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Abstract. We present an arti�cial neural network used to learn online
complex temporal sequences of gestures to a robot. The system is based
on a simple temporal sequences learning architecture, neurobiological
inspired model using some of the properties of the cerebellum and the
hippocampus, plus a diversity generator composed of CTRNN oscilla-
tors. The use of oscillators allows to remove the ambiguity of complex
sequences. The associations with oscillators allow to build an internal
state to disambiguate the observable state. To understand the e�ect of
this learning mechanism, we compare the performance of (i) our model
with (ii) simple sequence learning model and with (iii) the simple se-
quence learning model plus a competitive mechanism between inputs
and oscillators. Finally, we present an experiment showing a AIBO robot,
which learns and reproduces a sequence of gestures.

1 INTRODUCTION

Our long term goal is to build an autonomous robot able to learn sensorimotor
tasks. Such a system should be (i) able to acquire new �behaviors� : gestures,
objects manipulation as sequences combining multimodal elements of di�erent
levels. To do this, an autonomous system must (ii) take advantage of information
of the associations between vision and motor capabilities. This paper focuses es-
sentially on the �rst point : learning, predicting and reproduction of complex
sensorimotor sequences.
In this scope, solutions based on neural networks are an interesting solution. Neu-
ral networks are able to learn sequences using associative mechanisms. Moreover,
these networks o�er a level of coding (neuron) that takes into account informa-
tion about the lower sensorimotor system; such systems avoid the use of symbols
or information that could separate the sequence learning component from the
building of associations between sensation and action. Networks are adapted
to online learning favoring easier interactions with humans and other robots.
Among these models, chaotic neural networks are based on recurrent network
(RN). In [1], a fully connected RN learns a sequence thanks to a single layer of
neurons. The dynamics generated by the network help to learn a short sequence.
After a few iterations, the learned sequence vanishes progressively. In [2], a ran-
dom RN (RRN) learns a sequence thanks to a combination of two layers of
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neurons. The �rst layer generates an internal dynamic by means of a RRN.
The second layer generates a resonance phenomenon. The network learns short
sequences of 7 or 8 states. But this model is highly sensitive to noises or the
stimulus variations and does not learn long periods sequences. A similar model
is the Echo States Network (ESN) based on RRN for short term memory [3]
(STM). Under certain conditions (detailed in [4]), the activation of each neuron
in the hidden layer, is a function of the input history presented to the network;
this is the echo function. Once again, the idea is to use a �reservoir� of dynamics
from which the desired output is learned in conjunction with the e�ect of the
input activity.
In the context of robotics, many models concern gesture learning. By means of
nonlinear dynamical systems, [5] develops control policies to approximate the
recorded movements and to learn them with a �tting of mixture model using
a recursive least square regression technique. In [6], the trajectories of gestures
are acquired by the construction of motor skills with a probalistic representation
of the movement. Trajectories can be learnt through via points [7] with parallel
vector-integration-to-endpoint models [8]. In our work, we wish to be able to re-
use and detect subsequences and possibly, combine them. Thus, we need to learn
some of the important components of the sequence and not only to approximate
the trajectory of the gesture.
In this paper, we present a biologically inspired model of neural network for
temporal complex sequences learning. A �rst approach described in [9] proposes
a neural network for the online learning of the timing between events for simple
sequences (with non ambiguous states like �A B C�). We propose a model for
complex sequences (with ambiguous states like A and B in �A B A C B�). In or-
der to remove the ambiguous states or transitions, we use batteries of oscillators
as a reservoir of diversity allowing to separate the inputs appearing repeatedly
in the sequence. In section 3, we show results from simulations comparing the
performances of 3 di�erent systems involved in the learning and reproduction
of the same set of complex sequences : (i) the system described in [9], (ii) this
system plus a simple competitive mechanism between the oscillators and the
input (showing the e�ect of adding internal dynamics in order to separate am-
biguous states) and (iii) a system optimizing the use of the oscillators by using
an associative learning rule in order to recruit new internal states when needed
(repetition of the same input state). Section 4 details the application of our
model on a real robot for the learning of a complex gesture. Finally, we conclude
and point out some open problems.

2 A MODEL FOR TIMING AND SEQUENCE

LEARNING

The architecture (Fig. 1) is based on a neurobiological model [10] inspired from
some of the properties of the cerebellum and the hippocampus. This model
uses associative learning rules between past inputs memorized as a STM and
present inputs in order to learn the timing of simple sequences. �Simple� refers
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here to the sequences in which the same state appears only once. The main
advantage of this model is that the associative mechanism also learns the timing
of the sequence, which allows accurate predictions of the transitions that compose
the sequence. In order to learn complex sequences in which the same state is
repeated several times, in our model we have added a mechanism that generates
internal dynamics and that can be associated with the repeated inputs of the
sequence. The association between the repeated inputs and di�erent activities
of the oscillator allows to code hidden states with di�erent and un-ambiguous
patterns of activities. As a result, our architecture manages to learn/predict and
reproduce complex temporal sequences.

Fig. 1. Complex sequences learning model. Barred links are modi�able connexions. The
others are associated to unmodi�able connexions. The left part is detailed in �gure 3.A
and 3.B. The right part is detailed in �gure 4.

2.1 Generating internal diversity

Oscillators are very much used in robotic applications like locomotion using
central pattern generator (CPG) [11]. An oscillator is a continuous time recurrent
neural network (CTRNN) composed of two neurons (Fig. 2.A). The study on
CTRNNs can be found in [12]. This kind of oscillators is known for stability, and
resistance to the noises. CTRNN are easy to implement too. A CTRNN coupling
two neurons produces an oscillator (Fig. 2.B) :

τe.
dx

dt
= −x+ S((wii ∗ x)− (wji ∗ y) + weconst

) (1)

τi.
dy

dt
= −y + S((wjj ∗ y) + (wij ∗ x) + wiconst) (2)

with τe a time constant for the excitatory neuron and τi for the inhibitory neuron.
x and y are the activity of the excitatory and the inhibitory neuron respectively.
wii is the weight of the recurrent link of the excitatory neuron, wjj the weight
of the recurrent link of the inhibitory neuron. wij is the weight of the link from
the excitatory neuron to inhibitory neuron. wji is the weight of the link from the
inhibitory neuron to excitatory neuron. weconst and wiconst are the weights of the
links from the constant inputs. And S is the transfer function of each neuron.
In our model, we use three oscillators with τe = τi.



4

A. B.

Fig. 2. A. Oscillator model. Left neuron is excitatory and right neuron is inhibitory.
Excitatory links are : Wii = 1, Wjj = 1, Wij = 1. Inhibitory links is : Wji = −1,
Constant input value is equal to 1 with constant links Weconst = 0.45 and Wiconst = 0.
Initial activities of neurons are X(0) = 0, Y (0) = 0.
B. Display of the instantaneous mean frequency activity of 3 oscillators systems with
τ1 = 20 (plain line), τ2 = 30 (long dashed line), τ3 = 50 (short dashed line).

2.2 learning of internal states

In order to use repeatedly the same input in a given sequence, di�erent con�gu-
rations of oscillators can be associated with the same input. To understand the
generation of diversity and its implication in our learning algorithm, we have
tested two mechanisms : a simple competition coupling input states with oscil-
lators (Fig. 3.A) and an associative mechanism based on a learning rule (Fig.
3.B) that recruits neurons according to the activities of the oscillators and the
repeated inputs.

Competitive mechanism The competition is computed as follow : each neuron
ij of the Competition group acts as an neuron performing the logical operator
AND between the neurons of the Inputs group and of the Oscillators group :

Potij = (winputi ∗ xinputi + woscij ∗ xoscij )− thresholdij (3)

with winputi = 1, woscij = 1, thresholdij = 1.2, xinputi the activity of the input
at index i and xoscij

the activity of the oscillator at index j.
In a second step, a competition between all neurons ij of the Competition group
is applied :

Winnerij =
{

1 if ij = Argmaxij(Potij)
0 otherwise (4)

The winner neuron becomes the input of the temporal sequence learning network
(subsection 2.3). In this way, a �reservoir� of oscillator neurons can be used as a
way to associate the same input with di�erent internal patterns. Intuitively, the
simple competition (no learning is required here) allows to directly select di�er-
ent �internal� states corresponding to the same input repeated many times in the
sequence. For example in Fig. 3.A, each input (A,B,C,D) can appears up to 3
times (corresponding to the number of oscillators) in the same sequence. More-
over, such a mechanism does not disturb the prediction nor the reproduction
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of the sequence. Obviously, if the competition between oscillators is an avenue
worth exploring, it is still possible to have ambiguity. An input can be associated
with same winner oscillator two or more times. Consequently, there is still poten-
tial ambiguities on the �internal� states of our model, and some sequences could
not be reproduced correctly. A precise measure of this problem corresponds to
the probability that the same state can be associated with the same oscillator
several times and therefore the �internal� state partially depends of the shape,
phase and number of oscillators. Typically, the problem happens when a given
state comes back with the same frequency as the selected oscillator. The curves
C2 and C3 on �gure 5 show the performances of the competitive mechanism. To
solve this problem, an associative mechanism allowing to recruit neurons coding
�internal� states has been added.

A. B.

Fig. 3. A. Model of the neural network coupling an input state with an oscillator. All
links are �xed connections. B. Model of the neural network used to associate an input
state with a con�guration of oscillators. Only few links are represented for the legibility.
Dashed links are modi�able connections. Solid links are �xed connections.

Associative mechanism The learning process of an association between an
input state and a con�guration of oscillators is :

US = wi ∗ xi (5)

with wi the weight of the link from input state i, and xi activity of the input
state i. If US > threshold, we compute the potential and the activity of the
neuron as follow :

Potj =
Mosci∑
j=0

|(wj − ej)| Actj =
1

1 + Potj
(6)

with Mosci the number of oscillators, wj the weight of the link from oscillator j,
and ej the activity of the oscillator j. The neuron that has the minimum activity
is recruited : Win = Argminj(Actj). Initial weigths of connexions have high
values. The oscillators con�guration is learnt according to the error of distance
∆wj = ε(ej − wj) with ε a learning rate, wj weight of link from Oscillator j,
and ej activity of oscillator j. The Associations group becomes the new input
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of the temporal sequence learning network (subsection 2.3). As showed on the
�gure 3.B, an input allows recruiting 3 di�erent neurons coding �internal� states.
They correspond to the connectivity of the unconditional links chosen between
the Inputs group and the Association group. The associative mechanism ensures
to recruit a new �internal� state for each input (A, B, C or D) from the sequence.
The connectivity of links between the Input group and the Association group,
has been chosen to have a number of hidden states equal for each input. This
allows the comparison between the di�erent models in our simulations. But it
could be possible to change the connectivity of the links to allow the recruitement
of more hidden states for each repeated input in the sequence. We have tested
this mechanism in our architecture in simulation and robotic application.

2.3 Temporal sequences learning

Fig. 4. Representation of hippocampus. Entorhinal Cortex (EC) receives inputs and
transmits them to Dentate Gyrus (DG) and CA3 pyramidal cells. Between the DG
group and the CA3 group there are fully connected with modi�able connections. Be-
tween the EC group and CA3 group, and the EC group and DG group, there are �xed
one to neighborhood connections.

This part of model is based on a schematic representation of hippocampus [10]
(Fig. 4). DG represents past state (STM), and develops a temporal activity
spectrum. CA3 links allow pattern completion and recognition between incoming
state from EC and previous state maintained in DG. We suppose the DG activity
can be modelled as follow :

ActDG
j,l (t) =

1
mj
· exp− (t−mj)

2

2 · σj
(7)

with ActDG
j,l the activity of the cell at index l on the line j, t the time, mj a time

constant and σj the standard deviation. Neurons on one line share their activity
in the time and represent a temporal trace of EC. Learning of an association is
on the weights of links between CA3 and DG. The normalization of the activity
coming from DG neurons is performed due to the normalization of the DG-CA3
weights.

W
DG(j,l)
CA3(i,j) =


ActDG

j,l∑
j,l

(ActDG
j,l )2 if ActDG

j 6= 0

unchanged otherwise
(8)

Interestingly, this model has the property to work when a same input comes
several times continously. Thanks to the derivative group EC, a repeated input
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is stored during the total time of its presence. Consequently, two successive states
are not ambiguous for the system (�A A� = �A�).

3 SIMULATION RESULTS

A temporal sequence of states is rarely replayed two times exactly with the same
rhythm. Time can vary between two states especially when demonstrating a se-
quence to a robot. In our simulations we apply a time variation between states
and observe the consequences on three architectures. The �rst architecture is
the model of simple sequences learning presented in subsection 2.3. The second
is the same model plus the competitive mechanism presented in subsection 2.2.
The third architecture is the same as the �rst one plus the associative mecha-
nism (Fig. 1) seen in subsection 2.2. References sequences are generated to be
successfully reproduced by the second architecture with a timing variation of
0%. All architectures are trained with the same sequences and the same maxi-
mum of timing variation (0%, 5% or 10%), but with a time variation randomly
chosen between 0 and the maximum variation of the time. In our experiments,
to bootstrap a sequence, we provide the �rst state. Consequently, this state will
not be ambiguous in the sequences. For example, a complex sequences can be
�D B C B A C A B� : �D� is the starting state and it will not be repeated after.
Fig. 5 shows the performances of each architecture. We can see that the �rst ar-

Fig. 5. C1 : �rst architecture : simple sequences learning. The results are the same with
time variation of 0%, 5% and 10%. C2 : second architecture : complex sequences learn-
ing with a competitive mechanism and a time variation of 5%. C3 : second architecture :
complex sequences learning with a competitive mechanism and a time variation of 10%.
C4 : current architecture : complex sequences learning with an associative mechanism.
The results are the same timing variation of 0%, 5% and 10%.

chitecture (subsection 2.3) has very good performances with sequences of 3 and
4 states, because those sequences have no repeated states (simple sequences).
With sequences having more than 4 states, the performances fall drastically ,
because there is at least one state repeated in the sequences. We can see the
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time variation has no e�ect on the performances. The architecture can not re-
produce them, because CA3 group learns two transitions and, thus it predicts
two states for each repeated input. The second architecture using competitive
mechanism, has better performances, but, as we have seen previously in subsec-
tion 2.2, ambiguous internal states can appear and reduce this gain of sequences
correctly reproduced. Consequently, like the �rst architecture, the CA3 group
learns two �internal� states and, thus, it predicts two states from one input re-
peated. We can see, the performances change according to the timing variation
between states in the sequences : a same input from a given sequence can be
associated with two di�erent oscillators and, consequently a di�erent �internal�
state wins. Thanks to the recruitment mechanism, the third architecture, has the
best performances : 100% with all tested sequences. There are not ambiguous
states or �internal� states. The time variation has no e�ect on the performances
of the model.

4 ROBOTIC APPLICATION

A. B.

Fig. 6. A. Representation of desired sequence. It begins from the start point. B. We
manipulate Aibo passively. It learns the succession of orientations of the movement
from these front left leg motor information.

The robot used in our experiments is an Aibo ERS7 (Sony). In our appli-
cation, we use only the front left leg, in a passive movement mode to learn a
sequence of gestures. The sequence to be learned and reproduced is showed Fig.
6.A. In this application, we test the third architecture previously described.
During learning, we manipulate the front left leg of the robot passively (Fig.
6.B). During the execution of the movement, the neural network learns online,
and in one shot the succession of the joints orientation thanks to the motors
feedback information of its leg (proprioceptive signal). Hence, the inputs of our
model are the orientations/angles of the leg. The recorded motors information
while learning are shown in Fig. 7.X-learning (horizontal movements) and Fig.
7.Y-learning (vertical movements).
To initiate the reproduction of the sequence by the robot, we give the �rst state
of the sequence (�down�). As Aibo can not be manipulated when motors are
activated, we send the command directly to the robot. Next, Aibo plays the se-
quence autonomously (Fig. 7, top). With the starting state, our model predicts
the next orientation and send the corresponding command to the robot.
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X-learning Y-learning X-reproduction Y-reproduction

Learnt gesture Reproduced gesture

Fig. 7. Top : Aibo reproduces the learnt sequence. Middle : X-learning and Y-learning
are respectively the horizontal and the vertical motors information while robot learns
the sequence. X-reproduction and Y-reproduction are respectively the horizontal and
the vertical motors information during the reproduction of the sequence. On the �gure
Y-reproduction, the �rst movement is not reproduced (not predicted), but given by the
user in order to trigger the recall it is our bootstrap state to start the sequence. X-axis
are the time and Y-axis are the angles of the motors.
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5 CONCLUSIONS AND DISCUSSIONS

We have proposed a model of neural network for the learning of complex tempo-
ral sequences. This model introduces an associative mechanism taking advantage
of a diversity generator composed of oscillators. These oscillators are based on
coupled CTRNN. This model is e�cient in the frame of autonomous robotics
and succeed in learning in one shot the timing of sequences of gestures.
During the robotics application, we have noticed that the robot reproduces the
sequence with a di�erent amplitude of the movement. This e�ect comes from
the speed of the displacement of the leg of Aibo. In our application, the speed of
the reproduction is a prede�ned constant di�erent from the user dynamic during
learning. The rhythm of the sequence is respected thanks to atemporal group of
neurons. A possible improvement would be to add a model like CPG [5] for each
movements (�up�, �down�, �left� and �right�) composing sequences with variable
speeds. In our model, the number of neurons coding the associations between
the inputs and the oscillators, represents the size of the �short term memory�. In
our simulations and application, the sequences learnt do not saturate the �mem-
ory�. It would be interesting to analyze the behavior of the neural network with
longer sequences, and test the limitations of the system when the neural limit
has been reached by the recruitment mechanism. In the present system, it would
mean that the already recruited neurons could be erased in order to encode new
states.
In further works, this sequence learning model will complete a model for imita-
tion based on low level sensorimotors capabilities and vision [13]. In this way,
the robot will learn sensorimotors capabilities based on its vision and learn a
demonstrated gesture from human or robot by imitation and reproduce it.
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