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1 Introduction

It is quite surprising to realize that nowadays, com-
puters have enough memory and power to simulate in-
sect brains or part of mammal brains but that we are
unable to build really autonomous robots with insect-
like cognitive capabilities. Therefore, our goal is to
use neurobiological and psychological data to design
neural architectures allowing an autonomous robot to
“survive” in an a priori unknown environment (ani-
mat approach [40]). Moreover, we would like to use
real robot as a simulation tool to validate the behav-
ioral implications of neurobiological models. Our ani-
mat must be able to select at each moment the actions
allowing to maintain a given number of internal and
essential variables (its “needs”) in a predetermined
comfort area. In this paper, we try to draw a par-
allel between insect and mammal strategies to solve
that kind of “survival” problems and we show how the
theoretical principles underlying their solutions can be
efficiently used to control autonomous robots. First,
we will point out from biological data some of the rea-
sons explaining why there is not so much progress in
the field of autonomous robot learning (except few pi-
oneer works [5, 19, 56, 41, 27, 28, 51] involving simple
systems or which are not really autonomous compared
with more classical but efficient robot programming
approaches [16]). Next, we will study similarities and
differences between insect and mammal navigation ca-
pabilities on the foraging tasks example.

We will show our N.N. architecture (mainly inspired
from [12, 13, 14, 20, 33, 31]) does not need to be-
come much more complex moving from place retriev-
ing problem to learning and the use of a kind of “cog-
nitive map” of the environment.

2 From insect to mammal visual navigation

Nowadays, it is well known that insects like ants, bees,
wasps... can use visual information in conjunction
with a compass' to return to their nest [52, 21, 38].

*This work has been partially performed while P. Gaussier
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Figure 1: Photo of our Koala robot built by the K-Team in
Switzerland. You can see the CCD camera and the servo motor
used to rotate it. Its magnetic compass can also be seen on the
top of the robot body.

It seems that those insects store multiple views taken
from different places. It has been proposed that they
use the following strategy: during the nest departure
phase, they “turn back and look” from different po-
sitions (perhaps) in order to store new views of the
nest. These informations could be used during the
return path to decide the direction to follow to get
closer to a learned view or to move in a learned direc-
tion associated to the best recognized view. The prob-
lem of recognizing these views remains unclear since it
seems that insects can use at least two different visual
mechanisms to reach their nest (in addition to a path
integration mechanism [42] [59]). When they are far
away, they seem to rely more on the whole surrounding
landmarks (I am here because there is a “tree” in that
direction and a particular “rock” in that other direc-
tion). When they are near the nest those information
are not precise enough to allow to find directly the
nest entrance (which can be very small: few millime-
ters). So there is a need to navigate in the direction
of an object or a scene directly associated to the goal.
In both cases, it is unclear how those insects succeed
in matching a learned view with a current view. It
seems they are only able to recognize an “object” if
it is perceived exactly under the same angle of view.
The choice of the movement direction can then be ex-
plained for instance by a body rotation that allows to
translate the image on the insect eye.



primates can return to a place by using visual cues
and that they have the same problems as insects (if
those cues are translated for instance). In that case,
both insects and mammals using vision to navigate will
search the goal at a place which is also translated from
its real place. Nevertheless, neurobiological studies of
mammals reveal that they are able to perform ocular
saccades or to use an internal “spot light” to focus
their attention on particular local areas of their visual
field?. They can perform the recognition of different
subparts of a panorama in independent manner (the
detailed identification of a complex scene is the result
of a sequential process even if a global recognition of
the scene type can be performed more quickly — maybe
by using lower spatial frequency information). So we
can suppose that mammal generalization capabilities
could be higher than those of insects (if it is true that
insects are unable to do the same thing, not proved to
this day) but not so different in their basic principles.
In the same vein, mammals have to choose if they have
to rely on surrounding landmarks to reach a particular
place, or if they want to go in the direction of a par-
ticular object. We believe there is no reason that the
simple sensory motor learning, which seems to govern
insect navigation, cannot be used for the same kind of
tasks in mammals.

Conversely, mammals need to explore bigger re-
gions, to constitute food reserves (birds for instance).
They cannot rely on a collective effect to find the short-
est path to reach a goal nor to leave in the environ-
ment an efficient pheromone [45, 7]. Indeed, they have
to learn not only a single path but a lot of paths in or-
der to go directly from any place to any another place
(which is impossible with pheromones that just repre-
sent a gradient to reach a single location). It seems
important that mammals can internalize things that
they cannot leave in the environment and learn some
kind of “cognitive map” of the environment (links be-
tween spatially neighbor places).

To conclude, animal learning seems to have very
general properties which are unfortunately mainly ig-
nored in learning theory:

e Survival is possible even if problems are not per-
fectly solved.

e For a given problem, animals can use multiple so-
lutions involving different levels of representation
(the problem can be partly solved by very low
level strategies - only motor selection - or involv-
ing high cognitive processes).

e The behaviors we observe are mainly the super-
posed results of low level and high level processes
that compete or cooperate.

21t would be really long and energy consuming for mammals
to have rotate their head and their body to be able to see objects
always in the learned position on the retina!

between particular kinds of data but not others.
Those restrictions seem to be mainly linked to the
ecological constraints of the animal survival.

3 N.N. to model animal and robot “brains”

All these points mean that cognitive neurosciences
need dynamical and embodied simulations to test the
validity of their models in “real situations”. Even very
simple N.N. with feedback loops can exhibit chaotic
or complex dynamic. Representation of cognitive sys-
tems in terms of a single and simple dynamical N.N.
can then summarize what could be considered as a lot
of different behaviors in a first direct approach [32].
Structures and functions are intimately linked together
[29]. Several different behaviors can, and sometimes
must, have the same grounding to enable “transfers”
between something learned during a particular task
and something learned during another task. In fact,
there is no need of a transfer if the problem represen-
tation is well chosen! What one calls transfer is in fact
learning in a common circuit the different modalities
or tasks involved. We believe mobile robots controlled
by N.N. are a good simulation tool to account of the
effects of the continuous interactions between natural
cognitive systems and their external environment.

So, we must question our way of thinking the cog-
nitive processes. The interest of a neural approach
(more than its parallelism, its robustness to element
loss...) is to propose a unified frame to analyze high
level cognitive processes in terms of control problems
and vice versa. A neural network formalism might sup-
press the gap between control and artificial intelligence
by the use of continuous analogical information from
the sensory input to the motor command. We believe
that the description at the neural level is the correct
atomic description to analyze and to synthesize cogni-
tive systems and to avoid the problematic splitting in
low level and high level processing.

In the following section, we will mainly describe a
simple neural architecture relying on sensory-motor as-
sociations which can be used for place retrieving as
well as object tracking [23, 22, 24, 37]. We will show
how it is possible to modify it to allow our robot to
learn some kind of “cognitive map” of the environment
and to plan its path.

4 A simple homing mechanism

We developed a model to explain animal capabilities
to return to a learned place from unexplored locations
[29]. We have shown the learning of Perception-Action
(PerAc) associations just in the neighborhood of a goal
is sufficient to allow good navigation from far away
locations belonging to the same environment.

This model does neither compute in which direc-
tion to go according to the perceived and the learned



tion in the environment [60, 11]. The information rep-
resentation allows the system to use, far away from
the goal, the movement direction learned from places
near the goal (a priori generalization). Our simulations
and robot experiments show that if we can separately
recognize at least 2 landmarks (local snapshots) in a
panoramic image (see fig. 2 and [37]) and know what
their azimuth is (relative to an absolute direction given
by a compass or by the odometry) then, those infor-
mation can be recombined in a very robust manner to
decide if the robot is far or near the learned location.
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Figure 2: Proposition of possible landmark positions. The
learned landmarks are little snapshot around those locations. A
log-polar transformation is performed to allow a better rotation
and size invariance.

It seems better in a first approach to use azimuth in-
formation instead of apparent size information because
information about distance obtained from the appar-
ent size vary in a very non linear manner and does not
allow to estimate the distance with a good precision if
the agent is far away from the landmark. Moreover,
those kind of measures do not allow to differentiate
mirror situations [60]. Of course, in a complete sys-
tem, one will have to integrate both azimuth and ap-
parent size information of the landmarks (optical flow
and/or stereo-vision could also be an important in-
formation to estimate distances). The activity of our
“place cells” P; when the robot is at the location (x,y)
can be written as follow :

N;
D Vi f (18ik = Ox(z, )], v (2, 9))
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(1)
In that equation, N; is the number of visible land-
marks when the robot is at the learned place i (or cell
P;). O, represents the learned value of the landmark
k azimuth from the learned place i. 8y is the value of
the same landmark azimuth for the current robot loca-
tion (x,y). All the angles are expressed in radians and
measure from an absolute direction (the north for in-
stance). |©; — Ok (x,y)| is computed modulo 7 , V;
and v are set to 1 when the landmark k is seen for
the learned location ¢ and for the current robot loca-
tion respectively (0 otherwise). When the system has
landmark recognition problems, we can have V;, =1
and v, = 0 (landmark learned but not recognized). f
is a non linear function to account of those landmark
visibility problems:

0 Zf v =1
f(eavk):{ T if =0

The error associated to one landmark azimuth
is maximum when the landmark cannot be found
(f(0,0) = w). Eq. 1 gives a growing activity Actp,
that tends to 1 when the azimuths 6}, associated with
the current location are close to the stored ©; ;. By
using a simple gradient technique, it is theoretically
possible to reach the goal wherever the starting point
of the robot is.

Unfortunately, the gradient can be very flat when
the robot is far away from the goal. The robot should
therefore move a lot in one direction to be able to
compute the value of the gradient in that direction.
It would next have to return to the current location
to try to go in another direction and so on. Obvi-
ously because odometry is imprecise and because the
time to measure the activity from all those locations
is long (a lot of unproductive movements must be per-
formed), it is difficult to use directly this algorithm to
approximate the gradient and to follow it to reach the
goal. Nevertheless, this strategy seems to be used by
rats in maze problems when they lack information (vi-
carious trials and errors strategy proposed by Tolman
and used by Schmajuck for the modelization of maze
learning [46]). Another solution inspired from bacte-
ria strategy to reach a sugar area could be to decide
to move always in the same direction until the gradi-
ent is negative. At that time, it is enough to choose
randomly another direction and to repeat the process.
At the end the robot must arrive to the goal location
but it is obviously not a very efficient strategy. More-
over this strategy may become very inefficient when
obstacles appear. The robot could get stacked in local
minima. A solution that looks like stochastic gradient
descent with momentum could also be used and could
be a good complement to the previous algorithm.

To avoid an explicit computation of the gradient and
the direction that minimizes the displacement of the
landmarks in the visual scene, we find it is simpler not
to learn the goal location but to learn places in its
neighborhood and to associate those places with the
direction of the movement to perform to reach the goal.
Those positions must be far enough from the goal to
obtain activity different enough when the robot is on
one or the other of those different learned locations.
Moreover they must be close enough to the goal to
allow the robot to associate those locations with the
correct movement direction to reach the goal. This
can be done with the help of the odometry which does
not need to be very precise or by a visual tracking
of the goal location (to maintain active its direction
on the motor map - for a neural description see [29]).
In practice, we have shown it is sufficient to learn 3
places at 30 or 40 cm from the goal to be able to join
it from distances higher than 3m (the panoramic image



insects). For those far away locations the movement
decision is linked to the most recognized place or to a
combination of the most activated place cells [22]. It is
interesting to notice that the simplest way to allow this
kind of learning is to mimic the exploration strategy
used by insects like ants or wasps when they leave their
nest (“turn-back-and-look” in the direction of the nest
from several locations [57, 58, 17]).

Our N.N. is a simple PerAc bloc [27, 26] . It seems
to be very robust in controlling our mobile robot
[24, 22]. It gives good results even if several people
are present in the experiment room and hide a lot
of landmarks. The algorithm can also function if
some of the landmarks are moved because even if
the activities of the place cells decrease, they mainly
decrease in the same manner so their rank in the
competition remains unchanged (as well as the choice
of the movement direction). A drawback of this
model could be the fact that it relies too much on a
good recognition of the landmarks. In fact, we have
discovered the system is in reality more efficient when
we do not impose on the landmark recognition group
to find a single interpretation for the analyzed local
snapshots. All “well enough” recognized landmarks
are considered as valid for the computation of the
most recognized learned place. Wrong interpretations
of a particular landmark can be viewed as noise. The
true recognition of a particular landmark is never
performed and is not important for the ability to
return to a particular place. Recognition could be
realized by a top-down mechanism from the place
recognition to the view recognition but it has to be
implemented.
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Figure 3: Effect of a “motivation” on robot attraction in the
direction of a particular goal. When there is no motivation,
the robot goes in the direction of the nearest goal. When a
particular “motivation” increases, the attraction basins of the
associated goals become deeper and can at last attract the robot
wherever its original location is.

Obviously our PerAc architecture can be used to
learn how to return to an arbitrary number of different
locations. When interesting locations have been dis-
covered, it is sufficient that the robot moves around
the new goal to learn how to reach it from different
neighbor locations. Hence, attraction basins are cre-
ated around each potential goal. The robot is nothing
more than a ball that falls in the implicit potential
field created by this learning. If we introduce a mod-

interest of those different places for the robot, one can
force the robot to reach a particular goal whatever its
current location is (it does not fall in the nearest basin
anymore). The size of the attraction basin is modi-
fied by this modulation that we can call a very simple
“motivation” (see fig. 3). Conversely to classical po-
tential field techniques [2] there is no need to know
the location of the robot and the goal in a explicit and
common referential.

That idea has been successfully tested on our robot.
Figure 4 represents the experimental area. Two goals
“A” and “B” are 2 little pieces of metallic paper sticked
on the floor (the size of the metallic plate is 16x14
cm and the robot size is 30x30 cm). They cannot be
used by the navigation algorithm of our robot. They
only allow it to know if it has succeeded in reaching
them. In the first part of the experiment, the robot
learns both goals and associates them to 2 different
motivations. Next, according to its own motivations,
it moves from one to the other and is able to avoid
obstacles.
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Figure 4: Plan of a room used for simple motivated naviga-
tion. We can see the two goals A and B. The 3 arrows around
each goals represent the learned positions and the associated
movements. The distance between each learned position and
the center of the goal is only 30 cm.

For instance, in the experiment shown fig. 6, the
robot is first put at the center of the room. Its motiva-
tion is “A”, so it moves in that direction and succeeds
in reaching it. Because it reaches “A” the motiva-
tion associated to “A” is satisfied and the robot tries
to reach “B”. A landmark (a big computer case) is
moved from the surrounding of the room to its center.
When the robot arrives in its neighborhood, its infra
red sensors detect it. The obstacle following mecha-
nism is activated. Because the weight of its obstacle
avoidance is higher than those of the place-action as-
sociations, that reflex wins until the obstacle has been
overtaken. Hence, no local minima appears even if the
obstacle is a U shape.

Fig. 5 represents what the robot sees when it arrives
just before the big white box. The goal B is at about



Figure 5: The robot is close to the goal. The robot is near
the introduced obstacle which occults some of the learned land-
marks.

1.5 m behind the box. That experiment shows at the
same time that the system is robust to landmark loss
and that it does not need to see particular things near
the goal to be able to reach it (even if that can help!).
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Figure 6: In those 2 examples the robot starts from the center
of the room without obstacle. Then, when it reaches the goal
associated to the most activated motivation, an obstacle is put
at the center (the large box) and the robot have to reach the
other goal. In a) the first goal is A and in b) it is B.

When several locations are learned, we will consider
that the global spatial potential Pot defined over the
(x,y) space is equal to:

Pot(z,y) = max (Actpi (x,y). max (M; ;.M otiv;)
1 J
(2)

where Actp, (z,y) is the recognition level of the place
P; according to the visual information available at the
location (x,y). Motiv; is a modulation term linked
to the “motivation” j (hunger, thirst,...) to reach the
place i. M; ; are initialized to 0. When the robot finds
a place where it can satisfy one or several motivations,
the place is learned (learning of V; ;, and ©; ;. of the eq.
1) and M; ; is set to 1 for the satisfied motivations.

Figure 7 shows an example of the activity of
Pot(z,y) when 5 goals are learned and modulated by
the same amount of “motivation” to reach the differ-
ent locations. The associated spatial gradient is super-
posed to simplify the interpretation of the potential.
For the goals situated in the same visual environment,
we can see the robot goes in the direction of the nearest
goal to its initial location.

In practice, this “go to the goal” mechanism ac-
counts for “place cells” activities recorded in the rat
hippocampus by neurobiologists [35]. Indeed the ac-
tivity of those cells depends on the relative location of
the landmarks surrounding the arena used for the ex-
periments [18]. Our algorithm has also the advantage
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Figure 7: Attractors linked to different goals (represented by
black dots). The arrows give the direction and intensity (dark
stronger than light) of the gradient (computed using equation
1) from each location in this simulated environment. The land-
marks are all different from each other. They are just repre-
sented by crosses and cannot be used for the computation if they
cannot be seen by the robot because of the obstacles (walls).

of explaining why neurobiologists cannot find place
cells associated with a goal position but find place cells
that seem located just around it [30]. Nevertheless,
that does not explain why rats learn a lot of places in
an open environment. In the following section, we will
show that sometimes there is a need to do that and we
will show how it is possible to modify our architecture
to take advantage of the learning of places not directly
linked to a goal.

5 Learning a “cognitive map”

When the visual environment of the goal cannot be
perceived because of huge obstacles, it becomes im-
possible to use the previous algorithm directly since
the robot always tries to make shortcuts and cannot
make detours (except reflex obstacle following). Yet,
if the robot is able to learn what to do from a given
number of “strategic” locations between the starting
location and the goal it may succeed in reaching it.
Fig. 8 presents an example using a “behavioristic” ap-
proach. The robot uses the learned movements when
it comes close to learned place, moving in the direction
of the next place to the goal (all the place recognitions
are always in direct competition).

That experiment is interesting because it shows that
learning very few places is sufficient to allow our N.N.
to build an implicit attraction basin that is the path
to reach the goal from any location in that complex
environment. Unfortunately in that experiment, the
learning was supervised. The robot was placed in the
places to learn and asked to learn them as well as the
correct associated movement direction. Moreover, this
kind of simple behaviorist strategy can only be used if
there is a single goal. Otherwise, there is a need to add
a “cognitive map” in our architecture. Tolman was the
first to point out the existence of a “cognitive map”
[53] allowing rats to navigate efficiently from any loca-
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Figure 8: Examples of robot trajectories in a room where 10
places and their associated movements (points and little arrows)
have been learned. The effect is the creation of an attraction
basin that looks like to a kind of canyon. The robot is nothing
more than a ball that follows the steepest slope and reach the
goal if its departure location is not in the gratings area.

tion in a maze to any goal location. He showed rats are
able to learn something about their maze even in the
absence of any reward (latent learning) because those
rats were afterwards more efficient than genuine rats
to retrieve a food source introduced somewhere in the
maze (for an interesting discussion about those exper-
iments see [50] and also [44]). Since that first psycho-
logical experiment, neurobiological records of neurons
in the rat hippocampus have shown the existence of
neurons that seem to respond when the rat is at a
particular place in its environment even if that place
is not directly linked to a particular goal [36]. O’Keefe
has proposed the hippocampus could be a cognitive
map. Even if this proposition seems us too reductive,
it is not possible today to deny the fact that the hip-
pocampus plays a major role in merging multi-modal
sensory informations and that it participates in place
recognition and in the storage of our recent experi-
ments [49, 6]. Besides, we have shown in other works
[44] that planning a route in a constrained environ-
ment can need the learning of complex sensori-motor
associations sequences that rely on the recognition of
transitions between places and not simply on isolated
place recognition. To simplify the discussion, this pa-
per deals with navigation problems that can be solved
by the unique use of visual information (mean that
they are always relevant enought) to build cognitive
map linking static places.

To represent a “cognitive map”, we add a group of
neurons able to learn the relationships between succes-
sively explored places. We will call that last group our
“cognitive map” (fig 9 and 10). When a motivation is
activated, it diffuses on the map and activates place
cells according to their distance (in number of links)
to the goal. First, the animat tries to follow the gra-
dient of neuron activity in this cognitive map to select
the next location to reach. The most activated goal or
subgoal in the neighborhood of the current animat lo-
cation is then selected and used to attract the animat
in its vicinity. When the robot is close enough to that
location, the associated subgoal is inhibited and the
robot is attracted by the next subgoal and so on until

of cognitive maps is not new [1, 39, 46, 3, 47, 10, 54].
The novelty in this paper is that our animat intensively
uses our algorithm allows to solve planning problems
involving several moving goals in a dynamic environ-
ment (the “map” is learned and modified on-line and
allow to manage contradictory goals).

4

Figure 9: Example of a simulation environment. The animat
(represented by one black triangle in the lower right part of
the arena) detects the obstacles with its proximity sensors. It
can discover “food” or “water” sources only by passing just on
them. The filled black circles represent the learned locations.
The links between those nodes represent the learned transitions
when the animat moves from the neighborhood of a first learned
place to the neighborhood of a second learned place (sub goals).
Here the exploration of the environment is not complete and the
“cognitive map” does not cover the whole space.

The learning of the cognitive map is performed con-
tinuously. There is no real separation between the
learning and the test phases. The links between neu-
rons (or each node of the graph) are reinforced (heb-
bian associative learning) for neurons associated with
successively recognized places. The recognized place
is the place P;+ with is the most activated:

i* = argmax; (Actp, (z,y)). We will define

T 14f i=q"

P71 0 otherwise

Let W;; be the weight associated to the fact that
from the place P; it is possible to reach directly the
place Pj, its learning rule is the following:

T = —Aw + (C+ 48).(1 - W) Af A, (3)

Where AL, must be hold to a non null value until
Ap, (with @ # j) is activated by the recognition of the
place cell P;. This is performed by a time integra-
tion of the A%, values represented in the equation by

A3, A}, decreases with the time and can be used as
a raw measure of the distance between i and j. A is
a very low positive value. It allows forgetting of un-
used links. The term % corresponds to the variation
of an external reinforcement signal (negative or posi-

tive) that appears when the animat enters or go out



late the strength of the reinforcement of the synaptic
weights and also provides a kind of perception of the
distances between learned places (C' = 1 in our simu-
lations). The temporal proximity being equivalent to
a spatial proximity, the system creates a topological
representation of its environment (fig 9).

The planning uses spatial information to allow the
animat to reach a particular goal. At the goal level
(fig 10), the motivations activate directly the goal
neurons linked to the goal to be achieved (the goal
neuron intensity is proportional to the motivation).
Those activities are then diffused from neuron to
neuron through the synaptic weights. The goal
diffusion algorithm is the following [43]:

o N;, is the goal neuron activated because of a par-
ticular motivation. G, is its activity.

[} Gi(,(—land,Gi(—OVi;éio

o WHILE the network activity is not stabilized,
DO: Vj,Gj «— ma,x(W,JG,)
K3

Each link has a value below 1 (to be sure of the al-
gorithm convergence). On figure 10 an example of ac-
tivity diffusion from a motivation A is presented. The
algorithm allows to find the shortest path in the graph.
That path can be found by a gradient “following” from
the node associated with the current location to the
goal node. The algorithm is proved to always find
the shortest path in the graph (it is equivalent to the
Bellman-Ford algorithm of graph exploration [8][43]).
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Figure 10: Global architecture of the planning system. The
recognition level allows to identify the situations when the robot
arrives in the vicinity of a stored place. Those situations are
directly linked to the goal level which allows to plan a route from
one attractor to the next until the objective. When a motivation
“A” activates a goal, a back-propagation of the information is
performed in direction to all the nodes of the graph ( all the
weights are equal to 0.9).

6 Learning the best route

In an environment with several rooms and/or with big
obstacles, our neural architecture allows an animat to
learn to navigate from one room to another and then

tion (continuous environment), our animat starts from
its nest and is moving all the time (only its movement
direction is controlled). It explores its environment
when the food and the water level are in the com-
fort zone. The animat can “enrich” its knowledge on
the environment by learning new places or by modi-
fying some synaptic weights between neurons associ-
ated with learned places. It can also quickly return to
a food or water source already discovered as soon as
the level of one of those essential variables (its needs)
make it necessary. A new place is learned when the
animat passes through an important place for its sur-
vival: typically, when encountering a food or water
location (future goals). To allow it to join goals even
if they are hidden, other places are learned (subgoals).
They correspond to the following situations:

e the end of an obstacle avoidance. For instance,
the animat stores the pathway between two room
(location of the “gate”).

e places badly recognized: miax(Actpi) < RT

(Recognition Threshold). The higher RT is, the
more learned places there are (denser coverage of
the open space). We obtain a spatial “paving” of
the environment which is almost regular.

We can notice that the density of learned places is
higher in a little room than in a large room (see fig.
9). This distribution of place cells agrees the biological
data from hippocampal place cells. It can be simply
explained by the fact that in a little room the azimuth
of landmarks change more for a given movement than
in a large room.

To test our system on complex enough behaviors,
we have tried to simulate hunger (n nutrition level)
and thirst (h hydration level). We have used the
following equations:

‘;—? = —a.n+ Q, + p.dh.n
dh — —o' b+ Qp+p On.h

with :

Qn = ﬂ;(nmax —n).on — 7-[(” — Nnin)-(1 — 0n)

Qh = 6 '(hmaz - h)éh - (h' - hmzn)(l - ah)

(4)

They govern motivations “eat” and “drink” of the
animat. As soon as the animat is on a food or water
point, the level of the associated resource is increased
of a given quantity (én and dh are 1, 0 elsewhere). The
terms associated with p et u' take into account inter-
actions between hunger and thirst. They model the
fact that “eating induces thirst” and “drinking reduces
hunger”. Besides, we imposed to the system that the
level of the essential variables are maintained between
2 thresholds that define the comfort area. Hence, as
soon as the level of one of these variables is below
the Lower threshold (LT, the associated motivation
increases and activates the associated goal places (at-
traction basins appear). Conversely, when the level



threshold (HT'), there is an inhibition of the associ-
ated goals that become repellers (see algorithm details
in appendix).
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Figure 11: Evolution of the 2 essential variables during a typ-
ical experiment (reserves in food and water).

Fig. 11 shows the evolution of 2 essential variables
during a typical experiment. The “peaks” correspond
to the moments when the animat eats or drinks. We
can see the animat succeeds quite correctly in main-
taining the 2 essential variables in the comfort area
(between the two thresholds LT and HT). A cycle of
go and return takes place between the different types
of sources. Those cycles change only when the animat
succeeds in a random exploration phase to find a new
goal (random exploration away from the known goals
which become repellers). The different experiments
with and without obstacles show that after having
found water and food sources, the animat navigates
correctly between those sources. The level of the es-
sential variables stays mainly in the comfort area and
almost never goes out the viability area (where the
animat dies). The animat succeeds in surviving for
hours. The animat can fail only when new sources
appear in areas difficult to explore (low probability
to find the solution - need to have a cooperation be-
tween several animats [25]). It is interesting to use
those “perceived” levels instead of using the real in-
ternal level of each variable because they allow the
animat to anticipate problems. Indeed, in a real sit-
uation, it is impossible to know what is the minimal
level of a particular ressource need for the survival.
(the differential equations we use, always underesti-
mate the remaining quantities). At the opposite, those
equations overestimate the upper bound of the inter-
nal variables. The consequence is that the system can
work correctly without neither knowing precisely the
real viabilities bounds linked to its internal variables
nor knowing which distance (or work) they allow to
complete (energetic value of those variables for the sys-
tem).

The goal of that experiment is to show that our N.N.
allows our animat to learn not to take the shortest
path if that path goes through an area associated with
a negative reward (a difficult area). Fig. 12 shows a
typical example. The animat must satisfies 3 motiva-
tions: finding food and water, but also returning to
the nest to have rest. The need for rest increases 2
times faster than the need for food or water. As a
result, the animat mainly tries to go from the nest to
the food source, next it returns to the nest, latter it
goes to the water place and so on. Sometimes, it may
happen that the animat goes directly from the food to
the water place depending on the level of the differ-
ent motivations which are modulated by the perceived
distance on the graph.

Figure 12: Example of an environment with 3 motivations, 3
goals and 2 dangerous areas that the animat can cross but which
induce a negative reward. As usual, grey circles represents the
learned places and the lines between them the non null links.
The crosses represent the landmarks.

When the animat receives a negative reward, the
link between two successively explored places is rein-
forced less than it is used to. The effect is that the
perceived distance for that path seems to be longer
and the animat might prefer taking another way. Fig.
13 shows the frequency of place occupation whether
the robot receives a negative reward or not. When
the locations marked by little squares are associated
with a negative reward, the animat learns a path to
avoid those areas. In the opposite case, it reinforces
the paths minimizing the constraints linked to the dy-
namic of its motivations.

6.2 Learning to choose between goals

Because the activation level of a particular subgoal is
the maximum of the back-propagated motivational in-
formation, we believed at first that our algorithm was
unable to choose correctly between satisfying one mo-
tivation or several simultaneous motivations. For in-
stance, we thought it would be unable to always choose
the left arm of the T maze fig. 14 that allows to satisfy
at the same time 2 motivations (something that the
“free flow” architecture of Tyrrell [55] succeeds in do-



Figure 13: Histogram of the animat occupation of the sim-
ulation area at the end of 2 different experiments. a) without
negative reward when the animat goes through the dangerous
area and b) with a negative reward. In b) the animat avoids the
dangerous area.

ing at the price of local minima problems). Of course,
it is possible to decide that if a goal is associated with
2 motivations those two motivations are summed be-
fore being diffused with our max rule. Unfortunately,
if the two interesting sources are not exactly at the
same place but are in neighbor areas, this trick cannot
be used. If we change the max rule into a simple addi-
tion rule we can face deadlock situations because the
diffused activity can amplify itself in loop situations
or when a node receives the diffusion of a lot of other
nodes. So we have tried our algorithm as it is and we
have been surprised to verify it was nevertheless able
to find the good solution after a while (that was not
really a surprise - see the conclusion!).

Figure 14: Plan of the T maze with multiple solutions. There
are only water on one side (B) and water and food on the other
side (C). (A) represents the nest. The black points represent
the learned places and the lines between them the synaptic links
which are non null (the higher the value, the darker the line).

The experimental framework is a T maze (see fig.
14). The nest is in the bottom arm. In the right
arm there is only water whereas in the left arm the
animat can find both water and food. Because of the
random exploration of the maze the animat may first
find the water and because of the quick decrease of the
essential variables the animat returns quickly to the
nest to have some rest and next goes to the water and
so on. During short exploration periods, it finishes
exploring the left arm and it discovers a place with
water and another place with food. Then, because of

of the dynamical coupling between its motivations and
its movements, the animat prefers going into the left
arm and reinforces more that path. Indeed, when the
animat takes the right arm (B), it reinforces that path
and finds the water (so reinforces the wrong decision).
But as it also needs to eat, it goes to the left arm (C)
to take food and so reinforces also the path between
C and A (used as a return path). So no preference
for one direction emerges®. Conversely, if the animat
chooses the left arm (C) then it takes food and water
and do not need to go in the right arm. The path
between A and C is then really reinforced and quickly
the animat takes it only. Another reason is that when
the animat takes first the right arm (B) and next goes
in the left arm (C) it can also take water so the level
of the water becomes higher than the level of the food
resource. When the animat has taken some rest, it
is then more attracted by the food. The animat will
then take the left arm and reinforce it. We have also
successfully tested the algorithm with mazes with arms
of different sizes. Surprisingly, the animat succeeds
the task in the absence of any explicit reinforcement
unlike what must be done with Q-learning for instance
(which also seems to have a lot of problems to work
on a problem with such a number of dimensions — at
least 5 continuous dimensions: x, y, time, and two
motivations!).

7 Conclusion

We have shown our algorithm can be used to allow our
animat to choose between several goals. Our animat
seems to solve the exploration/exploitation dilemma
quite correclty for this kind of problem (even if we
don’t know how to find a measure that accounts at
the same time for the robustness and the efficiency
of the solution). As far as robotic and automatic are
concerned, it is important to notice that our system
keeps the same kind of analogical coding from the per-
ceived information to the motor command and that
there is no gap between the low level control mecha-
nisms and the planning system which remains analo-
gous and grounded on the raw data. In new experi-
ments, we control the speed of the robot according to
the gradient of the diffusion activity to allow a stable
planning behavior (decrease speed before arriving on
the goal to avoid missing it - see also dynamic theory
[48]). The system always realizes a compromise be-
tween the level of recognition of the current place and
the level of the back-propagated motivations. It does
not pass exactly on each learned location. It always in-
terpolates and can make shortcuts even if it has never
experienced a particular path. Our first planning ex-
periments with our mobile robot shows the planning

3in fact since the right path is the last used, the associated
weights must be higher (because of the passive decay of the
weights) but we can imagine the difference is not sufficient.
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Figure 15: Histograms representing the evolution of the an-
imat behavior in a T maze. At the beginning (a) the animat
tries the right arm, finds the water and moves between the wa-
ter and the nest (it does not succeed in exploring the left arm).
By chance, it begins to explore the right arm and finds water
and food (b). Then very quickly it only explore that arm (c).
At last (d), it almost never returns in the right arm except dur-
ing the exploration phases (the histogram shows the cumulate
number of crossing in a given area since the beginning of the
exploration. The levels are normalized).

mechanism can work properly at least when the places
have been learned correctly (the complete system has
not yet been tested). An important work remains to
be done. We hope the problems we will certainly meet
[9] will help us to better understand the issues linked
to robot as well as animal learning.

An interesting point is that the classical learning
rule we use to update the weights on our “cognitive
map” has exactly the same shape as the equation that
governs the evolution of pheromones for the ants. Is it
so surprising We don’t think so. However, it does not
prove mammal planning mechanism works like that.
Indeed, in our simulations, time to learn the task is
long (the equivalent of 20 cycles of homing-foraging
periods). The animat has to try several times before
the positive feedback can allow to take a stable deci-
sion. Usually, it does not take us so long to discover
the best solution. An explanation may be that we
use the same kind of map but that we can internally
try several explorations in a “mental time” not con-
strained by the real experiment. Another difficulty,
is linked to the goal diffusion mechanism itself. If we
want our animat to learn paths that need more than
several tens of subgoals then the slope of the gradi-
ent will be very low (exponential decrease) and will be
very difficult to use (exactly the same problem as for
the limitation of a place learning!). There is a need
to be able to structure the plans, to build categories

°
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manipulate them.

We know the hippocampus is unable to store too
much information because of its limited number of
neurons (their storage time is estimated from 2 weeks
to around one month, both by direct computation of
the number of “facts” we can store during that time
and by the studies on amnesic patients [4]). Current
“cognitive map” of the environment could be stored
in the hippocampus and only its relevant aspects for
long term use should be saved in the cortical areas.
The information coding at the cortical level could also
be very different from the coding at the hippocam-
pus level and be something like “after the school turn
right...”. Understanding the processes used to com-
press those informations is something very important
for the cognitive sciences and the robotics.

At last, the main drawback of our systems is the
fact that learning is mainly passive. Conversely, ani-
mals are very “curious” of any new thing introduced in
their environment. They “search for the stimulus’ re-
sponsible of a particular reward for instance [34]. It is
a fundamental aspect of their learning [50] that we will
have to introduce in robot learning. Learning theory
must explain animal and human learning to be sure
not to miss any important issue!

A N I

This section presents in details the algorithm used for our sim-
ulations. Notice that for each instant a new robot displacement
is computed. It is chosen from its neighbor positions (the
backward direction can be suppressed to allow a faster explo-
ration). or more simplicity the obstacle avoidance mechanism
is not presented (robot stops planning until the obstacle has
been overtaken).

We can separate the neural network (see fig. 10) in 3 levels. The
first level (the recognition map) regroups neurons modelizing
our “place cells”. Each neuron indexed of this layer, noted ;
has an activity p; related to the current animat distance to
the learned position. Each of those neurons discharges towards
a correspondant cell in the “cognitive map” (the intermediate
level) to allow map learning and movement choice. The activity
of the neurons on the “cognitive map” is noted ;,. Thus, we
found the same number of neurons into these two layers (could
be implemented on a single layer by using mechanisms to sep-
arate goal propagation and real place recognition).. Neurons
noted of the third level code for every type of animat
motivation.
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To allow an “active” exploration behavior (going away from
the known areas when the level of the internal variables are
high), the goal diffusion algorithm has been modify in order to
be able to propagate also negative information. The updating
of the goals or sub-goals nodes becomes

max 4 i max g i
(2 7
where if 0 and O otherwise. The exploration

behavior is in practice more efficient but we have no proof that
new rule does not create local minima.

Parameters used for the simulations
0 0003, 100, i
0 003, 03, 30 and 0.

The environment size is 0x 0 and the robot size is 1. The

0, 03,

simulations works in the same way if the movements are integer
values or continuous (dx and dy 1). New simulations even
work with an animat speed which depends on the animat dis-

tance to goals or sub-goals (to allow a stable dynamical control
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may download the animat simulator file at the following

http www-etis.ensea.fr
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