Simulations of Dynamical Interactions for
Social Learning

Pierre Andry and Philippe Gaussier* and Jacqueline Nadel**

*Neuro-cybernetic team, ETIS Lab, UPRES A 8051 UCP 6 avenue du Ponceau, 95014 Cergy,
France, {andry, gaussier} @ensea.fr

**Equipe Développement et Psychopathologie UMR CNRS 7593, Hopital de la salpetriére,45 Bd de
Uhopital, 75018 Paris, France, Jnadel@ezxt.jussieu.fr

Abstract. Often viewed as a tool for learning, imitation also has a communication purpose.
In this paper we consider the interactional side of imitation, and especially its dynamic.
We study simulations of interactions between two agents. We show, how improvements of
an architecture designed for learning by imitation, permits to have a stable interaction: a
synchronization of both agents. We also show that the dynamic of the interactions provides
useful informations to build a reinforcement signal. That can be used to learn an arbitrary

set of perception-action associations

1 Introduction

Imitation can be viewed as a powerful learning
paradigm for real and simulated agents. As a ca-
pacity of learning by observation, imitation can im-
prove and speed up the learning and the exploration
of the sensory-motor space. For example, a robot
with a mechanical arm can quickly learn from a
model the relevant actions to resolve a given task
(moving an object to a particular place, recharg-
ing). In our purpose of designing a neural archi-
tecture able of learning by imitation, we are in-
terested by the first levels of imitation. We are
concerned with the simplest functionality that an
architecture needs to perform low-level imitations,
i.e reproduction of meaningless and simple move-
ments, without any complex notions such as inten-
tionality, consciousness of self or others, etc.. This
“proto imitation” level is very important because it
permits to understand the basis of the perception-
action mechanism necessary to perform more high
level behaviors (Gaussier et al., 1998). But imita-
tion also permits to investigate the social and com-
municational relationships between agents (Dauten-
hahn, 1995; Billard and Hayes, 1997; Billard et al.,
1998) . As observed among very young children
(Fig 1, and (Nadel, 2000)), imitation is also a tool

for gestural interactions, via demonstrations and
synchronous reproductions of motor sequences. The
fact that imitation is present during the early stages
of learning and communications, leads us to study
how our model of proto imitations could also be
used to study simple and simultaneous motors inter-
actions in the human-machine or machine-machine
loop. How can the interaction benefits to the learn-
ing process? We think that when agent interact,
the overall dynamic of the interactions can bring
useful informations, favoring exchange of signals,
stimulations or learning. Because these interactions
and exchanges are common to most living entities,
it could be useful to characterize some important
states of the dynamic, such as attractors. In this
paper, we briefly present the proto imitation mech-
anism as the basis of a control architecture, used to
learn sequences of movements with a mobile robot.
We then investigate a machine-machine interaction,
where two of our simulated architectures are inter-
connected, producing the same sequence. We show
how synchronization of both systems can be ob-
tained from an internal modulations of their per-
ception/action loop. The importance of synchro-
nization as the resulting dynamic is then discussed.
Finally we explain how the interaction dynamic can
also bring non-explicit but important informations,
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Figure 1: Young children interacting in an imitation game. Imitation deserves a communicational purpose,

where synchronization and rhythm matter.

Close to this idea, we study the interconnection of two

systems. System 1 and 2 have the same architecture. Each system has learned associations between its
inputs and outputs. The two systems produce outputs (the same sequence of motor outputs for example)

at the same time.

such as the rhythm of the exchange to build an im-
plicit reward.

1.1 Proto imitation: the ambiguity
in the Perception-Action loop

We start with the assumption that imitation can
be triggered by a perception ambiguity (Gaussier
et al., 1998), inherent to embodied systems in a real
environment. “Perception ambiguity” is a difficulty
to discriminate objects (is this my arm or another’s
one?), or to decide between different interpretations
(is this a useful object, or an obstacle?). It was first
introduced by Gestaltists, assuming that local fea-
tures in a perceived scene were always ambiguous
(only the global contextual information and the dy-
namic of the perception-action loop allow to sup-
press ambiguity). We think that perception am-
biguity can trigger a very simple imitation behav-
ior, such as the reproduction of meaningless move-
ments. To illustrate our proposal, lets consider a
robot with a mechanical arm and a CCD vision sys-
tem (Fig. 2). A controller of this system creates a
correspondence between a given position of its hand
in the visual scene and the angular position of the
different joints. Let us now suppose that the robot
looks somewhere else and perceives another arm in
its visual field (due to a narrow field of view), and
that this perception is ambiguous enough to be con-
fused with self arm. If the observed arm moves, the
controller which stored the visuo motor correspon-
dence will then detect an error between the repre-
sentations it supposes to have of its arm. Reduc-
ing this error will then make the system perform a
similar movement as the observed arm. Finally if
the sequence of movements is stored and associated
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Figure 2: The student robot has already learned
the correspondence between its arm internal repre-
sentation and its positions in its visual field. If the
student focuses its attention on the teacher arm,
it will reproduce the teacher’s movement just be-
cause it will perceive a difference between the pro-
prioceptive and the visual information. An external
observer will then deduce the learner robot is imi-
tating the teacher.

with the satisfaction of a particular motivation, it
can be reproduced later. An external observer will
consider that the robot has learned via imitation
the behavior of the other arm. To sum up, we pro-
pose that imitation behavior can be induced by:

1. the ambiguity on the identification of the per-
ceived arm’s extremity.

2. the minimization of the error between the vi-
sual and the motor positions(homeostasis prin-
ciple (Ashby, 1960)).

Of course, the precision of the movements depends
on the respective positions of the two arms. Precise



imitation would be easier if the two arms face the
same direction!. Moreover, this arm control archi-
tecture is close to the “low-level resonance” mech-
anism, proposed by Rizzolatti (Rizzolatti, 2000) in
the “rostral part of the inferior parietal lobule (sic)”
of monkeys. This resonance stands for the activ-
ity of the same motor neurons when observing or
producing meaningless arm movements, regardless
of the execution context. According to Rizzolatti,
such a “low-level resonance” account for low-level
imitating faculties. Perception ambiguity ensures
very simple perceptions of the situation (movement
and dynamics detection without any a priori on
the shape) and allows imitation capacities without
high-level notions of “self” and “others”.

1.2 Learning and reproducing tem-
poral sequences

The idea of a link between perception ambiguity
and proto-imitation is used to control a mobile
robot in a kind of “dance” task. The perception
only deals with detection of movements in the vi-
sual field, used to verify the rotation speed of the
robot’s wheels. We obtain a sensory-motor path-
way ensuring a following behavior (Gaussier et al.,
1998). The robot tries to reduce the difference of
speed between the information of the visual flow
and the information about the motor wheel speed .
As a side effect of perception ambiguity, this mech-
anism allows to follow moving objects. But, more
than an immediate imitation, the system also learns
the whole trajectory made by the teacher, in or-
der to reproduce it later. Here, the “whole tra-
jectory” stands for the entire temporal sequence of
motor actions (see (Gaussier et al., 1998; Moga and
Gaussier, 1999) for more details about the archi-
tecture, the tracking system and the filtering prob-
lems). The robot learns to reproduce its own se-
quence of actions primarily induced by the track-
ing behavior. Inspired by two brain structures,
(the cerebellum and the hippocampus, see (Ban-
quet et al., 1997) for more neuro-biological refer-
ences) the network which learns the timing of the
sequence of actions is also able to predict it, in or-
der to reproduce it fidelly (Reiss and Taylor, 1991).
Hence, the robot learns to imitate the behavior of
the teacher (robot or human) and succeeds in repro-
ducing the sequences ( (Moga and Gaussier, 1999)).

Isuch as a sport teacher showing how to perform a par-
ticular movement

2 Synchronization of actions
in an imitation game

Once motor sequences are learned, they can be
used, in order to solve a given problem, but they
also allow the system to participate in non verbal
gestural interactions. Such a system could inter-
act with others (robots or humans) by producing,
demonstrating and sharing motor sequences. This
situation is inspired by young children interactions
and games, where immediate gestural imitations
are performed quasi-simultaneously, involving ca-
pabilities such as motor synchronization, where the
same sequences of actions are executed at the same
time. The synchrony can be seen as an attractor
of a cyclic interaction game between two or more
agents. We propose to study the overall dynamic
of a loop made of two identical systems, with per-
ception and action groups interconnected, in order
to understand which minimal features need to be
added to our architecture. In the following text
we explain how minor improvements of the archi-
tecture (Fig. 3) can solve the trade-off between in-
dependent production and adaptive production ac-
cording to the other, i.e. synchronization. The de-
veloped solution is inspired from the “entrainment”
phenomenon observed by C. Huyggens in 1665, in
which two pendulum clocks placed on the same sup-
port synchronize themselves (“clock synchroniza-
tion”). Here, perception is similar to the physical
wave transmitted by the support, and must allow
to add some energy to the system in order to trig-
ger the motor output earlier. Perception is adding
energy to the system’s actions. Let us suppose
that both architectures use the “transition learning
and prediction” mechanism detailed in (Moga and
Gaussier, 1999; Andry et al., 2000; Gaussier et al.,
1998). Perception and Motor groups are highly sim-
plified (binary values) since we study the networks
in a computer simulation. The output of the first
system is connected to the input of the second one,
and vice versa (this simulates perfect perceptions
of the other’s action). Both systems learn the same
sequence of actions (for example transitions 1—2,
2—3, 3—1 are learned, allowing the production of
the sequence 1,2,3,1,2,.. and so on). The direct
pathway connecting perception to action must be
inhibited (Fig 4), in order to permit an indepen-
dent and complete production of the sequence (oth-
erwise perception and action of both system would
interfere each other). The inhibition is done by con-
necting ND neurons ( “novelty non detection” ) to
the perception (Input) group. Once activated, the-
ses neurons stay potentialized (due to the recurrent
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Figure 3: The model, allowing proto imitation. The
system is designed as a PerAc block. The “transi-
tion learning and prediction” mechanism is a per-
ception level modulating the “sensory-motor path-
way”. Introduction of new elements allow synchro-
nization between agents. “Non novelty detection”
(ND) and Integration (IG) groups are used to con-
trol the internal dynamic of the system.

thibiuon

Sensory-Motor Pathway

connections) and inhibit the corresponding input’s
neuron. Inhibition is triggered by Prediction (PO)
neurons, which act as “decision cells” about the end
of the learning phase (was this event learned or not
7). Equation 1 shows the computation of the po-
tential of the ND cells (see the appendix, eq 8 for
the computation of the activity).

dPotYP
dt

= fozﬁ~P0tI;_D+ Z W%)((Z)’l) . Actffl) (1)
]

1 if Pot™P(t) > 1
0 otherwise

Acti(t) = { (2)

where « is the value of the recurrent connection.
A strong inhibition of the sensory-motor pathway
cuts the system from the interaction. The system
produces its sequence independently, and “blindly”.
The inhibition must therefore only be partial: the
input signal must not be strong enough to induce
motor reaction, and must nevertheless be present
in order to modulate the motor production. Here,
“modulate” stands for taking a relevant perception
into account in order to change the timing of the se-
quence. Precisely, the perception of a given action,
could help accelerate the triggering of the corre-
sponding action by the system. Minor improvement
of the architecture permits to obtain the modula-
tion of the speed reproduction, in the manner of a
Phase Locking Loop (PLL). The acceleration mech-
anism is based on the following idea: acceleration is

due to a fusion between an anticipatory information
of the next motor event, and the perception of this
motor event. In other words, if the system “knows”
in advance the next action to perform, an incoming
perception of this precise action could trigger it ear-
lier. Two mechanisms are involved. First, a modi-
fication of the connections between time base (TB
on Fig 3) and PO groups (a standard conditioning
or least mean square (LMS) rule, see eq 3) permits
to have an early prediction of the next transition.
d TB(j,1)

PO(i,j)
dt

=2p - (Acti® — Pot}q) - Act}} (3)
The early prediction is then maintained by an inte-
gration of the PO output. This is done by integra-
tion recurrent neurons (called IG, see Fig 4) accord-
ing equation 4. The potential of these integrators
linearly increase since prediction is emitted, and is
then send to the motor (MO) group of neurons.

dPot'S
dt

1G (%)

= Qg - Poti® + Z wrewh Actffl) — reset
1

(4)
reset = Z I/Vllé(()i()i’l) - Actyy (5)
]

Act'®(t) = Pot'(t) (6)

where « is the value of the recurrent connection,
H the Heaviside function and Wizl(‘;gz’l)
negative weight (a motor activation resets the IG
group).

The effective timing of the transitions has also to be
learned (in case of an alone reproduction): a condi-
tioning (LMS, eq 3) rule also permits this learning
on IG-MO connections. Then, MO neurons simply
sum 2 incoming informations (eq 7): the IG activ-
ity, which is enough to trigger activation, when it
overcome a fixed threshold 2 and the partially in-
hibited perception (from Input group), which level
is not enough to overshot the threshold.

a strong

Pot}'© =3 (W% - Actf + WP - Acty™™)  (7)

J

1 if Pot™°(t) >
0 otherwise

Actyo(o) = { )
If a given action is perceived after its prediction,
then it will increase the potential of the correspon-
dent MO neuron, overshooting earlier the threshold:
the system accelerates. Perception is then acting as
an addition of energy on the system, triggering ear-
lier the corresponding action. Between two systems

2alone, the system is able to reproduce a learned sequence
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Figure 4: Left: ND neurons permits to inhibit a given input. The triggering information comes from the
corresponding PO neurons, firing if the corresponding event is implicated in the production of a sequence.
Right:The Motor group (MO) triggers the motor output when integrated prediction overshoot a given
threshold. If an input information (also integrated) happens during the integration of prediction, the
summing potential of MO reach the threshold early: the system accelerate.

producing the same sequence, the effect of connect-
ing action to perception induces a step by step ad-
justment of the sequence production until synchro-
nization. Simulations where realized according to
two experimental protocols. A first series of experi-
ments tests the synchronization of our architecture
with a given teacher. This “teacher” is a simple
generator of time fixed sequences (without adapta-
tion). Once the sequence is learned, we compare the
system and the teacher’s production triggered at a
random instant. In a second series of experiments,
two systems are used. Both have learned the same
sequence (from a fixed sequence generator). Both
systems are switched on at random instants. Each
architecture is a separate application, running un-
der PVM 3. For both experiments, synchronization
is an attractor of the interactions. The conditions
and speed of convergence toward this attractor are
directly dependant of the detailed equations. Syn-
chronization is here an example, of a stable state
which can be obtained by controlling parameters
and equations of the systems forming parts of the
whole dynamic.

3 The dynamic of the interac-
tion can carry useful infor-
mations

In (Andry et al., 2000), we show how the “ transi-
tion learning and prediction” network can be used

3PVM, (Parallel Virtual Machine) is a software to create
a virtual machine from a set of computers

to extract relevant information from the dynamic of
the interaction. The application concern the learn-
ing of a set of arbitrary associations. In a simple
association problem, sensory input as to be learned
associated to a given motor response (inputs and
outputs are coded by a single neuron). The use of
reinforcement rules permits to change the values of
the weights, in order for the system to learn the
good associations. But what happen if the system
does not have access to any explicit reinforcement or
reward value? In a dynamical process of interaction
(exchange of “motor” actions) between human and
machine, we show that our architecture can build
a non explicit reinforcement value from the rhythm
of the game. The system discover by itself the rein-
forcement information in the data flow which is only
a temporal series of inputs. The prediction mecha-
nism (see (Andry et al., 2000) for more details and
equations) can be used to build an internal reward
efficient enough to control a simple reinforcement
learning mechanism. The network learns the time
delay between 2 keys pressed of the teacher. Once
the delay is learned (after the second action of the
game) the system is able of maintaining a temporal
prediction of the next key pressions.

By matching the prediction information on the
incoming signal, we obtain a reinforcement value,
used to modulate dynamically the learning of a set
of the associative network. Fig 7 shows a whole
trial, with the input train of the human key ac-
tivations. For each one, the system gives a re-
sponse (randomly at start).Then, it learns from the
teacher’s behavior. Interruptions in the human play
are visible, and the middle graph shows the suc-
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Figure 5: Interaction between two systems: Upper
graph shows the synchronization phase of our sys-
tem (grey) on a constant producing teacher(black).
Lower graph shows the very quick synchronization
between two similar systems (grey and black). A
small perturbation occurred at nearly iteration 730,
due to the temporary loss of messages between sta-
tions (via PVM). Perfect synchronization is quickly
recovered
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Figure 6: Activity of PO and IG cells during the
production of a sequence: PO cell fires for a tran-
sition. The maximum of its potential generates an
activation spike.This spike will be integrated (IG),
until the overshot of the MO neurons threshold,
triggering the motor activation.

cess/error information extracted by the prediction
system. Experiments lasts about 4 minutes. The
network always succeeds to learn the 3 good asso-
ciations. Most of the time, an experiment starts

with wrong presentations associations due to the
random weights initialized on the network links,or
wrong learned ones. This explains the numerous
player’s breaks (Fig 7, right). Here the system is ca-
pable of detecting novelty (a non expected rhythm
break) in the way the teacher “plays”. In further
robotics implementations, we will try to extend this
concept of novelty, which can be present in tempo-
ral contingencies, but also in the signal itself. This
could help to “locate” important events or, to learn
properties on objects or surrounding entities. This
interest for novelty could motivate the reproducing
of the behavior, and lead the learning process of our
robots.

4 Conclusion

The imitative actions of our system are all based
on an homeostatic principle. The variations of the
perceptive flow are interpreted as a signal of error.
In an effort to reduce the signal of error, the sys-
tem induces an imitative behavior. We believe that
this simple principle can be useful to build systems
that are really able to process in an autonomous
way different levels of imitation problems, such as
following a path, reproducing the movement of an
arm, or imitating complex actions like opening a
door, cooking, or building a complex machinery.
Another distinctive feature of the homeostatic prin-
ciple is to generate predictions about future per-
ception of action. If the system is able to predict
correctly every next event, the equilibrium regime
is achieved, thus suggesting the end of the learning
phase. When the system has to perform the im-
mediate imitation of an already learned behavior,
uncoupling perception and action appeared to be
decisive in that this uncoupling prevents perceptive
interferences. Although current assumption under-
lying robotic works on imitation is that distinctive
capacities should characterize teacher and imitator
systems, our model shows the interest to implement
the two systems with similar basic imitative capac-
ities. Indeed, if the two systems come to perform
a similar action, this induces a phase lock on this
action, which will facilitate further introduction of
turn-taking and learning from each other.

In this work, the collaboration with a psycholo-
gist has been crucial, since we have tried to repro-
duce some of the fundamental properties of young
infant imitation capabilities such as the immedi-
ate imitation. We have discovered that immedi-
ate imitation was much more complex than previ-
ously thought and that its double role in learning
and communication was of a very high importance
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Figure 7: Top: Example of a 20 seconds experiment scenario. Upper graph: Each pulse indicates when
the teacher press a key. A constant rhythm is maintained for the first five strikes (time period = A),
then is broken. Middle graph: Pulses show the system’s binary prediction of the teacher’s play. The
stars indicate a prediction error due to the break. Bottom graph: activity of the PO cell. Maximums of
activity trigger pulses of prediction. After the rhythm break, the new delay, B, is learned. Bottom: The
learning process during a whole experiment. Upper graph: action frequency of the human player. Middle
graph: variation of the reinforcement signal according to the rhythm prediction. These reinforcement
variations act on the update of the associative weight. Bottom graph: Evaluation of the learning level. A
well learned association gives 1 point, an unlearned one gives 0 point while a bad learned one subtracts

1 point.

for robot learning. The idea that an autonomous
system could generate by itself its own reward and
avoid the need of an explicit reward signal also come
from psychological studies. Indeed, we believe that
when babies prefer to look at a screen presenting
their mother interacting with them in real time in-
stead of the delayed video of their mother, it means
something very important about the kind of infor-
mation babies use to detect the adequation of their
behavior with their care-givers.

Finally, we are interested in the idea that imi-
tation capabilities could be progressively build-up
from very simple sensory-motor schemes, since it
would promote important advances in man-machine
interface and robot learning. Moreover, a robot
could be considered as a good heuristic tool to pro-
pose new behavioral therapies. Modeling the con-
ditions which are necessary to imitate is expected
to suggest computerized monitoring aimed at stim-
ulating the adequate level of imitation achievable,
given the present imitative capacities in children
with autism, who are supposed to face problems
with human models. Our future works will focus
on real size robotic experiments using mobile robots
with mechanical arms. We will have to understand
how to add in our neural model structures allow-
ing to learn categories of actions at the program

level. We hope the developed architecture will be
able to exhibit different phases of developments that
we will be able to compare with babies development.
Hence, we will perhaps be able to help in the un-
derstanding of mental development problems like
children with autism: is autism linked to a theory
of mind problem ? or is it linked to a more sensory-
motor level or to some problem in the management
of novelty detection or the capability to mobilize
or express internal states ? This kind of question-
ing is perhaps strange for engineers since we know
we are really far away from building non autistic
robots. But, It is clear that all the new results in
psychology and neuro-imagery will be of high in-
terest to improve current robot controllers. At the
same time, robotics experiments appear more and
more as a new way to perform synthetic simulation
of psychological and neurobiological models and are
promised to an important development in the field
of cognitive sciences.

A Notations
Wf((ikl’)m ) stands for the weight of the connection
between the neurons of A and B groups. 4,l,k,m
indicates precisely the position (line and column) of



the neuron in the group.
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