteen years [24], [25],
[26], [27], [28], [29], [30], [31]. Theoretical studies have
also been undertaken, as in [32], which presents a general
formalism for performance metrics on humanoid imitation
tasks and illustrates the need of a general framework in

order to evaluate the relative accuracy of different algorithms.
However, the imitation as a real dynamical and continuous
HRI has rarely been stressed (rare examples are [19], [30],
[20]). Most of the imitation learning and teaching methods
are composed of a phase of demonstration (the learning) and
a phase of performing (the reproduction of the knowledge)
but rarely the imitation has been treated as a real dialogue
based on a language of actions between the robot and the
teacher, alternating between imitation and performance phases.
In [33], [34], [35], for example, a demonstrator tries to teach
a humanoid robot to grasp an object. The study compares an
imitation strategy based on the recording of the joint positions
of a human and an embodied demonstration based on the
recording of the joint position of the robot while the teacher
physically moves the robot arm in order to demonstrate the
task. The authors points out that the teacher demonstration
does not take into account the embodiment of the robot
whereas the realization of the task by the robot during the
learning is far more pertinent. Although they insist on the role
of the observation of the performed task to help the teacher
to understand the robot skill and to prepare the following
demonstration, they do not take benefit of the intervention of
the teacher during the task realization. Indeed, in the context
of the interactive teaching, learning and demonstration phases
ought to be gathered in order to provide a rich and natural
communication which could improve the development of the
robot skills: by imitating a teacher, the robot could experiment
the behavior that has to be learned. Byacting and reactingto
the teacher orders, the robot should freely exhibit its mastery
of the task while in parallel improving its learning [5]. At the
same time, the observation of the robot behavior enables the
teacher to see and intuitively measure the effect of his teaching
and can help him to discover how to efficiently correct the
robot. Although this procedure appears as a non-verbal, non-
symbolic communication, we claim it is nevertheless a very
rich communication [19] able to catalyze the learning of the
robot. In such an interactive context, a strong autonomy of
decision as well as a strong autonomy of the learning is
necessary. As humans are involved, rapidity, precision and
adaptation of the learning are also required.

This paper first presents our robots and its visual system
enabling to create a continuous state space. Then, we will
propose a bootstrap1 for the PerAc architecture [36] that en-
ables the semi-supervised learning of a sensory-motor behavior
(a visual path, a homing behavior). The couple architecture-
equations enables to adapt the partitioning of the environment
to the complexity of the task. The system does not separate
learning and performing phases, which are scattered in time
according to the rhythm of the interaction. The system will be
evaluated in a real indoor environment by means of accuracy
measures between the performed trajectory and the expected
behavioral attractor of the robot dynamics. The interest of
the interaction between the human and the teacher during
the learning, especially the importance to adopt a proscriptive
teaching strategy allowing the robot to commit its own errors,

1a parallel and supplementary architecture emcompassing a first architecture
to control its learning dynamics.
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will be experimentally illustrated using the proposed measures.

II. M ETHODS AND MATERIALS
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Fig. 1. Block diagram of the architecture. Our architecturefor place
recognition is composed of a visual system that focuses on points of interest
and extracts small images in log-polar coordinates (calledlocal views),
recognized as landmarks (see fig. 2). Next, a merging layer compresses the
what and where information, to allow place recognition. By incorporating
our visual place recognition system in a PerAc architecture, it is possible to
create an attractive behavior to the goal. Each new learned place is associated
with a movement which is triggered when the robot recognizesthe place. The
vigilance signal triggers a wave of one shot learning of the landmarks related
to the current location, next of the current place code, in order to allow the
learning of the current place-action association.

Among the various methods to create spatial behaviors, the
PerAc (Perception-Action) architecture [36] has demonstrated
to be particularly adapted for online sensory-motor learning. A
PerAc architecture may underlie many various skills in mobile
robotics: guidance [37], local navigation in indoor [17] and
outdoor environments [18], planning [38], reproduction ofa
temporal sequence of actions [27], as well as in the control of
actuators with multiple degrees of freedom: arm robot control
[30], [39], gaze direction control. This architecture is able
to learn online sensory-motor associations. In this paper,the
PerAc architecture is coupled with a bio-inspired model of
visual place-cells computing a robust localization gradient in
indoor as well as in outdoor environments [40], in order to
perform local navigation tasks [17], [18].

Fig. 1 summarizes the visual processing chain for the place
recognition. A place is defined by a spatial constellation of
online learned visual features (here a set of tripletslandmark-
azimuth-elevation) compressed into a place-code. The con-
stellation results from the merging awhat information and a
whereinformation provided by the visual system that extracts
local-views in log-polar coordinates, centered on points of
interest. Fig 2 illustrates the autonomous landmark extraction
mechanism.

A remarkable property lies in the built-in generalization
capability of the system (see [40] for more details). To sum-
marize, a place-cell encoded in location A responds maximally
in A, and creates a large decreasing place-field around A. In
the experiment of the fig. 3, the robot learns5 × 5 positions
regularly located in a classical working room (fig. 3.a). The
fig. 3.b shows the created place-fields for each place-cell inthe
whole environment, corresponding to a localization gradient.
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Fig. 2. Illustration of the landmark extraction mechanism:the gradient of
a panoramic image is convolved with a DoG filter. The local maxima of the
filtered image correspond to points of interest (centre of the circles). Here,
the eight first focus points are displayed. The system focuses on these points
to extract local views in log-polar coordinates corresponding to landmarks.
The system also provides the bearing of the focus points by means of a
magnetic compass. For each extracted local view, the identity of the four
most recognized landmarks and their recognition levels aregiven.

In a first approximation, a place-cell activity can be estimated
by a noisy Gaussian curve:

pxl
(t) ≃ e−

‖xl−x(t)‖2

σ2 + ǫP (t).

with pxl
(t) is the activity in x(t) of the place-cell encoded

in xl, with σ expresses the extent of the place-field which
is linked to the distance of the landmarks, and withǫP (t) a
noise induced by the uncertainty of the azimuth measurements,
the camera discretization, and the dynamical nature of the
environment.

The learning of several locations creates overlapping place-
fields and also leads to the paving of the space when the
learning of new locations is triggered by the detection of low
place-cell activities (according to a given threshold). A math-
ematical consequence of thewhat and wheremerging is the
following: the shape of the place-field is homothetic with the
shape of the environment [41], [40] (i.e the place-fields extend
with the distance to the landmarks). As regard to the problem
of the size of the world representation, our system exhibitsa
real interest. The system builds its own metrics based on the
azimuthal shifts of the landmarks and their recognition level.
Hence, the dimensionality of the internal representation is not
given by the Cartesian size of the explored area but rather by
its visual regularity (i.e.: if the distance to the landmarks were
infinite, the world description would be reduced to a single PC)
[40]. The computational load and the memory requirements
has been proved to be a linear function of the number of
learned landmarks [9]. Hence, the learning of a loop in a
large outdoor environment uses the same computation load
and memory requirement as the learning of a loop in a smaller
indoor environment (see experiments of section IV). To our
knowledge, extremely few algorithms exhibit such a property.
Moreover, neither Cartesian nor topological map building is
required for the localization, since the world acts as an outside
memory [42]. As long as the learned features of a location
persist in its neighborhood, the robot is able to self-localize
without map building.
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Fig. 3. a) Working room used in the experiment of fig. 3.b. 25 places are
regularly learned in the room and tested in the whole room. b)Activity of
5 × 5 place-cells regularly encoded in the working room of the fig.3.a. A
competition between all the place-cells leads to the pavingof the environment.

The problem we address in this paper concerns a more
general class of algorithms, based on place recognition, which
can lead to an adaptive environmental paving. For example,
GPS measurements, a triangulation system via external ref-
erences, classical SLAM, vision-based SLAM or topological
approaches provide the information to use the methods we
will present. An intuitive approach to achieve visual navigation
using a localization gradient could be to use a hill-climbing
algorithm on the place recognition level of a goal cell (a
particular PC). Unfortunately, even if the robot could keep
a direction as long as the recognition level increases, a strong
initialization problem occurs each time a new action has
to be chosen. The noise on the place recognition level can
also induce local maxima. The duration of each movement
represents a critical parameter for the convergence of such
an algorithm. Minimization parallax between a learned place
and the current location, inspired by models of the insects
navigation [43], [44], could be used to avoid pure 1D hill-
climbing methods. As actions are directly computed rather
than being learned (thought it is possible [45]), the behavior is

not adaptive and the trajectories are stereotyped. Moreover the
learning of a trajectory requires massive efforts either onthe
problem of learning a sequence of actions and detecting place
reaching (also called milestone points in [46]) are reached,
or on the problem of the cognitive mapping of the learned
locations [47]. Finally, the question of the robustness evalua-
tion has rarely been raised. Nevertheless, recent studies [48],
[49] propose an improved version of the ALV algorithm [44]
able to keep a constant performance level independently of the
size of the environment. Several of these limitations can be
overcome by using a PerAc Architecture: a simple associative
learning between places and actions is able to create a sensory-
motor attraction basin, for homing or path following behaviors
(see fig.1 for the architecture). The problem of building a
policy of actions has often been stressed in the literature of
reinforcement learning [50], [51], [52], [53], [54], [55] but we
claims that the PerAc architecture is extremely efficient for
spatial behavior learning since it embeds the problem of the
environmental partitioning as well as the problem of action
policies learning2. The next section will address the problem
of the autonomous building of behavioral attraction basinsby
human-robot interactions. The problem is treated as a machine
learning problem through an interactive demonstration.

The various platforms and electronic equipments we used
to study mobile robot navigation are the following (see fig.
4.a):

• Koala K-Team, pan-tilt camera, magnetic compass.
• Koala K-Team, omni-directional camera, magnetic com-

pass.
• Pioneer 2 AT ActivMedia, stabilized platform, pan-tilt

camera, magnetic compass.

For outdoor experiments on rough terrains, we built a gyro-
stabilization platform in order to deal with the effects on a
non-planar ground (see fig. 4.b).

III. L EARNING AND REFINEMENT OF A SPATIAL

BEHAVIOR: A SENSORY-MOTOR APPROACH

The presented work proposes a reformulation of the problem
of autonomous spatial behavior learning already addressed
by the various reinforcement learning methods [58], [59],
such as Q-Learning [52], [53], TD(λ) [51], Policy Gradient
Reinforcement Learning (PGRL) [54], or Value and Policy
Search (VAPs) [55] ... Our approach differs from them because
the continuity of the state and action spaces is not a particular
context in which the algorithm has to be extended but a basic
assumption that has been guiding the design of our architec-
ture. Our approach also differs because we aim the design of a
complete architecture (able to control real robots) ratherthan
a theoretical algorithm isolated from its architectural layout.
Moreover, classical reinforcement learning algorithms try to
affect a score to each encountered state or state-action unit of
the environment corresponding to an expected reward. Based
on the propagation of the reward, reinforcement algorithmsare
too slow in convergence in a continuous environment because

2we prefer in our school of thinking the terms behavioral dynamic instead
of action policy, referring more to the psychological literature on learning and
control of human coordination and perception.
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they first need to partition (adaptively or not) the environment
before the reinforcement learning algorithm can perform.
Methods for the partitioning of the whole state-action space
has also been proposed [60]. As human-robot interactions
are concerned, we can not accept a slow acquisition of the
behavior (even if sure and optimal), the acquisition (and the
usability of the knowledge) must be performed in a very short
time. If an algorithm is allowed to spend time to estimate the
state space, this time should be used in parallel to estimatethe
topology of the environment. The estimation of the state space
topology gives access to a cognitive map which can compute a
latent learning of many unrewarded paths [61], [62], [63], [64],
[65], [41], [66], [38]. Evidences of a such a latent learning
have been given in mammalian species since 1948 by Tolman
[67], showing that the time for a rat to find a goal does not
decrease once the reward is found, but latently decreases with
the number of experiences of the future goal path before the

a)

b)

Fig. 4. a) Wheeled and legged robots used to study bio-inspired navigation.
The left robot used an omni-directional camera, the right robot uses a firewire
camera mounted on a gyro-stabilized pan-tilt platform, thewheeled robot in
the centre uses a classical pan-tilt camera. All the robots are provided with
a magnetic compass (CMPS03). However, in [56], [57], we shown that the
magnetic compass can be replaced by a visual compass associated to a path
integration system. We also tried to adapt the system to legged robot like
Aibo. b) Gyro-stabilization platform used for experiment on rough terrains.

discovery of the reward. Thus, once a reinforcement occurs in
a given state, efficient (but sub-optimal) strategies are directly
available from each visited places.

Moreover, continuous state and action spaces are generally
treated as discrete after quantization. What has been encour-
aging researches in reinforcement learning is the proof of
optimality which already exists for various algorithms, mostly
in discrete and non-stochastic state and action spaces [52],
[68], [69]. However, convergence towards optimal solutions
in stochastic and continuous spaces is not guaranteed for
most of the reinforcement learning methods. Q-Learning for
example is proved to converge only locally for a certain
class of problems that has continuous state and action spaces
[70]. It has also been highlighted that reinforcement learning
algorithms may diverge when a function approximation is used
instead of a look-up table [71]. On the contrary, our sensory-
motor architecture takes into account both continuousnessof
both the state and the action spaces. This paper will show
that a continuous action space enables the measure of an error
helping for the adaptive partitioning of the continuous state
space. Moreover, since the suboptimal solutions found by the
Nature for the animal navigation are more robust then the
current engineering solutions, we can wonder about the need
of an optimal algorithm for the learning of spatial behaviors.
We can also wonder about the interest of convergence proofs
as compared to the time to obtain an efficient sub-optimal be-
havior (as regard to an external measure). Works like [72] has
highlighted that reinforcement learning algorithms can really
perform better when initialized with a sub-optimal policy.The
sub-optimal solutions computed by our architecture could be
used to initialize reinforcement learning algorithms.

Actually, some limitations of classical reinforcement learn-
ing algorithms can be overcome by bootstrapping a PerAc
architecture (see fig. 1 [36]). Each PC is associated with
a movement to trigger when the corresponding place is
recognized. If the PCs and the actions are defined in the
frame of a competitive structure, a minimum of three place-
action associations around a goal creates a behavioral attractor,
leading the robot trajectories to converge towards the goal
from each place in the attraction basin. Learning is equivalent
to shape this basin in order to create an accurate behavioral
attractor. Homing or route following behaviors (see fig. 5 and
6) can be learned in one shot. Even though human assistance
could speed-up the convergence [72], classical reinforcement
learning methods are not efficient with so few learning sam-
ples.

A. HRI and the PerAc architecture

We investigate here how the PerAc architecture can underlie
the learning of navigation tasks in the frame of an intuitive
human-robot interaction. In our previous experiments of visual
homing or path following (see figs. 5 and 6), the learning was
totally supervised by a human who positioned the robot in a
precise location with a precise orientation, or was generated
by an ad-hoc process (moving around a goal position to learn
it from different positions). Yet, the PerAc architecture is
particularly well designed for the real time online learning
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Fig. 5. Real trajectories of homing in an indoor environmentwith an omni-
directional camera. 8 places (black circles) are learned at1 m from the goal
(size of the square on the floor). The theoretical place-fields are superposed
with the map and the trajectories.

Fig. 6. Outdoor environment and looped sensory-motor trajectory. Arrows
represent the learned positions and the associated movements. The robot closes
the loop of about 100 m in 20 mn. The system is slow because the whole
architecture was executed by a single sequential program (September, 2005).

of skills in that sense that its goal is to learn associationsthat
occur through direct volontary experience (concept of enaction
[73]). Hence, guiding the robot through the task should be
enough and more ergonomic in order to specify the task to
the robot than an explicit symbolic communication as used in
[22] or [74].

In the context of lifelong learning [23], we are presently
interested in addressing the problem of the semi-supervised
building of a behavioral dynamics and its refinement. Besides,
we focus here on the capability of the robot to autonomously
learn a sensory-motor task by interacting with a human. Being
guided by the human, the robot learns places and is able to
merge the action associated with the current state (here places)
to the action imposed by the teacher. We use a joystick to
guide the robot in the same way as a dog could be guided
with a leash, but a visual tracking of the teacher could also
have been possible (really close to an imitation process). We

propose here an autonomous architecture enabling the robotto
learn in one shot a new place-action association and to adapt
the movement associated to the previous place according to
the sensory-motor error generated during the crossing of this
place.

In the PerAc architecture, two learning stages can be
controlled: the sensory learning (environmental partitioning)
and the sensory-motor learning (policy of action learning).
In classical task specification in unknown environment, the
environmental partitioning has to be stabilized before the
navigation can be performed. Here, we save time by the
simultaneous one shot learning of both the sensory state space
and the sensory-motor associations. Each time a sensory state
is learned, a motor action is instantaneously associated with it.
A vigilance signal will be responsible for triggering this wave
of learning (see fig. 1).

B. Movement adaptation

We consider two binarized signals for the bootstrap of
the sensory-motor learning. The first signal is the vigilance
signal V (t) which triggers the waves of one-shot learning.
The second signalǫ(t) corresponds to a learning rate. It is
used as a modulation for both the one-shot learning and the
adaptation. The neural architecture is given in fig. 7. In our
architecture,ǫ(t) spikes each time a place transition occurs
(hence also each time the vigilance signal spikes). The group
of neuronsAP (which elements areaP

k ), performing the motor
learning, is inspired from the Widrow-Hoff (WH) learning rule
[75] but other rules are possible3. The main difference with a
classical WH learning rule is that our rule is composed of two
terms. A term performing a one shot learning computed as the
classical gradient of a WH learning rule and a term computed
according to the previous gradient computation, corresponding
to a delayed learning rule.

In the following, the activity of the place-cells is binarized:
p+

i (t) is the normalized activity of the most activated place-
cell i: p+

i (t) = 1 if the current place is the placei and
p+

i (t) = 0 otherwise. The signalǫ(t) corresponds to a
place transition (ǫ(t) = 1 when a place transition occurs
and ǫ(t) = 0 otherwise). It can be defined as:ǫ(t) =
∑nP

i=1

[

p+
i (t) − p+

i (t − dt)
]+

, with nP the number of place-
cells, and[x]+ = x if x > 0.

The actions are defined by population of neurons: each
neuron k in an action group corresponds to a particular
orientation 2.k.π

nA
, nA being the number of neurons coding an

action (nA = 61 in our architecture). The activity of the group
AR(t), providing the performed movement betweent−dt and
t in the directionθ(t), is a Gaussian curve, centered on the
neuron corresponding to the orientationθ(t). Hence:

aR
k (t) = e−

|∆θ
k
(t)|2

σ (1)

3The Hebbian learning rules has been rejected because the time to learn a
new action would have been greater or equal to the whole time of learning
(the longer the system has already learned, the longer learning something
else will be). Moreover, the Hebbian learning rule needs to be shunted by
means of a multiplicative term1 − ωik so that the weight could be in[0, 1]
(corresponding to a Grossberg rule), creating a dynamics very close to the
WH learning rule.
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Fig. 7. Modified PerAc Architecture enabling either the one-shot learning of places and place-action associations or the refinement of the sensory-motor
dynamics. The computation of a signed angular error betweenthe mean performed movement and the predicted movement in a given place enables to adapt
the movement associated to this place. The one-shot learning of the landmarks, the constellations, the places and the place-action associations is triggered by
a vigilance signal, whereas the adaptation is performed continuously, each time a place transition occurs.

with ∆θ
k(t) ∈ ]−π, π] the shift between the favorite direction

2.k.π
nA

of the neuronk and the performed movementθ(t) (here,
σ = π

6
).

The neurons of the groupAM provide the mean movement
and are defined as:

aM
k (t) = ǫM .aR

k (t) + [aR
k (t − dt) − IR.ǫ(t)]+ (2)

with ǫM a rate avoidingaM
k (t) to be greater than1 until 1

ǫ

steps without reset (ǫM = 0.001 for example), withIR a
strong positive signal resetting the memory ofaM

k (IR = 1000
for example).

The activity of the kth input neuron for the motor learning
aL

k (t) (output to learn) is computed as follow:

aL
k (t) = aR

k (t−dt).V (t)+
1

aM
max(t)

aM
k (t−dt).ǫ(t).(1−V (t))

(3)
with aM

max(t) = max
k=1..nA

(aM
k (t)), used for the normalization

(aR
k being already normalized).aL

k (t) provides either the previ-
ous performed movement when the vigilance spikes (enabling
the one-shot learning) or the mean movement since the last
place transition (enabling the delayed adaptation). The mean
movement is reset by theǫ(t) signal (see fig. 7), each time a
place transition occurs.

The equation for updating the activity of the neuronsaP
k

performing the sensory-motor learning is the following:

sk(t) =

nP
∑

i=1

ωPA
ik (t)p+

i (t) (4)

aP
k (t) = V (t).aL

k (t) + (1 − V (t)) .

(

sk(t)

smax(t)

)

(5)

In this equation,sk(t) is the predicted activity of the kth

neuron of the group.ωPA
ik is the weight of the connection

between the ith place-cell and the kth action neuron. Finally,
smax = max

k=1..nA

(sk) is used for the output normalization.

More precisely,aL
k (t) is the desired output (the future action

to predict, explicitly given by the input groupAL calledMvt
to learn in fig. 7.). The equation 4 corresponds to the pre-
dicted output and the equation 5 provides the effective output
computed either as the normalized prediction or as the desired
output (which is also normalized) during a one-shot learning
cycle (no prediction being available before the one-shot learn-
ing). Most of the signals (inputs and outputs) are normalized
in order to compute the sensory-motor errorEa, defined as the
difference between the performed movement and the learned
movement for a given place:Ea(t) =

∑nA

i=1
|aM

i (t) − aP
i (t)|.

The update of the synaptic weights is performed after the
update of the neurons activity according to the following
equations:

dωPA
ik

dt
= (Gi

ik(t) + Gd
ik(t − dt)).ǫ(t) (6)

with:

Gi
ik(t) = (aL

k (t) − sk(t)).p+
i (t).V (t) (7)

Gd
ik(t) = (aL

k (t) − sk(t)).p+
i (t).(1 − ǫ(t)) (8)

In this equation, two gradient terms are computed:Gi
ik

(instantaneous gradient) which is the classical WH gradient
with a term of vigilance modulating the learning andGd

ik

(delayed gradient) which computes a gradient if no learning
or adaptation occurs. During a one-shot learning cycle (when
V (t) and ǫ(t) spike), the new place is associated with the
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current action by means of the not null termsGi
ik(t) in the

equation 6. Otherwise, a delayed adaptation is performed each
time ǫ(t) spikes by means of the termGd

ik(t−dt) (the previous
gradient). Hence, the adaptation of the movement in a place
is performed only once the robot has left the place and will
only be available the next time the robot will re-enter the
place. As a general rule, the adaptation of a sensory-motor
association requires a kind of learning evaluation and can
only be performed after the sensory-motor association has
occurred. In the context of the sensory-motor learning, this
delayed adaptation seems to be crucial to control the instants
and the contents of the learning.

The remaining question concerns the control of the
vigilance signal: Which are the important signals for the
autonomous partitioning of the environment correspondingto
a refinement at the sensory level?

C. Adaptive partitioning of the environment

In the context of the reproduction of a trajectory, the
important criterion is the precision of the reproduced trajec-
tory which is directly linked to the spatial discretizationof
the behavioral dynamic. The simplest solution to trigger the
coding of a new place is to fix a low thresholdt−P on the place-
cell activity. If the activitypM (t) of the most activated place-
cell is under this threshold (pM (t) = max

k=1..nP

(pk(t))), a new

place is learned:V (t) = Γ0(t
−

P − pM ), with Γx the Heaviside
function: Γx(y) = 1 if y > x and0 otherwise. This will lead
to a regular partitioning of the environment. The threshold
t−P has to be low enough in order to use the generalization
capabilities of the place-field and to minimize the number
of encoded place-cells. Such a vigilance signal implies that
the size of the place-fields (and also the precision of the
spatial encoding) is fixed as illustrated by figs. 8.a and 8.b.
Since the sampling of the partitioning controls the precision
of the behavioral dynamics, the partitioning of the environment
should not be regular but adapted to the desired precision and
to the complexity of the trajectory (see fig. 9). For instance,
more place-action associations should be encoded during a
sharp bend than during a straight line. The system could
use the discrimination capabilities of the place recognition
in the complex parts of the trajectory and its generalization
capabilities in the easier parts. In a more general context,the
assumption that a given sensory-motor functionD : S → M is
better approximated if the discretization factor of the sensory
spaceS evolves as the variation∆D

∆S
of the sensory-motor

function remains valid (the compression factor is adapted to
the variations of information).

The difference between a regular paving (corresponding
to a threshold on the sensory dimension) and an adaptive
paving (corresponding to a threshold on the action dimension)
is illustrated for a one-dimensional example in the fig. 10.
With the regular partitioning, the more the function varies,
the higher the error is. Yet, when the function is varying,
the probability of generating diverging trajectories is higher.

Desired trajectory
Performed trajectory

Place field and 
learned action

Desired trajectory
Performed trajectory

Place field and
learned action

a) b)

Fig. 8. a) An example of a regular spatial partitioning with large cells. A
movement direction is associated to each cell. The precision of the reproduced
trajectory depends on the precision of the state space coding (the size of the
cells). b) An example of a regular spatial partitioning withsmall cells. The
precision of the reproduced trajectory is higher than in fig.8.a. However, the
cost of the spatial coding in also higher.

On the contrary, with the adaptive partitioning, the density
of encoded place-cells increases with the variation of the
function to approximate: fewer place-cells are recruited when
the function is monotonic and more are used when the function
varies. Hence, the more the function varies, the lower the error
is.

Desired trajectory
Performed trajectory

Place field and
learned action

Fig. 9. An example of an adaptive spatial partitioning. The size of the cells
is adapted to the complexity of the trajectory. Small cells are used to precisely
follow the bend, whereas big cells are used to create a convergence around
the trajectory.

The sensory-motor errorEa(t) in each place has been
defined as the difference between the predicted and the per-
formed action. It stands for the parameter∆D

∆S
. Indeed, the

sensory-motor error is higher in complex parts of the trajectory
than in easier parts, because more changes of direction occur.
Hence, the sensory motor error appears as a pertinent signal
to control the learning of the places. A thresholdt+Ea

on the
sensory-motor error is responsible for the accuracy of the
behavior during a bend. For example, ift+Ea

corresponds to
an error of about 30o, then a 90o bend should be encoded
by at least three place-cells. Thus, this measure can be used
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to control the vigilance signal in order to adapt the learning
location of the place-cells to the complexity of the desired
behavior. The vigilance signal is defined as:

V (t) = Γ0

(

(

t+P−pM (t)

)

.

(

[Ea(t)−t+Ea
]++[t−P−pM (t)]+

)

)

(9)
In order to avoid the over-coding of the environment, a safety
thresholdt+P over which a place is considered as recognized
can be fixed. If the maximum of the place-cell activitiespM (t)
is higher thant+P , the coding of new place-cells is inhibited.
This threshold can be as high as the discrimination capability
of the place recognition. We finally use a low thresholdt−P to
trigger the learning of a new place when all the other encoded
places are not enough recognized.t−P must be correlated with
the generalization capability.

Position of the learning

Function to approximate

Approximation of the function

Action

Sensation

Threshold on the action
Adaptative approximation

Threshold on the sensation 
Regular approximation

a)

b)

Fig. 10. Illustration on a one-dimensional example of two approximation
methods. Fig. a) illustrates the regular partitioning based on a low threshold
on the place-cell activity (here corresponding to a given distance between
the position of learning on the ”sensation” axis) under which a new place is
learned. Fig b) illustrates the adaptive partitioning based on a high threshold
between the learned action and the action to be learned, overwhich a new
place is learned. The adaptive partitioning is able to reduce the error when
the variation of the sensory-motor dynamics (the function to be learned) is
high and to create large place-cells in monotonic parts of the sensory-motor
dynamics.

D. Simulated environments and simulated teacher

In order to theoretically validate our approach, a simulated
environment is used. In this environment, the system creates
perfect place-cells since all the possible landmarks as well as
their identity and their exact azimuth are provided. In order
to simulate the human guidance of the robot, an ordered set
D of points di that parametrizes the desired trajectory is
predefined. A dynamical process, which trajectories converge

towards an attractor considered as the optimal trajectory,is
then used. The process consists in identifying the closest
point di in the desired trajectory and in heading for the point
di+∆P

, with ∆P > 0 depending on the proximity4 d of
the pointsdi (∆P = 5 in our simulated environment with
d < 7.5 ×

√
2 and with the distancedr (distance travelled by

the agent between each steps) defined so thatdr < 1). The
dynamical system defining the human guidance is illustrated
by the fig. 11.a. The figure 11.b illustrates, for a given set
D that parametrizes the desired trajectory, the trajectories
generated by the described dynamical system simulating the
human guidance. The generated attractor corresponds to the
expected robot behavior after the learning (ie: the attractor
corresponds to the desired trajectory).

1 2
 3
6

7

4
 5

Vectorial movement

Median between adjacent points of D

point di of set D

Direction of movement

a)

b)

Fig. 11. a) To simulate the human guidance, an ordered setD of points
di that parametrizes the desired trajectory and a dynamical process which
trajectories converge towards an attractor considered as the optimal trajectory
is used. b) Trajectories generated by the dynamical processof the fig. 11.a.
The trajectories converge towards an attractor defining theoptimal trajectory.

E. Validation of the proposed system

The experiment of fig. 12 illustrates the capability of the
system to adapt the spatial partitioning to the complexity of
the desired trajectory. In this experiment, a human pressesa

4the unit used to measure distance is the pixel. The size of thefollowing
environment is750 × 750 pixels.
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button when he wants to correct the robot behavior in order
to teach him the desired trajectory. The strategy of the teacher
(when the button should be pressed?) is the subject of the next
section. The figures 12.a and 12.b show the resulting trajecto-
ries as well as the attractor of the sensory-motor dynamics of
the robot. The attractor is defined as the mean position of the
robot for different starting points in the attraction basinafter
a long time of convergence. The figure 12.c also shows the
position of the learned places, superimposed with the attractor.
The simulated robot adapts the density of coded locations to
the complexity of the desired trajectory: during blends, the
robot uses the discrimination capabilities of the place-cells in
order to accurately approximate the desired behavior, whereas
the system uses the generalization capability of the place-cells
in easier parts of the desired trajectory like straight lines.

The use of the sensory-motor errorEa(t) to control the
learning of a new location allows to adapt the precision of the
spatial partitioning to the complexity of the task. Moreover,
precise thresholds do not have to be estimated, but confidence
thresholds for the recognition and the non-recognition. The
thresholdt+Ea

on the sensory-motor error could also be learned.

IV. H UMAN -ROBOT INTERACTIONS AS A COGNITIVE

CATALYST FOR THE LEARNING OF BEHAVIORAL

ATTRACTORS

In this section, accuracy measures of reproduced trajec-
tories as compared to the optimal trajectory are proposed.
The interest of the interaction loop between the human and
the robot during the learning, especially the importance of
allowing the robot to commit its own errors, is demonstrated
using these measures. Finally, we use these measures in a
real indoor environment, by means of a vision-based system
which corrects the perspective and enables the tracking of
the robot position in the Cartesian space. An experiment in
outdoor environment is also proposed.

A. Proposition of an accuracy measure of the trajectory
reproduction

The reproduction of a trajectory is a problem frequently
addressed in mobile robotics. As optimality is not always
reached or tracked among the various algorithms, we propose
a measure that could help to compare the generated trajectories
to an optimal path (the expected behavioral attractor). Since
it could be very long to evaluate the complete behavior in
the whole environment or to estimate the optimal behavior in
each position, we prefer trying to evaluate the precision ofthe
generated trajectory, from its starting point to its end point
with respect to a desired trajectory in order to compare the
performance of different algorithms.

Evaluating the spatial precision of a trajectory, indepen-
dently of the temporal precision, is an extremely hard prob-
lem. Indeed, comparing trajectories without time aspects is
equivalent to compare the sequence of points defining the two
trajectories. We propose two measures in order to compare the
optimal trajectory{xi(p)/p ∈ {1..P}} with the reproduced
trajectory{xr(t)/t ∈ [ti..tf ]}. The first equation evaluates the

mean distance between the robot position and the closest point
of the desired trajectory:

et =

∫ t=tf

t=ti

P

min
p=1

‖xr(t) − xi(p)‖.dt

tf − ti
(10)

This measure is not enough since the robot can navigate very
close from the desired trajectory during its whole trajectory but
stay very far from a given point of the trajectory. For example,
if the robot does not move, the measureet is constant. Hence,
a second equation has to be introduced. It verifies that the
robot has travelled close enough to each point of the desired
trajectory:

ep =

∑P

p=1

tf

min
t=ti

‖xr(t) − xi(p)‖

P
(11)

This second equation is also insufficient since the robot can
navigate close to each point of the desired trajectory and then
escape very far without increasing the measure. However, the
jointure of both equations allows to evaluate if each robot
position was always close to a point of the desired trajectory
and if the robot has been close to each point of the desired
trajectory. Hence, a combined measure may also be used, such
as (et + ep).

It must be noticed that each measure varies in opposite
manner. The first measureet is low at the beginning and
increases with the error of reproduction, whereas the second
measureep is high at the beginning and decreases with the
accuracy of the reproduction. At the end of a relatively correct
reproduction,et should have increased to a weak mean value
(the robot has never been far from a point of the desired
trajectory) andep should have shrunk to a weak value (the
robot has been close to each point of the desired trajectory).

However, it is still possible to find some trajectories which
are well scored but correspond to a wrong reproduction.
For example, if the robot reproduces the trajectory in the
opposite direction, the score will be the same as in the correct
direction. Moreover, oscillating around the ideal trajectory
provides the same score as a straight trajectory. An angular
term could be useful. The duration or the length of the
performed trajectory could give another estimation of the
quality of the reproduction. We consider that the robot has
to be able to reproduce the trajectory in the correct direction
and with few oscillations of the direction before using these
measures. In the following, these two measures will be used
in a simulated environment and in an indoor environment.
However, it is far more difficult to use these measures in
larger environments since they require precise measurements
of the robot position. In outdoor environments, a differential
GPS seems necessary. In indoor environments, systems based
on a network of calibrated camera, tracking the robot across
several rooms could be possible. However, we did not have
access to these technologies for our experiments. Hence, in
the following experiment in the outdoor environment, these
measures have not been used, because of the difficulty to
estimate the precise position of the robot.
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a) b) c)

Fig. 12. Training a simulated robot to perform a given trajectory: a human pushes a button to trigger the guidance processdefined in fig. 11. a) Trajectories
generated after the learning. b) Generated attractor: meanposition of the robot for different starting points in the attraction basin, after a long time. c) Position
of the learned places, superimposed with the generated attractor. The system has adapted the density of encoded location to the complexity of the desired
trajectory. More locations are learned in blends than in straight lines. The system uses the discrimination capabilities of the place-cells in complex parts of
the desired trajectory and the generalization capability in the easier parts.

Stratgie 4 Laps of interaction Trajectories after learning Behavioral attractor(s) et-ep

Prescription 45 - 40

Proscription 10.7 - 12.4

Interaction 6.5 - 6.9

Fig. 13. Left figures show the trajectories during the four laps of training. The figures in the centre show some generated trajectories. The behavioral
attractors and their attraction basins are displayed on theright figures (the attractors correspond to the mean position of the robot after a long time for
different starting points and the attraction basin is deduced from the fig. of the trajectories). Each line corresponds to a given teaching strategy. In the first
experiment, the prescriptive teaching is simulated. The trajectories either diverge or converge towards a bad attractor. For this attractor,et = 45 andep = 40.
A second parasitic attractor has also been created. In the second experiment, the proscriptive teaching is simulated. The simulated teacher never shows the
precise trajectory to the robot. The program only corrects the robot when it escapes too far from the desired trajectory according to a given threshold (here
20 pixels). As a result, the attraction basin is far wider. The robot oscillates around the desired trajectory but difficulty stabilizes on it. Only one attractor has
been created. For the generated attractor,et = 10.7 and ep = 12.4. The last experiment evaluates the human teaching. The human chooses when he wants
to correct or to guide the robot by simply pressing a button. The robot trajectories no longer ”bifurcate” and the robot isable to precisely follow the desired
trajectory. For the generated attractor:et = 6.5 andep = 6.9, which is the best score among the three experiments.
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B. Effects of the interaction strategy

The heart of this section aims at demonstrating the
interest of a real human interaction of guidance as opposed
to a predefined strategy such as a purely proscriptive or
prescriptive training.

1) Expected results:
The proposed PerAc architecture for local navigation enables a
teacher to specify a task to a robot. Even if the communication
is based on a very simple media, different strategies may be
adopted by the teacher to interact with the robot. The teacher
may perfectly guide the robot corresponding to aprescriptive
teaching or on the contrary, adopt aproscriptive teaching
consisting in correcting the robot when it is too far from the
centre of the trajectory. This opposition between a prescriptive
strategy and a proscriptive strategy reminds the opposition
between an objectivist and a constructivist approach of the
autonomy, pointed out in [76]. In both cases, the robot should
be able to extract the information and to use it as well as
possible. The result of the experiment illustrated by fig. 13
highlights that both kinds of learning are necessary to obtain
a more accurate behavioral attractor. The teacher must let
its robot commit errors to obtain a convergent behavior and
he must also show the precise trajectory to refine the centre
of the attraction basin. If the teacher only adopts one of
two strategies, the resulting behavior is expected to be worst
than if both strategies are used. An interesting point is that
the course of the interaction with the robot should logically
imply both kinds of learning. Based on the same experimental
conditions described in the previous section, these expected
results are validated.

2) Experimantal validation:
Let us first consider a prescriptive teaching (fist line of fig.
13). As the teacher always does the same action in the
same places without observing the robot behavior, he never
knows if the robot learns or if it is able to reproduce the
behavior. Hence, neither the teacher nor the robot knows if
the resulting behavior is correct. Since no interaction hasreally
occurred, and no error has been committed, the algorithm is
not able to efficiently generalize: the created dynamics hastwo
attractors: some starting point can lead either to a convergent
behavior (but the generated trajectory is quite unsatisfying), or
to a parasitic fixed point (in the middle of the environment).
Although, this strategy enables the robot to learn the best
movement in the centre of the trajectory, the resulting attractor
is bad because the robot does not know what to do when it
escapes from the trajectory.

The other strategy the teacher can adopt is to correct the
robot when it is too far from the centre of the trajectory, cor-
responding to a proscriptive teaching (second line of fig. 13).
Hence the robot oscillates from a border of the allowed road
to the other. This strategy has the advantage for the teacherto
directly evaluate the precision of the learning by observing the
errors of the robot. Moreover the locations of the place-action
associations surround the precise trajectory, leading to areal
convergence towards the centre of the trajectory. The drawback

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

A B C

Fig. 14. Rythm of the interaction between a human teacher andthe robot
during an experiment like the last one of the fig. 13 (but the number of training
laps was not constrained). The graph shows when the human presses the
button. The phases of proscriptive teaching correspond to the Dirac pulses. The
phases of prescriptive teaching correspond to the longer step. Three periods
emerge: during the period A, corresponding to the beginningof the interaction,
the correction frequency is high: the teacher has to be directive since the robot
knows nothing. The period B is characterized by an alternation of correction
phases and observation phases. The period C corresponds to the final step of
the learning: the teacher tries to finalize the training firstby a long prescriptive
phase, and then by selecting particular proscriptive orders.

is that the robot does not stabilize on the precise trajectory but
oscillates around it. Fig. 13 illustrates the oscillating effects of
the sole proscriptive teaching. This figure also shows that the
approximation of the dynamics no longer has any erroneous
parasitic attractor and that the generated attractor is farmore
accurate (see the measureset andep, divides by4 as compared
to the result of the presctitive teaching).

The simulations of the prescriptive as well as the pro-
scriptive strategies are in fact adhoc processes of guidance
which does not require any human intervention. If a human
is asked to decide when to correct the robot by pressing a
button (the simulated human guidance is activated as long
as the button is pressed, and the robot realizes the learned
behavior otherwise), both kinds of learning will naturally
emerge from the interaction (see the last line of fig. 13). During
the natural course of the interaction, the teacher oscillates
between precise demonstrations of the trajectory (prescriptive
teaching), observation of the robot behavior and proscriptive
corrections as shown in fig. 14 which illustrated the rhythm
of the interaction (the number of laps of training in this
experiment has not been constrained). The human and the
robot really interact by means of a non-verbal, non-symbolic
language based on the actions (imposed by the teacher and
reproduced by the robot). The fig.14 illustrated the rhythm
of the interaction. The teacher alternates between prescriptive
and proscriptive phases. As a result, we can see that the
generated trajectories are more precise than when the single
proscriptive teaching was used. Both strategies have actually
complementary properties and occur successively during the
real interaction. The proscriptive teaching enables to create
the border of the attraction basin guaranteeing a convergence
towards the centre of the trajectory, whereas the prescriptive
teaching enables to precisely dig the centre of the attraction
basin.

C. Experiments with real robots

We present here results in real indoor and outdoor environ-
ments in order to highlight the usability of the system and to
show the expected course of the real time interaction.

The experiments proposed here show the accuracy of our
approach in real environment. The indoor experiments (see



IEEE TRANSACTIONS ON SYSTEMS MAN & CYBERNETICS, PART A, VOL.99, NO. 99, JANUARY 2099 13

Place−action association

Reproduced trajectory
Desired trajectory

Fig. 15. Indoor experiment: the robot is guided by a human operator. Three
laps are sufficient to train the robot to perform the task within the road defined
by the black border (not visible from the robot).

Optimal
trajectory

Reproduced
trajectory

Fig. 16. Measure of an indoor trajectory. The perspective effect of the camera
used to record the experiments is first corrected. Then, the user specifies the
optimal trajectory. The tracking of the robot in the corrected image enables
to computeet and ep. In this experiment,ep = 23cm and et = 26cm (1
square of the grid represents 0.75 m)

fig. 15 and 16) demonstrate in favorable conditions (constant
artificial light, horizontal ground, various and numerous visual
landmarks) that it is quite easy to train a robot to perform a

sensory-motor task. In the experiment of fig. 15, three laps
were sufficient for the robot to learn a convergent behavior.
The precision could have been further enhanced by guiding
the robot on more laps. In a second experiment, we tried
to measureet and ep experimentally. In order to extract the
real trajectory of the robot and compare it with the desired
trajectory, a visual tracking system is used. Fig 16 illustrates
the tracking and the perspective correction used to measureet

andep. In this experiment,ep = 23cm andet = 26cm.
Outdoor experiments are far more difficult to analyze due

to the constraints of the natural rought environments. The size
and the nature of the experimental environment avoided us
to record the precise trajectory: two or three synchronized
camera would have been necessary, and the GPS does not work
in such a ”urban canyons”. Moreover, a stabilized platform
using two accelerometers was necessary. The robot camera
and its magnetic compass were mounted on this stabilized
platform (see fig. 4.b) to deal with the non-planarity of the
ground leading, otherwise, to errors in compass and vision
measurements. This platform enables to limit the effects ofa
non-planar ground on the sensory measurements. For outdoor
experiments, we had to improve the robustness of our vision
system to deal with high and quick variations of the luminance
conditions, when the robot camera captures buildings directly
illuminated by the sun as compared to shadowed area. We had
to develop an exposure-time and gain adaptor to control the
parameter of our firewire CCD camera. Moreover, the sonar
system of the pioneer AT was almost unusable since it was
unable to differentiate a natural slope of the road from the
walls and since it detected the long grass as an obstacle. In
spite of these difficulties, we succeeded in teaching an accurate
trajectory to the robot according to the expected theoretical
precision, with only two laps of proscriptive teaching (seefig.
17). Only 14 places were learned which is extremely low as
compared to the environment size.

V. D ISCUSION

The choice of our adaptive one shot learning (section III) is
questionable since it does not aim at guaranteeing an optimal
policy; yet it offers a lot of advantages. The one shot learning
creates a first coarse approximation of the desired behavioral
dynamics which can be directly used. Hence, the teacher can
directly see the consequences of its guidance when a place-
action association is being learned. The one shot learning has
also the property to be instantaneously usable by the robot,
giving a real feed-back to the human on the effect of its
actions on the learning. As a simple one-shot association does
not enable to refine the behavioral dynamic, it is necessary to
modify the sensory-motor learning rule in order to take into
account a possible adaptation. The adaptation capability is also
crucial in order to deal with an imprecise guiding. During the
crossing of a place, the robot integrates the performed move-
ments, without wondering if the movements are performed
actively or passively (i.e. if the movements are decided by
the robot or imposed by the teacher). When the robot enters
another place, the integrated movement can be used to adapt
the learned movement associated to the previous place. Hence
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Fig. 17. Outdoor experiment of interactive teaching of a visual path. The 200 m are covered in 9 mn. The architecture is split on four processors but the
speed limitation is due to the low level drivers of the robot actuators. Otherwise the robot speed could be higher.

the corrections provided by the teacher enable to refine the
dynamic whereas the autonomous movements of the robot
reinforce the learned dynamics. Such an adaptive learning
process enables to approximate the behavior as precisely as
the spatial partitioning and the behavior of the teacher allow
it.

A crucial problem of the interaction between humans and
robots is that the human can never know if the task was
correctly learned by the robot, and the robot never knows if
the teacher is satisfied with its behavior. As none of them can
evaluate the other, how is it possible for the robot or for the
human to know that the task is learned? Since the teacher
corrects the robot, he can not know what the behavior would
have been if no correction had been given. Hence, a single
prescriptive teaching is insufficient to produce a constructive
interaction as previously illustrated. The teacher has to eval-
uate the robot behavior by both prescriptive and proscriptive
teaching. Moreover, during such a HRI, a real communication
based on actions emerges [74]: the teacher communicates by
controlling the joystick, and the robot communicates by behav-
ing according to its learned sensory-motor dynamics. The in-
teraction is composed of three different phases which alternate:
prescriptive teaching phases, proscriptive teaching phases and
observation/demonstration phases. The three phases alternate
in time and space according to the evolution of the teaching,
defining an interaction rhythm. We pointed out (section IV)
that the richness of a real HRI (human-robot interaction)
acts as a cognitive catalyst, enhancing the precision of the
reproduced behavior as well as its functioning domain (size

of the attraction basin) [5], as opposed to a pre-determined
guidance strategy such as a prescriptive guidance commonly
referred as programming by demonstration (which is in fact far
from being an interactive learning process since the behavior
of the robot does not modify the teacher behavior) or a
proscriptive strategy consisting of correcting the robot when it
commits errors (which is the first step towards an interactive
learning, since the behavior of the robot influences the teacher
behavior, modifying the robot behavior, and so on and so
on...), The system was finally validated by experiments in real
indoor and outdoor environments. The experiments prove that
the system is really mature and could be used by naive user
in the human world for patrolling in an a priory unknown
environment.

Two major problems remain: the control of the end of the
interaction and the possibility that permanent environmental
changes occur. Indeed, the teacher can finally be satisfied with
the robot behavior or not. If the trainer is not satisfied with
the robot behavior whereas the learning has already converged,
this must mean that the desired precision is not reachable by
the robot which already performs the task as well as it can.
On the contrary, even if the trainer is satisfied with the robot
behavior, the robot may however know some states in which
it can progress. It could communicate its desire to progress,
or even guide the teacher in these states. The interaction
could be more constructive if the robot had the possibility
to disobey the teacher in known states or expresses its need
of help in unmastered states. Such variations of the behavior
will constitute another excellent feed-back for the teacher on
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the mastery of the task by the robot. The problem of the self-
evaluation arises.The robot has to know what it knows: it
should be able to know if its learning enables it to progress,or
if its predictions are normal according to the current situation.
We currently work on a progress-based approach derived from
[13], [77] for the meta-control of the learning, aiming at giving
self-evaluation capabilities to the robots. In [78], [9], [79], we
proposed a progress-based neural architecture which is proved
to provide the robot with the capability to detect phases of
progress, phases of stagnation, and novelty. Novelty detection
leads the robot to re-adapt its erroneous learning.

We also want to investigate how to give to the robot a
specific behavior according to its self-evaluation of its mastery
of the task in order to enrich the interaction and to speed
up the knowledge transfer. In unmastered situations, the robot
could use repair strategies to get back the attention of the
teacher, by means of a particular behavior (oscillation, stop,
looking toward the teacher ...) [80], or by means of a more
understandable media as an expressive robot head [81], [82].
Seeing these behavioral oscillations, the teacher should interact
with the robot by giving him the correct orientation, providing
additional examples for the learning. In mastered states, the
robot could become curious by choosing to not realize the
learned behavior and to disobey its teacher in order to find less
mastered states in which it can still progress (a communication
based on the expression of emotional states could once again
be very pertinent). Indeed, this could lead the robot towards
states it would not have experimented if it had performed what
it had learned, or if it had perform the predictable actions
imposed by its teacher. Obviously, auto-evaluation capabili-
ties also appear as an excellent starting point to deal with
permanent environmental changes or morphological changes
of the robot: self-evaluation capabilities could more easily
lead to consider re-learning strategy in case of such permanent
changes.

VI. CONCLUSIONS AND PERSPECTIVES

In this paper, we addressed the problem of the interactive
teaching of a sensory-motor navigation task to a mobile robot.
The proposed sensory-motor learning rule enables the robot
to associate newly learned places with the current action by
means of a classical WH learning rule and to refine the learned
behavior by merging the learned movement in each place with
the performed movement by means of a delayed WH learning
rule. By triggering the recruitment of new places according
to the sensory-motor error, the proposed generalization ofthe
PerAc architecture adapts the partitioning of the environment
to the complexity of the task to learn. The use of a joystick to
teach the robot, in spite of its simplicity, creates a real human-
robot interaction with the emergence of adialoguebased on
actions. We proposed accuracy measures and highlighted the
fact that human-robot interactions can catalyze the learning
and speed up its convergence. Experiments in both indoor and
outdoor environments were presented in order to evaluate the
performance of the whole system for the control of a real
robot.

Future works will focus on the comparison of sensory-
motor strategies versus planning strategies for the interactive

learning of an arbitrary path and the control of its reproduction.
In our complete biological model of the navigation, neurons
in the hippocampus proper (CA1/CA3 regions) learn and
predict transitions between successive multi-modal states [41].
A cognitive map performs a latent learning of the spatial
topology of the environment [67] and can be used to compute
a plan of actions to reach an arbitrary goal [64]. The system
has been recently validated in an experiment of a long random
exploration (45mn, 3000 steps of the place-cell architecture),
in a real indoor environment [38]. The experiment highlights
the capability of the system to predict transitions of places,
to latently build the cognitive map of the learned transitions,
and thus to plan trajectory to particular goals specified by
a simple reinforcement in the location of the goal at the
end of the exploration. The influence of our progress-based
meta-controller [78], [79] will be evaluated at every level
of this architecture. We will also study how an agent can
autonomously detect it is not really doing what it aims at
doing. We will wonder how an emotional system could be
used as a second order controller [81] to adjust the shape
of the attraction basins provided by the sensory-motor or the
planning systems when the behavior becomes incorrect.

Finally, we are currently addressing the problem of the
building of a single architecture, allowing the robot to deal
with spatial as well as temporal modalities (place-action and
duration-action stategy), in navigation as well as in robotics
arm manipulation [39]. Our perspective is to build a merged
control architecture for applications in which navigationand
object manipulation are considered. A simple example could
be to imagine a robot that must be able to use the door handles
or to press elevator buttons to achieve its mission. However,
this kind of missions also imply the incorporation of object
recognition, visual affordance detection [1], [83], [84],[85],
[86] and more sophisticated mechanisms to understand the
natural and/or human world. The adaptation of our system on
UAVs (Unmanned Aerial Vehicules) is also currently studied.

Movies of the experiments presented in fig. 6, 15 and 17
are available on the website of the authors and on:
http://www.etis.ensea.fr/˜neurocyber/giovannangeli/Home.html
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