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1 Introduction

In this paper, we will study how an autonomous
robot can learn Perception-Action (PerAc) associ-
ations based on visual information in order to nav-
igate in environments of growing complexity (num-
ber of shapes to be analyzed). The starting point is
the fact that an association problem (Barto & Sut-
ton, 1981) with a delayed reinforcement signal is NP-
complete (Littman, 1994) and so impossible to solve
in a general case. However, roboticists have develop
a number of tricks to overcome this difficulty. Those
“shaping” techniques consist in dividing the learning
problem into subproblems which are simpler to learn
by the system (Chapman & Kaelbling, 1991).

Figure 1: a) The maze used in our perception-action associ-
ation learning experiment. b) Prototype of the Koala robot.

In the first part of the paper, we describe how us-
ing an unsupervised neural architecture may allow a
robot to learn PerAc associations in order to reach a
goal in a maze. We show that the solution is limited
to images containing only one potential element. For
more complex images, with several possible objects
to be associated, we propose to use robotic shaping
techniques (Lin, 1992; Thrun & Mitchell, 1995). In
section 3, we show how a teacher can make a robot
learn to discriminate the relevant shape in a scene
containing several distractors. It could be seen as a
“shaping” solution to the categorization problem en-
countered during the maze task. Conversely, in sec-
tion 4, we tackle a goal reaching problem in an open
environment and we show how “shaping” techniques
can be avoided. In conclusion, we discuss why this
last navigation problem which seems to be more com-
plex than the maze problem (there are more degrees
of freedom) has in fact been solved very simply with-
out shaping technique. We will show that neurobio-

logical and psychological evidences about the brain
functionalities can be very helpful to avoid combina-
torial explosion and to find a good manner for the
combination of information extracted from a visual
scene.

2 Delayed conditioning with
simple stimuli

In this experiment, the robot goal is to find an ob-
ject in a maze (fig. 1) using visual patterns it sees
along its route. The problem is not to plan the
best route to reach the object but to learn how to
assoclate seen patterns with the most appropriated
movements. Because of combinatorial explosion, the
number of movements must be restricted to only 3
actions: go ahead, turn left 90 degrees, turn right 90
degrees.

In a real environment, the robot tends to deviate
from its ideal trajectory and the 3 selected move-
ments cannot allow to correct the trajectory. In or-
der to stay in the middle of the corridor, during the
execution of a “go ahead movement” | the robot must
be able to turn slightly right or left. As the environ-
ment is structured (only corridors and T junctions),
a corridor following reflex can be implemented using
information on the location of the vanishing point in
the image (see (Gaussier et al., 1996)). This reflex
could also have been learned as a simple conditioning
problem (learning the correct association scheme in
order not to collide with the walls). Our architecture
supposes that a first level of shaping has already been
performed and that its result 1s included in the back-
ground of the architecture of the robot controller.
Roughly speaking, the basic architecture of a PerAc
system (see (Gaussier & Zrehen, 1995) and Fig. 2)
must then include a reflex level and a learning level
which can choose between different reflex actions.

In the maze experiment, the reinforcement signal
only occurs when the robot reaches the goal or when
a given limit time has been elapsed (see appendix for
details about our Probabilistic Conditioning Rule -
PCR). “Pictograms” indicating movements to per-
form are represented by spatial oriented frequen-
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Figure 2: The basic architecture (PerAc block) for
perception-action associations. The Visual Output group
(VO) learns the Visual Input (VI). The Robot Motor output
(RMO) learns to associate VO to an action or use directly the

Reflex Motor Input (RMI).

cies that can be easily detected using Gabor filters
(fig. 3). For instance, “turn left” arrows are repre-
sented by vertical stripes while “turn right” arrows
are coded by horizontal stripes.
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Figure 3: a) Tmage of a pictogram representing a turn-left
arrow b) the detection obtained using Gabor filters.

In that case, the segregation process is immediate.
The conditioning algorithm works well because there
is only one pattern at a time. Practically, the solu-
tion to the maze problem is found quickly if there
are not more than 3 or 4 pictogram categories. This
condition is respected first due to Gabor filtering and
also because categories are coded on a Probabilistic
Topological Map (PTM - (Gaussier & Zrehen, 1994;
Gaussier et al., 1996; Zrehen, 1995)). The interest is
that this map has topology preservation properties.
In fact, when two input patterns are similar they are
coded on neurons that are close to each other, and,
due to a diffusion mechanism, they involve the same
reaction. Thus, PTM allows to take “for free” the
continuity of the environment: discontinuities in the
perceptual flow are rare when movements are contin-
uous.

However, in a more complex environment, an im-
age taken with a camera (such as the image depicted
on fig. 4) cannot be analyzed simply. In fact it is
very difficult to find what 1s really relevant in a raw
image. A solution used in natural and artificial vi-
sion systems is to reduce the observed wvisual field
to a limited area around a focus of attention point.
In this case, it is very likely that relevant and non
relevant information should be separated. In order
not to lose a piece of information, several local views
must be analyzed. Because local view categorization
is unsupervised, it is not a priori possible to store
only the 3 relevant pictograms. All the local views
in the images can be stored in the PTM. In a shap-
ing perspective, a new neuron group should thus be
added between the local view categorization and the

action selection group. It should learn to associate
to a given neuron all the local views belonging to the
same pictogram. The problem is then to control this
association learning process.

Figure 4: a) Example of an image with a pictogram and 2
distractors. b) Sequential exploration of several focus points
(circles).

3 Immediate conditioning with
more complex stimuli

Finding which local views must be associated to a
particular action is not too hard a problem to be
solved when a teacher provides at each time step a
reinforcement signal indicating whether the move-
ment is correct or not. At first, we will consider
that all the explored local views in the perceived
image are relevant for the PerAc associations to be
learned. According to the sign of the immediate re-
inforcement signal, the winner neuron in the motor
group can be associated with or dissociated from
all the local views. A first problem is that neu-
rons in the motor group must learn according to the
effective robot action (i.e., the action proposed in
the buffer group at the end of the exploration se-
quence). Otherwise, learning would have no sense
since the reinforcement signal would not be associ-
ated with the neuron involved at last. Thus, at the
end of the exploration sequence, after the action has
been performed, the result of the buffer is forced on
the neurons of the RMO1 group (Fig. 5, opening
of the learning gate). When the reinforcement sig-
nal occurs, the robot learns associations between the
time integrated input (the different visual recogni-
tions (VO) created during the exploration of the fo-
cus points) and the effective output (the max of the
Motor Output (RMO1) which is in the buffer).

A first possibility to link a given perception to a
particular action is to keep the action corresponding
to the best recognized local view in the input image.
Unfortunately, the best recognition in a visual scene
may not be relevant for the robot movements. For
instance, on Fig. 4 the best recognized local view can
be centered on the sheet of paper on the floor and not
on the “right arrow”. Indeed, during the recognition
process, the robot focuses its attention on several
feature points (the corners). Thus, the choice of the
winner must not be performed at the level of visual
recognition (the Visual Output group:VO). On the



contrary, it must take into account whether there
is a possibility to link the recognition to an action
or not. The N.N. mechanism involved in the image
recognition is represented on Fig. 5.
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Figure 5: Simplified neural implementation. The robot
first learns to build simple perception-action categories RMO1
(Robot Movement Output 1) based on the recognition of vi-
sual shapes VO (visual output) and based on a constant reflex
mechanism RMI’ that facilitates the activation of the neuron
associated with go “strait-ahead”. Next the robot uses RMO1
and the reflex to obtain RMO2

The conditioning must be performed at the robot
motor output group level (RMO1). RMOI1 repre-
sents the relevant information of VO according to
the motor aspect. In the RMO1 group, each neu-
ron is associated with a particular movement direc-
tion. A Winner Take All (WTA) mechanism allows
to choose the movement to perform. The Max oper-
ator tests if the WTA 1s more active than it has ever
been. So the best proposed movement is kept using
the Max operator (the maximum is reset after each
image exploration, i.e., after each robot move).

Thus, 1if the system has learned relevant
perception-action associations, the pictogram used
in the image will involve the correct action. The
presence of a distractor in the image will not involve
a movement because the link between any action as-
sociated with a distractor will be weaker than those
associated with relevant pictograms. Now we will see
how to learn those associations.
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Figure 6: Different movements done by the robot depending
on the recognized pictogram and of its position in the visual

field

On Fig. 7, we can see the evolution of learning
for two visual scenes where one distractor is present.
The problem is that the sheet of paper is not a rel-
evant shape. The views which should involve the
actions are the two arrows. The associative learning
is performed between VO and RMO1 (the learning
algorithm will be describe in the appendix).

Figure 7: Example of perception-action links evolution dur-

ing learning, a) t=0: correct association of the “right arrow”,
b) t=1: bad association for the “left arrow”, c) t=2: the robot

succeeds in performing the good association

The learning procedure can be divided in three
steps: First, the “turn right” arrow and the “sheet
of paper” are presented to the robot. By chance the
robot performs the correct action. It receives a pos-
itive reward so the “turn right” arrow and the dis-
tractor are associated with the “turn right” action
(fig. 7 a). Second, we present the “turn-left” arrow
and the “sheet of paper”. No association between an
action and the “turn left” arrow had been learned
yet, so the distractor involves the “turn right” ac-
tion. A negative reinforcement signal is emitted, the
distractor is dissociated from the “turn right” action
(fig. 7 b).Third, the “turn left” arrow and the dis-
tractor are presented once again. There is no link
between actions and the distractor or the “turn left”
arrow. The chosen action only depends on the out-
put neuron noise (which can be as low as we want).
In our case, by chance, the “turn left” action is the
most active , so a reward is given to the robot and
both “turn left” arrow and the “sheet of paper” are
associated with the “turn left” action (fig. 7 c). At
the end of the exploration sequence, we are sure that
only a single action is performed but we cannot be
sure it has been performed due to the correct reason.

This architecture has been experimented in a real
indoor environment where there is a pictogram. We
give the robot a penalty reward until it performs the
correct movement. For every wrong movement, we
put the robot again in front of the pictogram. In our
experiment, 8 focus points are analyzed (fig. 4b) and
3 actions can be performed. They are expressed in
egocentric coordinates. The real movement direction
is shifted according to the object position in the scene
(Joulain & Gaussier, 1996). The more interesting
result is the efficiency of this architecture to learn
relevant information. For instance, the local view
which involves the action on Fig. 6 is centered on
the arrow tip and not on a distractor.

According to shaping techniques, a process which
would learn relevant local views can be the solu-
tion for the maze problem in a complex environment.
This corresponds to adding a neurons group which
would allow to create motor categories that can be
used by the PCR algorithm (see Fig. 8). Yet, it
must be noticed that, in this case, relevant shapes
have already been learned during the first stage and
they have already been associated to movements.
The maze problem seems then artificial because it



reduces to reassign the associations between shapes
and movements.
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Figure 8: A two levels perception-action association archi-
tecture, RMO1 is used by RMO2 as if it is a sensory output.
Each level corresponds to the basic perception-action associ-

ation architecture.

4 Navigation in an open envi-
ronment

The navigation in an open environment may a pri-
ori seem also more complex. Indeed, if we keep the
approach developed in section 2 and 3, the problem
is not here to find a single object, but a set of lo-
cal views relevant for place recognition. This entails
that the robot should “understand” the objects in
its environment (for instance it must know if objects
can move). Yet, an animal introduced in a room
can learn how to reach a goal easily even without a
complete understanding of all the objects.

The PerAc architecture can be used to learn the
association between a perceived place (represented
by a set of local views and their angles in an ab-
solute or a relative referential) and the direction of
the movement allowing to reach the goal (Gaussier
& Zrehen, 1995) (see Fig. 10). But the way input
information is represented is crucial to reduce the
algorithm complexity. Indeed, if the system must
learn each position in the environment before being
able to navigate correctly, the learning time would
be huge and the robot would be unable to perform
topological generalization.
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Figure 10: The navigation neural network. SRO is the Scene
Recognition Output group. The Robot Movement Output
group (RMO1 & 2) are WTA.

To solve this problem, a new representation of a
given place (Global Visual Input group - GVI) is cre-
ated. The information corresponding to “what” and

“where” the objects are are merged in a representa-
tion (fig. 11) which is an algorithmic model of the
CA3 region in the hippocampus (a brain region in-
volved in the memorization and navigation processes
- (Banquet et al., 1996)).
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Figure 11: Detail of figure 10 which emphasizes recombina-

tion of visual and motor flow.

A simple vectors product or logical AND neurons
between VO and RMI1 information is used to cre-
ate such a group of neurons (GVI) which are only
activated if a particular landmark is recognized in a
particular direction. A time integration process al-
lows to suppress the sequential aspect of the scene
exploration (spatio-temporal fusion). With this rep-
resentation, there is no need to “recognize” specifi-
cally what the landmarks are (a fridge, a chair...), it
is only important to distinguish them and to know
their angular position. Even if a landmark is absent
(for instance if the fridge is removed), because the
“Image” of the scene (GVI) is noisy, the other land-
marks can allow a good recognition (we have shown
that several landmarks can be removed, hidden or
displaced without disturbing the global recognition
of the scene (Zrehen, 1995)).

As in the other PerAc blocks, the place representa-
tion (GVT) is learned by the Scene Recognition Out-
put (SRO) group (which is a PTM). If the robot
recognizes the goal, it moves in that direction (reflex
link between RMO1 and RMO2 on Fig. 10). Oth-
erwise, learned association between SRO and RMO?2
allows an efficient generalization to the rest of the
environment. Consequently, this process creates an
attraction region in which the robot always proposes
a movement that makes it come closer to the goal.
Moreover, it has been mathematically proved that
there was no local minimum induced by the compe-
tition between the action neurons within the domain
inclosed by the set of landmarks (Gaussier & Zrehen,
1995). So the navigation in an unknown environment
can be achieved without any complex learning mech-
anism (only associative learning). The meaning of
viewed objects is not really understood by the robot
(all the views associated to the same object are not
explicitly linked). However, the robot uses those lo-
cal views correctly, which is the most important and
question us about the internal representations of 3
dimensional shapes.



Figure 9: a) and b) Panoramic images referenced in Fig. 12
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Figure 12: Four views are learned (circles), others are as-
sociated with one of those learned (boxes). As we can see,
if the robot learn to reach the cross from each learned view
it can reach the cross from all the views. The set of arrows
represents a possible path. The views are in a 1.2m X 1.2m
area, the learned views are at 30 cm from the center. The
scale is not respected for the position of the different furniture

(in fact they are about 1.5 m from the center)

5 Conclusion

Shaping techniques are very important to build au-
tonomous robots which can learn to control them-
selves. Indeed, learning of associations at a particu-
lar level need the stabilization of the underlying lev-
els (to navigate in a maze, the robot must know how
to follow a corridor before using the “concept” of
corridor).

But, as we can see at the end of the section 3, a
direct shaping technique cannot be used to explain
animals capability to learn difficult PerAc associa-
tions in a maze. Indeed, no teacher can help them
to learn possible relevant shapes before being intro-
duced in the maze.

Besides, in section 4, we show that two simple
PerAc blocks push-pully connected are enough to
completely control a robot that must solve an open
environment navigation problem relying on visual
cues. Instead of creating an intermediate categoriza-
tion which seems impossible to realize, information of
the first PerAc block are merged in a spatio-temporal
representation before being categorized and associ-
ated with the movement that must be performed
to reach the goal. This mechanism could obviously
be used for the maze problem if perceived informa-
tion are diversified enough (rich enough) to allow the
discrimination of the maze situations. Otherwise,
odometry information should be added (like animals)
in the merged representation modeling a part of the
hippocampus processes.

In a cognitive perspective, we must admit that we
have not really solved the delayed association learn-
ing problem of an object in a complex scene. A mech-
anism which controls the scene analysis should be in-
troduced to reduce the number of potential interest-
ing objects. Indeed, a focus of attention mechanism
should be able to favor only the recognition of objects
that have been learned as being potentially interest-
ing according to the current system motivation. We
are currently tempting to model bottom-up preatten-
tive “pop out” mechanisms (Treisman & Sato, 1990)
and their top-down attentional counterparts. Hence
again, neurobiology and psychology can help us to
model this kind of dynamical shaping technique.

Experiments on a mobile robot is a good way to
test the behaviors involved by functional neurobio-
logical models of the brain and also to question neu-
robiologists and psychologists on the weak points of
their models. We think robotics experiments will
certainly become a very important simulation tool
for cognitive science whereas our biological results
can sometimes be a good inspiration for engineering
sciences.



A The PCR algorithm

In the case of a problem in which the reinforcement
is only given at the very end, when a local minimum
is encountered, no gradient information can be used
to find in which direction the association weights
(synaptic weights in the neural formalism) must be
modified. A solution commonly used is to increase
the global noise added to the output of the action
neurons but then the problem is that the robot will
tend to question the most used associations. The
probability of having no noise during the most fre-
quent situations and of having a maximal noise dur-
ing the rare and problematic association is very low!
Then, we choose to introduce diversity generators
(noise) on each synaptic weight.

PCR Algorithm

Activation rule
Act; = Max;(Wij - pij - I;) + noise )
{ 1if Act; = Maxg(Acty)
0; =

0 otherwise

Updating at each time step

1;;,0;; and 10;; updated according to Eq.:

< TX;(t) + X (1)

N+ = = @)

>¢ Probability updating

pij(t+ 1) = p;j (t§1—|o—jAp” (t) (3)
with:
f8(Wij) z{ i;fEVVJVTiO (4)
If Rnd >pi; and T1-0#0
then { VZZ z%:ZZZ (5)

I; is the input, Oj is the output.

noise is a random value as little as wanted.
P(t) is the global reinforcement signal.

o is the delayed conditioning learning rate.
£ is a constant fixed by the experimenter.
Rnd is a random value in [0, 1].

DPiy € [071]7 Wi] € {071}

The idea of this Probabilistic Conditioning Rule
(PCR) is to use an hypothesis long enough to test
its consequences and to decide if it needs changing.
This mechanism is performed by using in a simpli-
fied version binary weights to associate visual inputs
to the movements proposed at the output. Besides,
a certainty term is joined to each weight in order
to measure the confidence given to the association it
represents. When a reinforcement signal occurs, only

the confidence term is changed. Yet, a random draw
is done in order to change weights whose confidence
term is low. Such a mechanism brings the robot to
behave as if it was testing hypotheses (Levine, 1959).
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