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Interactive teaching for vision-based mobile robots:
a sensory-motor approach

Christophe Giovannangeli and Philippe Gaussier

Abstract—For the last decade, we have developed a vision- position measurement, depending of the robot orienta®pn [

based architecture for mobile robot navigation. Our bio-inspired  \Whereas several statistical methods can deal with centered
model of the navigation has proved to achieve sensory-motor ygises it is much more difficult to detect a conditionally

tasks in real time in unknown indoor as well as outdoor bi d . h terized b | d tandard
environments. We address here the problem of the autonomous lased noise, characterized by a mean vajue and a standar

incremental learning of a sensory-motor task, demonstrate by ~deviation which depend on unexpected (hidden) dimensions
an operator guiding the robot. The proposed system enables of the robot state. 2) The required memory (and consequently
a semi-supervision of the task learning and is able to adapt the required computation time) increases with the size ef th

the environmental partitioning to the complexity of the desred oy ironment and the complexity of the internal represéonat
behavior. A real dialogue based on actions emerges from thater- In the fut it will b ial to qi b d to the si
active teaching. The interaction leads the robot to autonomusly n the future, it will be crucial 1o give a bound (o the size

build a precise sensory-motor dynamics that approximatestte Of the internal representations in order to develop reaeti
behavior of the teacher. The usability of the system is higlighted robotics architecture for pseudo-infinite environmentsT8g
by experiments on real robots, in both indoor and outdoor algorithms have to deal with the correspondence problem (or
environments. Accuracy measures are also proposed in order a3 association problem) to reliably determine if two seias

to evaluate the learned behavior as compared to the expected ts tak t diff tti X ®to th
behavioral attractor. These measures are used first in a real M€asuremMents taxken at difterent ime Steps corresponceto

experiment and then in a simulated experiment enabling to pmt ~ Sa@me physical point in the environment or not [10]. For a long
out the interest of a real interaction between the teacher ahthe time, this problem has been treated as stochastic, lealding t

robot. community to develop algorithms trying to reveal the hidden
Index Terms—Mobile robots, Navigation, Robot vision systems, Markovian model of the environment. Yet, psychology has
Intelligent robots, Learning systems, Cooperative system early identified the ambiguous nature of the perception {@tes
theory): the so-called multi-stability of the perceptionglies
. INTRODUCTION that a perfectly well defined sensory stimulus can have two

ASK specification in autonomous robotics has receive tagonist interpretations (Necker's cubes, Rubin's &gand

an increasing interest. It is today admitted that ad her artistic creation are good examples). This ambiguous

tonomous mobile robots should be designed with a minimg?ture of _the perceptlon should question robo_t|C|ans vareth
ch a hidden Markovian model of the environment does

prior knowledge on the tasks to perform so that the robot cah " ist hether it | ingl t0 trv t
adapt to unpredictable situations characterizing the ohyoal really §>(||s otr)_w .,? er4| $h mzanlng_esls Ot Yy of rtehmove
nature of real environments. The robots should also canetit >">C"& aMDIGUILES. ) The dynamical nature of the en-

their skills via interactions with their physical and Sdcia\(wonment induces environmental changes. During the robot

environment where they build up experiences from their t ifelong, localization cues used by the robot may disappear

sensory-motor interactions [1] leading their own cogmitio I hile thle elnvqtohnmen['_[] ™ Ehan%'lnt%’ the fE[mcnom:wg dOI'E;fIn °
enact a subjective world [2], also called themwelt [3]. In classical algortnms shrinks unti the System no longerksor

this context, Human-Robot Interactions (HRI) are thought ence, a crucial issue in the future will be to provide our

be a very efficient means to specify some various tasks torﬁeﬁtix\t,uerg_lﬁg"?r?esgﬁ\t,?r%ﬁ{ei?;bgﬂgrfhgsaggf their
robot [4] and to catalyze its sensory-motor learning [5].IHF{£1 havi b 9 totall | t A dg finallv. 5) th
are moreover a key point for designing operational or soci phaviors becomes totally unreievant. And tinafly, ) the

and interactive robots [6], [7]. This paper investigates tise robot is confronted to an action selection problem during
of HRI for the learning of, navigation tasks the building of its internal representations. Robots wilva

In [8], several problems linked to the autonomous Ioca]p be endowed with planning strategies in order to select

ization and mapping of an environment are pointed out. Wgtetrelstmg_acnt(;ns In fa par?ally krf:own erllvwolnmerét.&':'hte
summarize here the main points relevant in our approa cta-iearning theory, for instance, has early claime a

1) The nature of the "noise” on the physical measureme gﬁart selection of the prototypes for the learning can iasee
is generally context-dependent. For example, a non-caélbr the development speed of the robot [11], [12]. Recent works

panoramic camera can induce a biased error of the landmalfk¥st on.the fact that selecting the action that maximizes
the learning progress makes the robot becoming curious and

The authors are with the Neurobycernetic Team of the ETIS, IGMRS enables it to develop faster [13], [14]. [15] also studied th
UMR 8051, Cergy-Pontoise University, ENSEA, 2 Avenue Ad@Chauvin, complexity of greedy mapping algorithms in deterministic
95302, Cergy-Pontoise Cedex, France. . M d | f d tode
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fast incremental algorithms strongly depends on the qualibrder to evaluate the relative accuracy of different alidponis.
of the sensory measurements, whereas statistical methddewever, the imitation as a real dynamical and continuous
asymptotically more accurate, require numerous examglesHRI has rarely been stressed (rare examples are [19], [30],
the environment to build a consistent map. In spite of al th[20]). Most of the imitation learning and teaching methods
limitation, SLAM methods exhibits impressive performanmte are composed of a phase of demonstration (the learning) and
long term navigation, when coupled with visual recognitioa phase of performing (the reproduction of the knowledge)
system, in order to deal with the correspondence problem amat rarely the imitation has been treated as a real dialogue
the environmental changes [16]. Nowadays, it is possible based on a language of actions between the robot and the
map large indoor environments, with monocular, stereoisgopteacher, alternating between imitation and performanesgh
or catadioptric vision systems, though the scaling factor fin [33], [34], [35], for example, a demonstrator tries todka
larger and less controlled environments raises some rarahumanoid robot to grasp an object. The study compares an
addressed questions: internal representation size aaplosimitation strategy based on the recording of the joint posg
fusion of isolated map, unreliability of the wheels odomete of a human and an embodied demonstration based on the
rough terrain, ground planarity hypothesis. The sensooyem recording of the joint position of the robot while the teache
teaching for mobile robot navigation, this paper focuses ophysically moves the robot arm in order to demonstrate the
has also demonstrated to be very efficient as regards to saiamk. The authors points out that the teacher demonstration
of these drawbacks [17], [18]. does not take into account the embodiment of the robot
In the following, we will propose a visual navigation archiwhereas the realization of the task by the robot during the
tecture bootstrapped for task specification by imitaticat ttan learning is far more pertinent. Although they insist on thker
be useful in many domains in which patrolling or exploringf the observation of the performed task to help the teacher
missions are considered. This system will be shown to enaltide understand the robot skill and to prepare the following
a naive human operator to intuitively teach an autonomodsmonstration, they do not take benefit of the interventibn o
robot to follow a visual path or to perform a homing taskthe teacher during the task realization. Indeed, in theeodnt
The teacher guides the robot in a task like a visual patfi the interactive teaching, learning and demonstratiossph
following or a homing task, and the robot has to reproduamght to be gathered in order to provide a rich and natural
it. The guidance of the robot by means of a joystick wilkommunication which could improve the development of the
be used as a simplification of a process of imitation (otheobot skills: by imitating a teacher, the robot could expent
works in our lab focus on this aspect [19], [20]). In [21]the behavior that has to be learned. &sting and reactingo
the problem of task specification is treated as the estimatithe teacher orders, the robot should freely exhibit its ergst
of a sequence of concurrent behaviors already mastered dfythe task while in parallel improving its learning [5]. Ate
the robot (which are likely to have been acquired during tteame time, the observation of the robot behavior enables the
learning phase). The authors also point out theting can teacher to see and intuitively measure the effect of hishieac
provide a basis for a non-verbal human-robot communicatiamd can help him to discover how to efficiently correct the
and appears as a smart way for the robot to exhibit thatbot. Although this procedure appears as a non-verbak non
it requires some help from the teacher. The idea that tsgmbolic communication, we claim it is nevertheless a very
robot could ask questions to its teacher has already be#h communication [19] able to catalyze the learning of the
evaluated for example in the collaborative control of [22fobot. In such an interactive context, a strong autonomy of
The robot asks questions to the humawhich are translated decision as well as a strong autonomy of the learning is
into a comprehensive human languagein order to obtain necessary. As humans are involved, rapidity, precision and
assistance with cognition and perceptionhe answers are adaptation of the learning are also required.
translated into the symbolic language the robot understand This paper first presents our robots and its visual system
As a general rule, task specification is performed at a veghi hienabling to create a continuous state space. Then, we will
symbolic level under the dictatorship of the teacher. Havev propose a bootstrador the PerAc architecture [36] that en-
most of the robotic architectures dedicated to imitatioach® ables the semi-supervised learning of a sensory-motomMi@ha
separate the learning phases and the performance phases.(Xevisual path, a homing behavior). The couple architeeture
lifelong learning constraints [23] imply that the robot musequations enables to adapt the partitioning of the envigrm
be able to learn while currently freely evolving in the worldto the complexity of the task. The system does not separate
A less unilateral process for task specification could emergearning and performing phases, which are scattered in time
from an interactive process of training in which the teacheiccording to the rhythm of the interaction. The system wall b
corrects the robot while the robot tries to imitate the teach evaluated in a real indoor environment by means of accuracy
as proposed in this paper. measures between the performed trajectory and the expected
Imitation has already proved its interest in machine leagni behavioral attractor of the robot dynamics. The interest of
and more specifically in robot skill learning, as illustdtethe interaction between the human and the teacher during
by various studies since the last fifteen years [24], [25he learning, especially the importance to adopt a proteep
[26], [27], [28], [29], [30], [31]. Theoretical studies hav teaching strategy allowing the robot to commit its own esror
also been undertaken, as in [32], which presents a general
formalism for performance metrics on humanoid imitation 1, parallel and supplementary architecture emcompassinst aféhitecture
tasks and illustrates the need of a general framework ticontrol its learning dynamics.
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will be experimentally illustrated using the proposed mges.
Il. METHODS AND MATERIALS
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- - Fig. 2.  lllustration of the landmark extraction mechanisime gradient of
OO @ Increasingly active neuron a panoramic image is convolved with a DoG filter. The local mexof the

— Unm(_)dlflable link from one to one filtered image correspond to points of interest (centre ef tircles). Here,
—~ Mofifiable link from one to all the eight first focus points are displayed. The system facasethese points
----= Neuromodulation to extract local views in log-polar coordinates correspogdto landmarks.
The system also provides the bearing of the focus points bgnmef a

magnetic compass. For each extracted local view, the igtenfi the four

most recognized landmarks and their recognition levelsgaren.

Fig. 1. Block diagram of the architecture. Our architectdoe place

recognition is composed of a visual system that focuses amtspof interest
and extracts small images in log-polar coordinates (callechl views),

recognized as landmarks (see fig. 2). Next, a merging layespoesses the
what and where information, to allow place recognition. By incorporating |n g first approximation, a place-cell activity can be estieda
our visual place recognition system in a PerAc architectitres possible to b isv G . .

create an attractive behavior to the goal. Each new learfess fis associated y a noisy aussian curve:

with a movement which is triggered when the robot recognthesplace. The o —a )2

vigilance signal triggers a wave of one shot learning of timarks related Dy, (t) e o2 + ep(t),

to the current location, next of the current place code, iteotto allow the

learning of the current place-action association. with p;, (¢) is the activity inz(t) of the place-cell encoded

in x;, with o expresses the extent of the place-field which

Among the various methods to create spatial behaviors, tiselinked to the distance of the landmarks, and with(t) a
PerAc (Perception-Action) architecture [36] has demaistt noise induced by the uncertainty of the azimuth measuresment
to be particularly adapted for online sensory-motor leagniA the camera discretization, and the dynamical nature of the
PerAc architecture may underlie many various skills in nbienvironment.
robotics: guidance [37], local navigation in indoor [17]dan The learning of several locations creates overlappingeplac
outdoor environments [18], planning [38], reproductionaof fields and also leads to the paving of the space when the
temporal sequence of actions [27], as well as in the confrol learning of new locations is triggered by the detection o¥ lo
actuators with multiple degrees of freedom: arm robot aantrplace-cell activities (according to a given threshold). At
[30], [39], gaze direction control. This architecture isleab ematical consequence of thehat and where merging is the
to learn online sensory-motor associations. In this pajper, following: the shape of the place-field is homothetic witle th
PerAc architecture is coupled with a bio-inspired model afhape of the environment [41], [40]€ the place-fields extend
visual place-cells computing a robust localization gratia with the distance to the landmarks). As regard to the problem
indoor as well as in outdoor environments [40], in order tof the size of the world representation, our system exhbits
perform local navigation tasks [17], [18]. real interest. The system builds its own metrics based on the

Fig. 1 summarizes the visual processing chain for the plaagimuthal shifts of the landmarks and their recognitiorelev
recognition. A place is defined by a spatial constellation dfence, the dimensionality of the internal representationat
online learned visual features (here a set of triplatelmark- given by the Cartesian size of the explored area but rather by
azimuth-elevation compressed into a place-code. The corts visual regularity ie.: if the distance to the landmarks were
stellation results from the mergingwhat information and a infinite, the world description would be reduced to a singl3 P
whereinformation provided by the visual system that extracfgl0]. The computational load and the memory requirements
local-views in log-polar coordinates, centered on points @as been proved to be a linear function of the number of
interest. Fig 2 illustrates the autonomous landmark etitt|ac learned landmarks [9]. Hence, the learning of a loop in a
mechanism. large outdoor environment uses the same computation load

A remarkable property lies in the built-in generalizatiomnd memory requirement as the learning of a loop in a smaller
capability of the system (see [40] for more details). To sunmkdoor environment (see experiments of section V). To our
marize, a place-cell encoded in location A responds maxymaknowledge, extremely few algorithms exhibit such a propert
in A, and creates a large decreasing place-field around A. Moreover, neither Cartesian nor topological map buildiag i
the experiment of the fig. 3, the robot learfis< 5 positions required for the localization, since the world acts as aisidet
regularly located in a classical working room (fig. 3.a). Thenemory [42]. As long as the learned features of a location
fig. 3.b shows the created place-fields for each place-c#iien persist in its neighborhood, the robot is able to self-lzeal
whole environment, corresponding to a localization gratdie without map building.
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+ Leamed place [obpt [ Table | | Bench| not adaptive and the trajectories are stereotyped. Morabee
Table @}IE learning of a trajectory requires massive efforts eithertios
[] Tested area N S| problem of learning a sequence of actions and detectingplac
. = 3J reaching (also called milestone points in [46]) are reached
- Window o or on the problem of the cognitive mapping of the learned
,ﬁ = E € locations [47]. Finally, the question of the robustnesdeaa
2| & tion has rarely been raised. Nevertheless, recent studgjs |
t I_’m [49] propose an improved version of the ALV algorithm [44]
1 | able to keep a constant performance level independenthyeof t
@ @ - size of the environment. Several of these limitations can be
% Table |[ Bench| [ Table K)oort overcome by using a PerAc Archltect_ure: a simple assoeativ
learning between places and actions is able to create argenso

9.9m motor attraction basin, for homing or path following belasi
(see fig.1 for the architecture). The problem of building a
policy of actions has often been stressed in the literatdire o
reinforcement learning [50], [51], [52], [53], [54], [55]ub we
claims that the PerAc architecture is extremely efficient fo
spatial behavior learning since it embeds the problem of the
environmental partitioning as well as the problem of action
policies learning. The next section will address the problem
of the autonomous building of behavioral attraction bagins
human-robot interactions. The problem is treated as a machi
learning problem through an interactive demonstration.

The various platforms and electronic equipments we used
to study mobile robot navigation are the following (see fig.
4.a):

« Koala K-Team, pan-tilt camera, magnetic compass.

« Koala K-Team, omni-directional camera, magnetic com-

pass.

o Pioneer 2 AT ActivMedia, stabilized platform, pan-tilt

camera, magnetic compass.

For outdoor experiments on rough terrains, we built a gyro-

Fig. 3. a) Working room used in the experiment of fig. 3.b. 2acpk are stabilization platform in order to deal with the effects on a
regularly learned in the room and tested in the whole roomAdvity of _ :

5 x 5 place-cells regularly encoded in the working room of the 8ca. A non-planar ground (see fig. 4.b).

competition between all the place-cells leads to the pasfrige environment.

IIl. L EARNING AND REFINEMENT OF A SPATIAL
BEHAVIOR: A SENSOR¥MOTOR APPROACH

The problem we address in this paper concerns a morel he presented work proposes a reformulation of the problem
general class of algorithms, based on place recognitioighwh of autonomous spatial behavior learning already addressed
can lead to an adaptive environmental paving. For examphy, the various reinforcement learning methods [58], [59],
GPS measurements, a triangulation system via external rg#ich as Q-Learning [52], [53], TDJ [51], Policy Gradient
erences, classical SLAM, vision-based SLAM or topologic&teinforcement Learning (PGRL) [54], or Value and Policy
approaches provide the information to use the methods wgarch (VAPs) [55] ... Our approach differs from them beeaus
will present. An intuitive approach to achieve visual natign the continuity of the state and action spaces is not a paticu
using a localization gradient could be to use a hill-clingbincontext in which the algorithm has to be extended but a basic
algorithm on the place recognition level of a goal cell (&ssumption that has been guiding the design of our architec-
particular PC). Unfortunately, even if the robot could keepire. Our approach also differs because we aim the design of a
a direction as long as the recognition level increases,amgtr COMplete architecture (able to control real robots) rathen
initialization prob'em occurs each time a new action has theoretical algorithm isolated from its arChitectUrq}dat.
to be chosen. The noise on the place recognition level chipreover, classical reinforcement learning algorithms ttw
also induce local maxima. The duration of each movemegifect a score to each encountered state or state-activmfuni
represents a critical parameter for the convergence of sufl¢ environment corresponding to an expected reward. Based
an algorithm. Minimization parallax between a learned pla@n the propagation of the reward, reinforcement algoritanes
and the current location, inspired by models of the insec@® slow in convergence in a continuous environment because

navigation [43], [44], could be used to avoid pure 1D hill-
9 [ ] [ ] P 2we prefer in our school of thinking the terms behavioral dyiminstead

cIimbing methods. As aCtio_nS. are qireCtly CompUted re}thg{action policy, referring more to the psychological laasre on learning and
than being learned (thought it is possible [45]), the bebraiéi  control of human coordination and perception.
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they first need to partition (adaptively or not) the enviremh discovery of the reward. Thus, once a reinforcement ocaeurs i
before the reinforcement learning algorithm can perforna given state, efficient (but sub-optimal) strategies arectly
Methods for the partitioning of the whole state-action spa@vailable from each visited places.
has also been proposed [60]. As human-robot interactiondMoreover, continuous state and action spaces are generally
are concerned, we can not accept a slow acquisition of treated as discrete after quantization. What has been encou
behavior (even if sure and optimal), the acquisition (arel thaging researches in reinforcement learning is the proof of
usability of the knowledge) must be performed in a very shooptimality which already exists for various algorithms, stlp
time. If an algorithm is allowed to spend time to estimate tha discrete and non-stochastic state and action spaces [52]
state space, this time should be used in parallel to estithate [68], [69]. However, convergence towards optimal solusion
topology of the environment. The estimation of the stateegpain stochastic and continuous spaces is not guaranteed for
topology gives access to a cognitive map which can computenast of the reinforcement learning methods. Q-Learning for
latent learning of many unrewarded paths [61], [62], [684]] example is proved to converge only locally for a certain
[65], [41], [66], [38]. Evidences of a such a latent learninglass of problems that has continuous state and action space
have been given in mammalian species since 1948 by Toln{&@0]. It has also been highlighted that reinforcement lewgn
[67], showing that the time for a rat to find a goal does natlgorithms may diverge when a function approximation isduse
decrease once the reward is found, but latently decreasks vinstead of a look-up table [71]. On the contrary, our sensory
the number of experiences of the future goal path before thetor architecture takes into account both continuousonéss
both the state and the action spaces. This paper will show
that a continuous action space enables the measure of an erro
helping for the adaptive partitioning of the continuoustesta
space. Moreover, since the suboptimal solutions found by th
Nature for the animal navigation are more robust then the
current engineering solutions, we can wonder about the need
of an optimal algorithm for the learning of spatial behasior
We can also wonder about the interest of convergence proofs
as compared to the time to obtain an efficient sub-optimal be-
. havior (as regard to an external measure). Works like [728] ha
highlighted that reinforcement learning algorithms caallye
perform better when initialized with a sub-optimal polidyne
sub-optimal solutions computed by our architecture cowdd b
| used to initialize reinforcement learning algorithms.

Actually, some limitations of classical reinforcementriea
ing algorithms can be overcome by bootstrapping a PerAc
architecture (see fig. 1 [36]). Each PC is associated with
a movement to trigger when the corresponding place is
| recognized. If the PCs and the actions are defined in the
frame of a competitive structure, a minimum of three place-
action associations around a goal creates a behaviorad ety
leading the robot trajectories to converge towards the goal
from each place in the attraction basin. Learning is eqaival
to shape this basin in order to create an accurate behavioral
attractor. Homing or route following behaviors (see fig. B an
6) can be learned in one shot. Even though human assistance
could speed-up the convergence [72], classical reinfoecgm
learning methods are not efficient with so few learning sam-
ples.

A. HRI and the PerAc architecture

We investigate here how the PerAc architecture can underlie
the learning of navigation tasks in the frame of an intuitive
Fig. 4. a) Wheeled and legged rob § i bio-edoiavigai human-robot interaction. In our previous experiments sfiai

ig. 4. & eeled and legged robots used to study bio-iedpiavigation. : - - -

The left robot used an omni-directional camera, the rigbbtaises a firewire hommg or pat.h followmg (See fIgS. 5 anq _6)' the Ieammg Was
camera mounted on a gyro-stabilized pan-tilt platiorm, wieseled robot in  totally supervised by a human who positioned the robot in a
the centre uses a classical pan-tilt camera. All the robrspeovided with precise location with a precise orientation, or was geedrat

a magnetic compass (CMPS03). However, in [56], [57], we shévat the _ : "

magnetic compass can be replaced by a visual compass dsdditiaa path _by an ad .hOC proces§ _(movmg around a goal p05|_t|0n to Ie_am
integration system. We also tried to adapt the system toeléggbot like it from different positions). Yet, the PerAc architecturg i
Aibo. b) Gyro-stabilization platform used for experiment wugh terrains.  particularly well designed for the real time online leamin
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| Doubledesr propose here an autonomous architecture enabling the tobot
Posior learn in one shot a new place-action association and to adapt

| - ' i the movement associated to the previous place according to

: the sensory-motor error generated during the crossingisf th

, “ place.

/ ~ — In the PerAc architecture, two learning stages can be

Roho . . ..
controlled: the sensory learning (environmental panitig)

and the sensory-motor learning (policy of action learning)
In classical task specification in unknown environment, the
environmental partitioning has to be stabilized before the
, navigation can be performed. Here, we save time by the
; simultaneous one shot learning of both the sensory statespa
} \ and the sensory-motor associations. Each time a sensadey sta
ﬂ:‘E — is learned, a motor action is instantaneously associatdditwvi

i = : v/ /Z . =} A vigilance signal will be responsible for triggering thisawe
@-Lcarnt place and azimuth of |earning (See flg 1)

Windows

ur /.

=
.'\
NS

Kuooreq

850 m

B. Movement adaptation
Fig. 5. Real trajectories of homing in an indoor environmeith an omni- . . . .
directional camera. 8 places (black circles) are learnet! mt from the goal We consider two binarized signals for the bootstrap of

(size of the square on the floor). The theoretical placediele superposed the sensory-motor learning. The first signal is the vigienc
with the map and the trajectories. signal V(¢) which triggers the waves of one-shot learning.
The second signad(t) corresponds to a learning rate. It is
used as a modulation for both the one-shot learning and the
adaptation. The neural architecture is given in fig. 7. In our
architecturee(t) spikes each time a place transition occurs
(hence also each time the vigilance signal spikes). Thepgrou
of neuronsA? (which elements are’’), performing the motor
learning, is inspired from the Widrow-Hoff (WH) learningleu
[75] but other rules are possiSleThe main difference with a
classical WH learning rule is that our rule is composed of two
terms. A term performing a one shot learning computed as the
classical gradient of a WH learning rule and a term computed
according to the previous gradient computation, corredjan
to a delayed learning rule.

In the following, the activity of the place-cells is binaait

T . 2 .
Fig. 6. Outdoor environment and looped sensory-motor dtejg. Arrows Pi (t) is the norma!'zed activity of the m_OSt activated place-
represent the learned positions and the associated moteriiée robot closes cell 4: pf(t) = 1 if the current place is the place and

the loop of about 100 m in 20 mn. The system is slow because ti@ew p-_i- (t) — (0 otherwise. The signak(t) corresponds to a
architecture was executed by a single sequential prograptéSber, 2005). ~* . L
place transition () = 1 when a place transition occurs
and €(t) = 0 otherwise). It can be defined as(t) =

A . . . n + + T i
of skills in that sense that its goal is to learn associattbas i1 P; (’5): pi (t —dt)] ", with np the number of place-
occur through direct volontary experience (concept of oac CellS, andiz]™ =z if = > 0. _
[73]). Hence, guiding the robot through the task should be The actions are defined by population of neurons: each
enough and more ergonomic in order to specify the task fguron & n an action group corresponds to a particular
the robot than an explicit symbolic communication as used f{ientation ===, n being the number of neurons coding an
[22] or [74]. action (o4 = 61 in our architecture). The activity of the group
. . R idi

In the context of lifelong learning [23], we are presently} (t), providing the performed movement betweiend: and
interested in addressing the problem of the semi-supatvidein the directionf(t), is a Gaussian curve, centered on the
building of a behavioral dynamics and its refinement. Besidd@uron corresponding to the orientatiéft). Hence:
we focus here on the capability of the robot to autonomously R Calw?
learn a sensory-motor task by interacting with a human. @ein ap (1) =e ’ (1)
guided Ey the. human, .thedropor: lﬁams places an?} Is able tg)The Hebbian learning rules has been rejected because theditearn a
merge t e_act|_on associated with the current state ( _eoe?’a new action would have been greater or equal to the whole tifrleabning
to the action imposed by the teacher. We use a joystick (e longer the system has already learned, the longeritepisomething
guide the robot in the same way as a dOg could be guid%'?F will be). Moreover, the Hebbian learning rule needs ¢oshunted by

ith | h. but . | tracki f the t h Id Imeans of a multiplicative termh — w;;, so that the weight could be if0), 1]
with a leash, but a visual tracking o € teacher cou a%8:»rresp0nding to a Grossberg rule), creating a dynamicg olese to the

have been possible (really close to an imitation process). WH learning rule.
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Place WTA
O
w € = Place transition
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Action selection
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N

Motor control

Vlgllance‘ (“JII:A
i i
i Mvt to learn \Learned mvt
OO0 |ay——+—={0000@a,
Mvt performed Mean mvt
O0®O0)|af = OO@O0O jap*

| [CO0C@—~0FA—

Sensory—motor errc

OOO® Increasingly active neurons oo ! Neuromodulation
—&—  Modifiable link —*  Excitation
—— One to one link unmodifiable E— Inhibition

Fig. 7. Modified PerAc Architecture enabling either the @t learning of places and place-action associations eorefinement of the sensory-motor
dynamics. The computation of a signed angular error betvileermean performed movement and the predicted movement ivea glace enables to adapt
the movement associated to this place. The one-shot lgadfithe landmarks, the constellations, the places and theegiction associations is triggered by
a vigilance signal, whereas the adaptation is performediraasusly, each time a place transition occurs.

with A(t) € ] — m, ] the shift between the favorite directionin this equation,s,(t) is the predicted activity of the tk
2k ’“ T of the neurork and the performed movemefit) (here, neuron of the groupwi# is the weight of the connection
o= ”) between the'f place-cell and the®k action neuron. Finally,

The neurons of the groug™ provide the mean movements, o, = maz (sx) is used for the output normalization.
=1l..na

and are defined as: More preciselyaZ(t) is the desired output (the future action

aM(t) = M .ol (t) + [aB(t — dt) — TR.e(t)]* (2) to prediqt, e_xplicitly given by the input groug” called Mvt
to learnin fig. 7.). The equation 4 corresponds to the pre-
with ¢! a rate avoidings; (t) to be greater than until L dicted output and the equation 5 provides the effective wtutp
steps without resete{ = 0.001 for example), withI® a computed either as the normalized prediction or as the etbsir
strong positive signal resetting the memoryugf (I = 1000  output (which is also normalized) during a one-shot leagnin

for example). cycle (no prediction being available before the one-shatrile
The activity of the K" input neuron for the motor learning ing). Most of the signals (inputs and outputs) are normellize
ak(t) (output to learn) is computed as follow: in order to compute the sensory-motor erfgy, defined as the

1 difference between the performed movement and the learned
ay/ (t) = aj (t—dt).V (t) + ) ap! (t—dt).e(t).(1=V(t)) movement for a given place?, (t) = 327, [a (t) — a? (t)).
max (3) The update of the synaptic weights is performed after the

with X (t) = maz ( M (1)), used for the normalization update of the neurons activity according to the following
k=1.. equations:

(af! being already normallzedc)k( ) provides either the previ-

- . . dwPA )

ous performed movement when the vigilance spikes (enabling ik (GE(t) + GL(t — dt)).e(t) (6)
the one-shot learning) or the mean movement since the last dt ! !
place transition (enabling the delayed adaptation). Tharmewith:
movement is reset by th€t) signal (see fig. 7), each time a i

| s veset by thet) signal (se= fig. 7) WD) = (af(0) — s 0)pF ()Y () ™
place transition occurs. Y . L

The equation for updating the activity of the neurarfs Gip(t) = (ay(t) —sk(t)p (1).(1—€®))  (8)
performing the sensory-motor learning is the following: In this equation, two gradient terms are computed,

P (instantaneous gradient) which is the classical WH gradien
sp(t) = Zwi"‘(t)pj(t) (4) with a term of vigilance modulating the learning aif!,

(delayed gradient) which computes a gradient if no learning
sk (t) 5 or adaptation occurs. During a one-shot learning cycle (whe
Smaz (t) ) V(t) and e(t) spike), the new place is associated with the

S
>
—

~
~—

|

V(t).ak(t)+(1-V()). (
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current action by means of the not null ter$, (¢) in the
equation 6. Otherwise, a delayed adaptation is performeld ea i
time ¢(t) spikes by means of the terGf, (t—dt) (the previous
gradient). Hence, the adaptation of the movement in a place
is performed only once the robot has left the place and will

only be available the next time the robot will re-enter the

place. As a general rule, the adaptation of a sensory-motor

association requires a kind of learning evaluation and can ____! . @ b @ .

. ) esired trajectory Place field and Desired trajectory Place field and
Only be performed a.fter the SenSOI‘y-mOtOf aSSOCIatIOﬂ haS—Perfcrmedtraiecwry learned action —— Performed trajectory learned action
occurred. In the context of the sensory-motor learnings thi a) b)
delayed adaptation seems to be crucial to control the itstan
and the contents of the Iearning. Fig. 8. a) An example of a regular spatial partitioning witlige cells. A

Th . . h | of movement direction is associated to each cell. The precisithe reproduced
o € remamlng qu'eSt'on conc_erns the C_0ntr0 0 tht?ajectory depends on the precision of the state space gdthe size of the
vigilance signal: Which are the important signals for theells). b) An example of a regular spatial partitioning witall cells. The

autonomous partitioning of the environment corresponddng precision of the reproduced trajectory is higher than in 8ig. However, the
. cost of the spatial coding in also higher.
a refinement at the sensory level?

On the contrary, with the adaptive partitioning, the densit
C. Adaptive partitioning of the environment of encoded place-cells increases with the variation of the
function to approximate: fewer place-cells are recruitdtew
the function is monotonic and more are used when the function
thé(aries. Hence, the more the function varies, the lower tharer
is.

In the context of the reproduction of a trajectory,
important criterion is the precision of the reproducedetcaj
tory which is directly linked to the spatial discretizatiaf
the behavioral dynamic. The simplest solution to triggex th
coding of a new place is to fix a low threshald on the place-
cell activity. If the activityp™ (¢) of the most activated place-
cell is under this thresholdp(?(t) = maz (pk(1))), a new

=l..np

place is learnedV () = I'y(tp — p™), with T, the Heaviside
function:T',(y) = 1 if y > = and0 otherwise. This will lead
to a regular partitioning of the environment. The threshold
tp has to be low enough in order to use the generalization
capabilities of the place-field and to minimize the number
of encoded place-cells. Such a vigilance signal implies tha
the size of the place-fields (and also the precision of the”
spatial encoding) is fixed as illustrated by figs. 8.a and 8.b.
Since the sampling of the partitioning controls the prexisi
of the behavioral dynamics, the partitioning of the enviramt

should not be regular but adapted to the desired precisidn an - _ —-Desir:ed trajectory @ Place field and

to the complexity of the trajectory (see fig. 9). For instgnce Performed trajectory learned action

more place-action associations should be encoded during a

sharp bend than during a straight line. The system could

Fig. 9. An example of an adaptive spatial partitioning. Thze ©f the cells

use the discrimination capabllltles of the place recognitl is adapted to the complexity of the trajectory. Small cetis wsed to precisely

in the _(_:(_)mp_lex parts _Of the trajectory and its generalizatiqo|iow the bend, whereas big cells are used to create a cgewee around
capabilities in the easier parts. In a more general contkgt, the trajectory.

assumption that a given sensory-motor function S — M is
better approximated if the discretization factor of the sy The sensory-motor erro,(t) in each place has been
spaceS evolves as the variatior% of the sensory-motor defined as the difference between the predicted and the per-
function remains valid (the compression factor is adapted formed action. It stands for the paramet%%. Indeed, the
the variations of information). sensory-motor error is higher in complex parts of the trigc

The difference between a regular paving (corresponditigan in easier parts, because more changes of directiom.occu
to a threshold on the sensory dimension) and an adapthence, the sensory motor error appears as a pertinent signal
paving (corresponding to a threshold on the action dimemnsido control the learning of the places. A threshmpa on the
is illustrated for a one-dimensional example in the fig. 1@ensory-motor error is responsible for the accuracy of the
With the regular partitioning, the more the function variesdbehavior during a bend. For example,t@a corresponds to
the higher the error is. Yet, when the function is varyingan error of about 3Q then a 90 bend should be encoded
the probability of generating diverging trajectories iglnér. by at least three place-cells. Thus, this measure can be used
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to control the vigilance signal in order to adapt the leagnintowards an attractor considered as the optimal trajectery,
location of the place-cells to the complexity of the desirethen used. The process consists in identifying the closest
behavior. The vigilance signal is defined as: point d; in the desired trajectory and in heading for the point
ditap, With Ap > 0 depending on the proximifyd of
V(t) = FO<<t1t—pM(t)).([Ea(t)—t§ ]++[tp_pM(t)]+) the pointsd; (Ap = 5 in our simulated environment with
‘ d < 7.5 x v/2 and with the distancd, (distance travelled by
_ ) _ 9) the agent between each steps) defined sodhat 1). The
In order to avoid the over-coding of the environment, a safegjynamical system defining the human guidance is illustrated
thresholdt;, over which a place is considered as recognizegl the fig. 11.a. The figure 11.b illustrates, for a given set
can be fixed. If the maximum of the place-cell activiti€$(t) D that parametrizes the desired trajectory, the trajectorie
is higher thant, the coding of new place-cells is inhibited generated by the described dynamical system simulating the
This threshold can be as high as the discrimination capgbilhyman guidance. The generated attractor corresponds to the

of the place recognition. We finally use a low threshojdto  expected robot behavior after the learning (ie: the attract
trigger the learning of a new place when all the other e”COdégrresponds to the desired trajectory).

places are not enough recognizégd.must be correlated with

the generalization capability. Median between adjacent points of D
Regular approximation Vectorial movement point di of set D
a) Threshold on the sensation - 1
Action e —
E
v
| Direction of movement
Sensatior a)
Adaptative approximation 100 T T T T T T
b) Threshold on the action

80~

60~

40+
N Position of the Iearning/
------- Function to approximate 30
—— Approximation of the function

20

Fig. 10. lllustration on a one-dimensional example of tw@ragimation

methods. Fig. a) illustrates the regular partitioning loasa a low threshold

on the place-cell activity (here corresponding to a givestatice between

the position of learning on the "sensation” axis) under whicnew place is 0 10 20 30 40 50 a0 70 a0 a0 100

learned. Fig b) illustrates the adaptive partitioning loaea a high threshold b)

between the learned action and the action to be learned,valvieh a new

place is learned. The adaptive partitioning is able to redine error when

the variation of the sensory-motor dynamics (the functiorbe learned) is Fig. 11. &) To simulate the human guidance, an ordered>sef points

high and to create large place-cells in monotonic parts efsnsory-motor d; that parametrizes the desired trajectory and a dynamicatess which

dynamics. trajectories converge towards an attractor consideretiegptimal trajectory
is used. b) Trajectories generated by the dynamical procksise fig. 11.a.
The trajectories converge towards an attractor definingofftemal trajectory.

D. Simulated environments and simulated teacher

In order to theoretically validate our approach, a simwate- \sjigation of the proposed system
environment is used. In this environment, the system cseate
perfect place-cells since all the possible landmarks a$ agel
their identity and their exact azimuth are provided. In ord
to simulate the human guidance of the robot, an ordered
D of points d; that parametrizes the desired trajectory is sy ynit used to measure distance is the pixel. The size ofolfeving
predefined. A dynamical process, which trajectories cayerenvironment is750 x 750 pixels.

The experiment of fig. 12 illustrates the capability of the
System to adapt the spatial partitioning to the complexity o
glé? desired trajectory. In this experiment, a human preases
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button when he wants to correct the robot behavior in orderean distance between the robot position and the closest poi
to teach him the desired trajectory. The strategy of thehteiac of the desired trajectory:
(when the button should be pressed?) is the subject of thte nex

. . H H t=t P
s_ectlon. The figures 12.a and 12.b show the resulting t@aject U min |l () — @i(p)||.dt
ries as well as the attractor of the sensory-motor dynanfics o e = top=l (10)
the robot. The attractor is defined as the mean position of the lr—t

robot for different starting points in the attraction basifter
a long time of convergence. The figure 12.c also shows t
position of the learned places, superimposed with thedtira

The simulated robot adapts the density of coded Iocationsat y very far from a given point of the trajectory. For exaepl

the complexity of the desired trajectory: during blends th he robot does_not move, the measuras constar.lt.. Hence,
robot uses the discrimination capabilities of the placdésda a second equation has to be introduced. It verifies that the

order to accurately approximate the desired behavior, edzer robot has travelled close enough to each point of the desired

ﬁPis measure is not enough since the robot can navigate very
close from the desired trajectory during its whole trajegtaut

the system uses the generalization capability of the pteds- trajectory:
in easier parts of the desired trajectory like straightdine po ot
The use of the sensory-motor erréf, (¢) to control the > p=1 Tt@tﬂ 2 (t) — i (p)|l
learning of a new location allows to adapt the precision ef th €p = - P (11)

spatial partitioning to the complexity of the task. Moregve o _ o _
precise thresholds do not have to be estimated, but confideAis second equation is also insufficient since the robot can
thresholds for the recognition and the non-recognitione THavigate close to each point of the desired trajectory aed th

threshold: ;. on the sensory-motor error could also be learne@Scape very far without increasing the measure. However, th
jointure of both equations allows to evaluate if each robot

position was always close to a point of the desired trajgctor
and if the robot has been close to each point of the desired
trajectory. Hence, a combined measure may also be used, such
as (e, + ep).

In this section, accuracy measures of reproduced trajecdt must be noticed that each measure varies in opposite
tories as compared to the optimal trajectory are proposedanner. The first measure, is low at the beginning and
The interest of the interaction loop between the human amttreases with the error of reproduction, whereas the skcon
the robot during the learning, especially the importance afeasuree, is high at the beginning and decreases with the
allowing the robot to commit its own errors, is demonstrateaiccuracy of the reproduction. At the end of a relatively eotr
using these measures. Finally, we use these measures imoductionge; should have increased to a weak mean value
real indoor environment, by means of a vision-based systdthe robot has never been far from a point of the desired
which corrects the perspective and enables the tracking todjectory) ande, should have shrunk to a weak value (the
the robot position in the Cartesian space. An experiment liabot has been close to each point of the desired trajectory)
outdoor environment is also proposed. However, it is still possible to find some trajectories which
are well scored but correspond to a wrong reproduction.
For example, if the robot reproduces the trajectory in the
réfpposite direction, the score will be the same as in the cbrre
direction. Moreover, oscillating around the ideal tragagt

The reproduction of a trajectory is a problem frequentlgrovides the same score as a straight trajectory. An angular
addressed in mobile robotics. As optimality is not alwayerm could be useful. The duration or the length of the
reached or tracked among the various algorithms, we propgs®formed trajectory could give another estimation of the
a measure that could help to compare the generated tragstoquality of the reproduction. We consider that the robot has
to an optimal path (the expected behavioral attractor)c&into be able to reproduce the trajectory in the correct dioecti
it could be very long to evaluate the complete behavior ind with few oscillations of the direction before using thes
the whole environment or to estimate the optimal behavior measures. In the following, these two measures will be used
each position, we prefer trying to evaluate the precisiothef in a simulated environment and in an indoor environment.
generated trajectory, from its starting point to its endnpoi However, it is far more difficult to use these measures in
with respect to a desired trajectory in order to compare tha&rger environments since they require precise measursmen
performance of different algorithms. of the robot position. In outdoor environments, a diffeiaint

Evaluating the spatial precision of a trajectory, indepeliGPS seems necessary. In indoor environments, systems based
dently of the temporal precision, is an extremely hard prolen a network of calibrated camera, tracking the robot across
lem. Indeed, comparing trajectories without time aspests several rooms could be possible. However, we did not have
equivalent to compare the sequence of points defining the taccess to these technologies for our experiments. Hence, in
trajectories. We propose two measures in order to compare the following experiment in the outdoor environment, these
optimal trajectory{z;(p)/p € {1..P}} with the reproduced measures have not been used, because of the difficulty to
trajectory{z,.(t)/t € [t;..t;]}. The first equation evaluates theestimate the precise position of the robot.

IV. HUMAN-ROBOT INTERACTIONS AS A COGNITIVE
CATALYST FOR THE LEARNING OF BEHAVIORAL
ATTRACTORS

A. Proposition of an accuracy measure of the trajecto
reproduction
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Fig. 12. Training a simulated robot to perform a given trigeg: a human pushes a button to trigger the guidance pratefised in fig. 11. a) Trajectories
generated after the learning. b) Generated attractor: mesition of the robot for different starting points in thérattion basin, after a long time. ¢) Position
of the learned places, superimposed with the generatealctattr The system has adapted the density of encoded Iodatithe complexity of the desired
trajectory. More locations are learned in blends than inight lines. The system uses the discrimination capadslitif the place-cells in complex parts of
the desired trajectory and the generalization capabilityhe easier parts.

Stratgie 4 Laps of interaction | Trajectories after learning | Behavioral attractor(s) €t'€p
B
.
.
.
.
.
Prescription 45 - 40
Proscription 10.7 - 12.4
v
v
v
Interaction 6.5-6.9

Fig. 13. Left figures show the trajectories during the foyssleof training. The figures in the centre show some generatgdctories. The behavioral
attractors and their attraction basins are displayed onritjte figures (the attractors correspond to the mean pasitibthe robot after a long time for
different starting points and the attraction basin is dedufrom the fig. of the trajectories). Each line corresporaa fgiven teaching strategy. In the first
experiment, the prescriptive teaching is simulated. Thgdttories either diverge or converge towards a bad atira€or this attractore; = 45 ande, = 40.

A second parasitic attractor has also been created. In t@ndesxperiment, the proscriptive teaching is simulatdae $imulated teacher never shows the
precise trajectory to the robot. The program only correhts riobot when it escapes too far from the desired trajectoppraling to a given threshold (here
20 pixels). As a result, the attraction basin is far widere Thbot oscillates around the desired trajectory but diffjcatabilizes on it. Only one attractor has
been created. For the generated attractpr= 10.7 ande, = 12.4. The last experiment evaluates the human teaching. The heh@oses when he wants
to correct or to guide the robot by simply pressing a buttome Tobot trajectories no longer "bifurcate” and the roboalde to precisely follow the desired
trajectory. For the generated attracteg: = 6.5 ande, = 6.9, which is the best score among the three experiments.
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B. Effects of the interaction strategy . A ® E

[

Fig. 14. Rythm of the interaction between a human teachertia@dobot
1) Expected results: during an experiment like the last one of the fig. 13 (but theaber of training

. . . laps was not constrained). The graph shows when the humasgsrehe

The proposed EerAc architecture for Iocal-nawgatlon mbl _button. The phases of proscriptive teaching corresporioet®irac pulses. The
teacher to specify a task to a robot. Even if the communinatiphases of prescriptive teaching correspond to the longgr. Sthree periods
is based on a very simple media, different strategies may jgerge: during the period A, corresponding to the beginpirthe interaction,

d d by th h . ith th b Th the correction frequency is high: the teacher has to betilieesince the robot
adopted by the t?ac er to interact with t e robot. _e _taacmﬁows nothing. The period B is characterized by an altesnatif correction
may perfectly guide the robot corresponding tprascriptive phases and observation phases. The period C corresporids findl step of
teaching or on the contrary. adopt aroscriptive teaching the learning: the teacher tries to finalize the training fiss long prescriptive

L . . ' .o ghase, and then by selecting particular proscriptive arder

consisting in correcting the robot when it is too far from th
centre of the trajectory. This opposition between a presigg
strategy and a proscriptive strategy reminds the oppositi
between an objectivist and a constructivist approach of t
autonomy, pointed out in [76]. In both cases, the robot gho
be able to extract the information and to use it as well
possible. The result of the experiment illustrated by fig.
highlights that both kinds of learning are necessary to iabt
a more accurate behavioral attractor. The teacher must
its robot commit errors to obtain a convergent behavior an
he must also show the precise trajectory to refine the cenyr
of the attraction basin. If the teacher only adopts one
two strategies, the resulting behavior is expected to bestwo
than if both strategies are used. An interesting point ig th
the course of the interaction with the robot should logicall
imply both kinds of learning. Based on the same experimen
conditions described in the previous section, these egpe
results are validated.

interest of a real human interaction of guidance as oppos
to a predefined strategy such as a purely proscriptive
prescriptive training.

The heart of this section aims at demonstrating tt ‘ NH A »H

that the robot does not stabilize on the precise trajgdiaot
Ecillates around it. Fig. 13 illustrates the oscillatirifgets of

e sole proscriptive teaching. This figure also shows that t

proximation of the dynamics no longer has any erroneous
arasitic attractor and that the generated attractor isniare
ccurate (see the measuegsnde,, divides by4 as compared
§tthe result of the presctitive teaching).
The simulations of the prescriptive as well as the pro-
iptive strategies are in fact adhoc processes of guélanc
hich does not require any human intervention. If a human
[s asked to decide when to correct the robot by pressing a
Button (the simulated human guidance is activated as long
as the button is pressed, and the robot realizes the learned
havior otherwise), both kinds of learning will naturally
CEmerge from the interaction (see the last line of fig. 13).imwr

the natural course of the interaction, the teacher osedlat
) o between precise demonstrations of the trajectory (pretboei

2) Experimantal validation: teaching), observation of the robot behavior and prosespt
Let us first consider a prescriptive teaching (fist line of figqrrections as shown in fig. 14 which illustrated the rhythm
13). As the teacher always does the same action in t§€ the interaction (the number of laps of training in this
same places without observing the robot behavior, he neygieriment has not been constrained). The human and the
knows_ if the robot Igarns or if it is able to reproduce th‘?obot really interact by means of a non-verbal, non-symoli
behavior. Hence, neither the teacher nor the robot knOWSIéfnguage based on the actions (imposed by the teacher and
the resulting behavior is correct. Since nqinteractionrba#y reproduced by the robot). The fig.14 illustrated the rhythm
occurred, and no error has been committed, the algorithmdgine interaction. The teacher alternates between pres@i
not able to efficiently genera_lize:the creatc_ed dynamicdWwas 4ng proscriptive phases. As a result, we can see that the
attractors: some starting point can lead either to a coRYErggenerated trajectories are more precise than when theesingl
behavior (but the generated trajectory is quite unsatigfior roscriptive teaching was used. Both strategies have lctua
to a parasitig fixed point (in the middle of the environment omplementary properties and occur successively durieg th
Although, this strategy enables the robot to learn the b&gh| interaction. The proscriptive teaching enables tatere
movement in the centre of the trajectory, the resultingatdr e porder of the attraction basin guaranteeing a convergen
is bad because the robot does not know what to do whendfyards the centre of the trajectory, whereas the presesipt

escapes from the trajectory. teaching enables to precisely dig the centre of the attmacti
The other strategy the teacher can adopt is to correct thgsin.

robot when it is too far from the centre of the trajectory,-cor

responding to a proscriptive teaching (second line of fig. 13 . .

Hence the robot oscillates from a border of the allowed ro&gt EXPeriments with real robots

to the other. This strategy has the advantage for the teacher We present here results in real indoor and outdoor environ-
directly evaluate the precision of the learning by obsegie  ments in order to highlight the usability of the system and to
errors of the robot. Moreover the locations of the placeeact show the expected course of the real time interaction.
associations surround the precise trajectory, leading teah  The experiments proposed here show the accuracy of our
convergence towards the centre of the trajectory. The daalvb approach in real environment. The indoor experiments (see
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Place—action association
Desired trajectory....

Reproduced trajectory

Fig. 15. Indoor experiment: the robot is guided by a humarraipe Three
laps are sufficient to train the robot to perform the task imithe road defined
by the black border (not visible from the robot).

Fig. 16. Measure of an indoor trajectory. The perspectifecebf the camera
used to record the experiments is first corrected. Then, siee specifies the
optimal trajectory. The tracking of the robot in the coregttimage enables
to computee; andep. In this experimentep = 23cm andet = 26cm (1
square of the grid represents 0.75 m)

sensory-motor task. In the experiment of fig. 15, three laps
were sufficient for the robot to learn a convergent behavior.
The precision could have been further enhanced by guiding
the robot on more laps. In a second experiment, we tried
to measures; and e, experimentally. In order to extract the
real trajectory of the robot and compare it with the desired
trajectory, a visual tracking system is used. Fig 16 illatss

the tracking and the perspective correction used to measure
ande,. In this experimentg, = 23c¢m ande; = 26¢cm.

Outdoor experiments are far more difficult to analyze due
to the constraints of the natural rought environments. The s
and the nature of the experimental environment avoided us
to record the precise trajectory: two or three synchronized
camera would have been necessary, and the GPS does not work
in such a "urban canyons”. Moreover, a stabilized platform
using two accelerometers was necessary. The robot camera
and its magnetic compass were mounted on this stabilized
platform (see fig. 4.b) to deal with the non-planarity of the
ground leading, otherwise, to errors in compass and vision
measurements. This platform enables to limit the effecta of
non-planar ground on the sensory measurements. For outdoor
experiments, we had to improve the robustness of our vision
system to deal with high and quick variations of the lumireanc
conditions, when the robot camera captures buildings tijrec
illuminated by the sun as compared to shadowed area. We had
to develop an exposure-time and gain adaptor to control the
parameter of our firewire CCD camera. Moreover, the sonar
system of the pioneer AT was almost unusable since it was
unable to differentiate a natural slope of the road from the
walls and since it detected the long grass as an obstacle. In
spite of these difficulties, we succeeded in teaching anrateu
trajectory to the robot according to the expected theaaktic
precision, with only two laps of proscriptive teaching (diee
17). Only 14 places were learned which is extremely low as
compared to the environment size.

V. DISCUSION

The choice of our adaptive one shot learning (section Ill) is
guestionable since it does not aim at guaranteeing an olptima
policy; yet it offers a lot of advantages. The one shot leagni
creates a first coarse approximation of the desired betavior
dynamics which can be directly used. Hence, the teacher can
directly see the consequences of its guidance when a place-
action association is being learned. The one shot learraisg h
also the property to be instantaneously usable by the robot,
giving a real feed-back to the human on the effect of its
actions on the learning. As a simple one-shot associaties do
not enable to refine the behavioral dynamic, it is necessary t
modify the sensory-motor learning rule in order to take into
account a possible adaptation. The adaptation capalsiléiso
crucial in order to deal with an imprecise guiding. During th
crossing of a place, the robot integrates the performed move
ments, without wondering if the movements are performed
actively or passivelyi(e. if the movements are decided by

fig. 15 and 16) demonstrate in favorable conditions (coristahe robot or imposed by the teacher). When the robot enters

artificial light, horizontal ground, various and numerousual

another place, the integrated movement can be used to adapt

landmarks) that it is quite easy to train a robot to perform the learned movement associated to the previous place.eHenc
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—> Place—action association learned at lap 1
«» Place—action association learned at lap 2
- Reproduced trajectory

Fig. 17. Outdoor experiment of interactive teaching of aualspath. The 200 m are covered in 9 mn. The architecture it @plfour processors but the
speed limitation is due to the low level drivers of the robotuators. Otherwise the robot speed could be higher.

the corrections provided by the teacher enable to refine tbethe attraction basin) [5], as opposed to a pre-determined
dynamic whereas the autonomous movements of the rolgoidance strategy such as a prescriptive guidance commonly
reinforce the learned dynamics. Such an adaptive learnirggerred as programming by demonstration (which is in fact f
process enables to approximate the behavior as preciselyfram being an interactive learning process since the behavi
the spatial partitioning and the behavior of the teachamall of the robot does not modify the teacher behavior) or a
it. proscriptive strategy consisting of correcting the robbiew it

A crucial problem of the interaction between humans arfgPmmits errors (which is the first step towards an interactiv
robots is that the human can never know if the task wigarning, since the behavior of the robot influences theheac
correctly learned by the robot, and the robot never knows fehavior, modifying the robot behavior, and so on and so

the teacher is satisfied with its behavior. As none of them c&f-+): The system was finally validated by experiments ai re
evaluate the other, how is it possible for the robot or for th@door and outdoor environments. The experiments prove tha

human to know that the task is learned? Since the teaclﬁ'é? system is really mature and could be used by naive user

corrects the robot, he can not know what the behavior would the human world for patrolling in an a priory unknown
have been if no correction had been given. Hence, a sin§igvironment.

prescriptive teaching is insufficient to produce a condivec ~ Two major problems remain: the control of the end of the
interaction as previously illustrated. The teacher hasval-e interaction and the possibility that permanent environtalen
uate the robot behavior by both prescriptive and prosedpti changes occur. Indeed, the teacher can finally be satisfibd wi
teaching. Moreover, during such a HRI, a real communicatidhe robot behavior or not. If the trainer is not satisfied with
based on actions emerges [74]: the teacher communicateghmyrobot behavior whereas the learning has already coederg
controlling the joystick, and the robot communicates byaweh this must mean that the desired precision is not reachable by
ing according to its learned sensory-motor dynamics. The ithe robot which already performs the task as well as it can.
teraction is composed of three different phases whichradter On the contrary, even if the trainer is satisfied with the tobo
prescriptive teaching phases, proscriptive teachinggéaad behavior, the robot may however know some states in which
observation/demonstration phases. The three phaseratterit can progress. It could communicate its desire to progress
in time and space according to the evolution of the teachingy, even guide the teacher in these states. The interaction
defining an interaction rhythm. We pointed out (section IVyould be more constructive if the robot had the possibility
that the richness of a real HRI (human-robot interactiond disobey the teacher in known states or expresses its need
acts as a cognitive catalyst, enhancing the precision of tbehelp in unmastered states. Such variations of the behavio
reproduced behavior as well as its functioning domain (sizell constitute another excellent feed-back for the teaabre
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the mastery of the task by the robot. The problem of the seléarning of an arbitrary path and the control of its repraéhre
evaluation arisesThe robot has to know what it knows In our complete biological model of the navigation, neurons
should be able to know if its learning enables it to progress, in the hippocampus proper (CA1/CA3 regions) learn and
if its predictions are normal according to the current ditwa predict transitions between successive multi-modal stk#].
We currently work on a progress-based approach derived frafncognitive map performs a latent learning of the spatial
[13], [77] for the meta-control of the learning, aiming avigiy topology of the environment [67] and can be used to compute
self-evaluation capabilities to the robots. In [78], [919], we a plan of actions to reach an arbitrary goal [64]. The system
proposed a progress-based neural architecture which i@g@rohas been recently validated in an experiment of a long random
to provide the robot with the capability to detect phases ekploration (45mn, 3000 steps of the place-cell architegtu
progress, phases of stagnation, and novelty. Novelty tletec in a real indoor environment [38]. The experiment highlgght
leads the robot to re-adapt its erroneous learning. the capability of the system to predict transitions of pice

We also want to investigate how to give to the robot # latently build the cognitive map of the learned transitip
specific behavior according to its self-evaluation of itsstesy and thus to plan trajectory to particular goals specified by
of the task in order to enrich the interaction and to speed simple reinforcement in the location of the goal at the
up the knowledge transfer. In unmastered situations, thetroend of the exploration. The influence of our progress-based
could use repair strategies to get back the attention of theeta-controller [78], [79] will be evaluated at every level
teacher, by means of a particular behavior (oscillatioopst of this architecture. We will also study how an agent can
looking toward the teacher ...) [80], or by means of a momeutonomously detect it is not really doing what it aims at
understandable media as an expressive robot head [81], [8R]ing. We will wonder how an emotional system could be
Seeing these behavioral oscillations, the teacher shotddiict used as a second order controller [81] to adjust the shape
with the robot by giving him the correct orientation, prowig of the attraction basins provided by the sensory-motor er th
additional examples for the learning. In mastered states, tplanning systems when the behavior becomes incorrect.
robot could become curious by choosing to not realize theFinally, we are currently addressing the problem of the
learned behavior and to disobey its teacher in order to fissl lebuilding of a single architecture, allowing the robot to dea
mastered states in which it can still progress (a commuioicat with spatial as well as temporal modalities (place-actiod a
based on the expression of emotional states could once againation-action stategy), in navigation as well as in radsot
be very pertinent). Indeed, this could lead the robot towardrm manipulation [39]. Our perspective is to build a merged
states it would not have experimented if it had performedtwheontrol architecture for applications in which navigatiand
it had learned, or if it had perform the predictable actionsbject manipulation are considered. A simple example could
imposed by its teacher. Obviously, auto-evaluation cdpabibe to imagine a robot that must be able to use the door handles
ties also appear as an excellent starting point to deal with to press elevator buttons to achieve its mission. However
permanent environmental changes or morphological changdles kind of missions also imply the incorporation of object
of the robot: self-evaluation capabilities could more lasirecognition, visual affordance detection [1], [83], [8485],
lead to consider re-learning strategy in case of such pezmtan[86] and more sophisticated mechanisms to understand the
changes. natural and/or human world. The adaptation of our system on

UAVs (Unmanned Aerial Vehicules) is also currently studied
VI. CONCLUSIONS AND PERSPECTIVES

In this paper, we addressed the problem of the interactive
teaching of a sensory-motor navigation task to a mobiletrobo Movies of the experiments presented in fig. 6, 15 and 17
The proposed sensory-motor learning rule enables the rolao¢ available on the website of the authors and on:
to associate newly learned places with the current action bttp://www.etis.ensea.fr/"neurocyber/giovannangtihe.htmi
means of a classical WH learning rule and to refine the learned
behavior by merging the learned movement in each place with ACKOWLEDGMENT

the performed movement by means of a delayed WH learningrhjs work is supported by the DGA (Délegation Générale
rule. By triggering the recruitment of new places accordingoyr rArmement: procurement contract 04 51 022 00 470 27
to the sensory-motor error, the proposed generalizatiah@f 75) the Institut Universitaire de France, the Feelix Gringn
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to the complexity of the task to learn. The use of a joystick {P6 MRTN-CT-2004-005439) supported part of the results
teach the robot, in spite of its simplicity, creates a reahbn-  gissemination. We particularly thanks G. Désilles foriitgest-
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