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Development of First Social Referencing Skills:
Emotional Interaction as a Way to Regulate Robot

Behavior
Sofiane Boucenna, Philippe Gaussier, and Laurence Hafemeister

Abstract—In this paper, we study how emotional interactions
with a social partner can bootstrap increasingly complex behav-
iors such as social referencing. Our idea is that social referencing as
well as facial expression recognition can emerge from a simple sen-
sory–motor system involving emotional stimuli. Without knowing
that the other is an agent, the robot is able to learn some complex
tasks if the human partner has some “empathy” or at least “res-
onate” with the robot head (low level emotional resonance). Hence,
we advocate the idea that social referencing can be bootstrapped
from a simple sensory–motor system not dedicated to social inter-
actions.

Index Terms—Emotion, human–robot interaction, sen-
sory–motor architecture, social referencing.

I. INTRODUCTION

H OW can a robot or a human learn more and more
complex tasks? This question is becoming central in

robotics and psychology. In this paper, we are interesting in
understanding how emotional interactions with a social partner
can bootstrap increasingly complex behaviors. This study is
important both for robotics applications and development un-
derstanding. In particular, we propose that social referencing,
gathering information through emotional interaction, fulfills
this goal. Social referencing is a developmental process incor-
porating the ability to recognize, understand, respond to and
alter behavior in response to the emotional expressions of a
social partner. It allows an infant to seek information from
another individual and to use that information to guide his/her
behavior toward an object or event [43]. Gathering information
through emotional interactions seems to be a fast and efficient
way to trigger learning. This is especially evident in early stages
of human cognitive development, but also in other primates
[65]. Social referencing ability might provide the infant (or a
robot) valuable information concerning the environment and
the outcome of its behavior. In social referencing, a good (or
bad) object or event is identified or signaled with an emo-
tional message. There is no need for verbal interactions. The
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emotional values can be provided by a variety of modalities
of emotional expressions, such as facial expressions, voice,
gestures, etc. We choose to use facial expressions since they
are an excellent way to communicate important information
in ambiguous situations but also because their recognition can
be learned autonomously very quickly [12]. Our idea is that
social referencing as well as facial expression recognition can
emerge from a simple sensory-motor system. All our work is
based on the idea of the perception ambiguity. In this case, the
inability at first to differentiate our own body from the body
of other if the actions of the other are correlated with our own
actions. This perception ambiguity associated to a homeostatic
system is sufficient to trigger first facial expression recognition
and next to learn to associate an emotional value to an arbitrary
object. Without knowing first the existence of others, our robot
is able to learn to catch or avoid object not related to any direct
reward. Hence, we advocate the idea that social referencing
can be bootstrapped from a simple sensory-motor system not
dedicated to social interactions.
In the next section, we will show a developmental approach

of social referencing, where all the robot abilities such as the de-
velopment of facial expressions recognition (see Section V), the
association of emotional value to an object (see Section VII) and
finally the control of the arm according to emotional stimuli (see
Section VIII), are learned through interactions with its environ-
ment. Moreover, each ability can be learned autonomously and
online, and, the social referencing may emerge once all these
cognitive abilities have been learned. An important point is that
the sensory-motor architecture can resolve these differents tasks
based on a cascade of conditioning networks (see Section IV).

II. RELATED WORK
Many researchers emphasize that the emotions involve

“physiological arousal, expressive behaviors, and conscious
experience” [54] or, are important for survival [20], [22],
[45]. However, there are clearly no agreements on the under-
lying mechanisms. For instance, James and Lange [38], [44]
consider emotions as direct consequences of physiological
modifications in reaction to the interactions with the envi-
ronment. Cannon–Bard [8], [17] supports that emotion is the
result of a brain processing (centralist theory: physiological
changes are the results of the triggering in the brain of a
given emotional state). There is a wide spectrum of models,
mostly dedicated to address only one aspect of emotions. For
instance, if we focus on emotion expression then the opposition
will be between discrete models of emotions (facial action
coding system [26]) versus dimensional/continuous models
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of emotions that suppose any emotion may by expresses as
a point in a low dimensional space [66]. Classical models
of emotions consider either the communicational aspect of
emotions (for instance the emotions conveyed by the facial
expressions) or the second order control necessary for survival
purpose when the autonomy of the system is an issue. [32]
show the interdependence of communication and metacontrol
aspects of emotion. They propose the idea that emotions must
be understood as a dynamical system linking two controllers:
one devoted to social interactions (i.e., communication aspects)
and another one devoted to the interactions within the physical
world (i.e., metacontrol of a more classical controller).
Starting from the neurobiological substrate of the visceral

brain [60] (with the regulation loop connecting the thalamus, the
hypothalamus, the hippocampus, and the cingular cortex), we
would like to understand how basic emotions [62] can emerge
and become complex cognitive processes involving planning
and inhibition of action [20]. From this literature [2], [3], [15],
[21], [34], [59], [58], we know that a lot of structures are in-
volved even for the “basic” emotions. Yet, physical and so-
cial interactions are certainly not governed by independent con-
trollers and must share some common substructures. Moreover,
we want to investigate how emotions can bootstrap complex
tasks such as the social referencing [43], [65] and how an agent
(robot) can develop this cognitive task.
The development of social referencing skills implies the

recognition of emotional signals (providing a value to a stim-
ulus), the recognition of stimuli/objects and the ability to
perform some simple actions on these objects. Here, we will
suppose the existence of a very simple reflex pathway allowing
the simulation of pain and pleasure from an adhoc tactile sensor
(e.g. conductive1 objects). This signal allows the association of
objects with positive or negative values and next their grasping
or the avoidance according to a sensory-motor controller (see
Section X). One very difficult part is related to the facial expres-
sion recognition and to a lesser extends to object recognition
which is generally performed with specific algorithms.
In the field of image processing, solutions for the facial ex-

pressions recognition usually use algorithms to frame the image
around the face [69] before performing the expression recog-
nition. When these techniques involve some learning or opti-
mization, the problem of autonomous learning is not addressed.
Some methods are based on Principal Components Analysis
(PCA) and use a batch approach for learning (offline learning).
For example, the locally linear embedding (LLE) [48] and [74]
perform a dimension reduction on the input vectors. Neuronal
methods have also been developed for facial expression recog-
nition. In Franco and Treves [27], the network uses a multilayer
network with a classical supervised learning rule (again offline
learning from a well-labeled database). The designer must de-
termine the number of neurons that are associated with different
expressions according to their complexity. Other methods are
based on face models that attempt to match the face (see, for ex-
ample, the appearance model [5]). Yu [73] uses a support vector
machine (SVM) to categorize the facial expressions. Wiskott
[71] uses Gabor wavelets to code the facial features, such as
1Measure of the object conductivity: for positive objects,

for negative objects and for neutral objects (usual objects)
with no hidden resistor.

with ‘jets’. These features are inserted into a labeled graph in
which the nodes are “jets” and the links are the distances be-
tween the features in the image space (i.e., the distance be-
tween both eyes); the recognition is performed through graph
matching. Other sophisticated models compute head-pose in-
variant facial expression recognition from a set of character-
istic facial points [64]. However, all of these techniques use of-
fline learning and need to access the entire learning database.
They attempt to introduce a substantial amount of a priori anal-
ysis to improve the performances of the system. Moreover, the
databases are usually cleaned before use: the faces are framed
(or only the face is presented in the image), and human experts
label the facial expressions. Hence, the problem of online and
autonomous learning is usually not a relevant issue.
With respect to interactive robots, our focus on the online de-

velopment of interactive behaviors induces specific constraints
that are usually forgotten. Breazeal [14] designed Kismet, a
robot head that can recognize human facial expressions. Be-
cause of an interaction game between the human and the robot,
kismet learns to mimic the human’s facial expressions. In this
study, there is a strong a priori belief about what is a human
face. Important focus points, such as the eyes, the eye-brows,
the nose, and the mouth, are prespecified and thus expected.
These strong expectations lead to a lack of autonomy because
the robot must have specific knowledges (what is a human face)
to learn the facial expressions. Breazeal [14] manages a large
number of different sensory inputs and motor outputs, showing
that the diversity of sensory signals and action capabilities can
strongly improve the recognition performances and the accept-
ability of the robot as a partner. Other studies using robot heads,
such as Einstein’s robot [72], explore the process of self-guided
learning of realistic facial expression production by a robotic
head (31 degrees of freedom). Facial motor parameters were
learned using feedback from real-time facial expression recog-
nition from video. These studies are complementary to our ap-
proach because they show that learning to produce facial ex-
pressions can be accomplished by using the same approach as
the approach that we use for expression recognition.
More and more robotics studies are interested in using emo-

tions to regulate the robot behavior [14], [68], [39]. [46] and
[47] shows a social robot with empathic capabilities that acts
as a chess companion for children. The robot is endowed with
empathic capabilities to improve the relationship between chil-
dren and the robot. In this model, the robot needs to model the
childs affective states and adapt its affective and social behavior
in response to the affective states of the child. However, these
models have a number of a priori and they do not allow ac-
quiring generic models. In these experiments, the robots have
many degree of freedom but their adaptive behaviors are min-
imum. From our point of view, these studies don’t focus on the
development of cognitive capabilities; they are not interested
about how the robot can develop skills autonomously.
Contrary to all these studies, in the following sections, wewill

underline the robot’s ability to develop autonomous and online.

III. MATERIAL AND METHOD
Our social referencing experiment (see Fig. 1) uses the fol-

lowing set-up: a robotic head able to recognize and imitate fa-
cial expressions, and, a Katana arm able to interact with different
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Fig. 1. Experimental setup for social referencing. The robot relies upon the
use of its expressive head which is also able to recognize facial expressions. the
robotic arm will reach the positive objects and avert the negative objects after
emotional interactions with a human partner.

Fig. 2. Simplified model for social referencing. This model highlights the bidi-
rectional interactions. The emergence of the social referencing capability is pos-
sible only through the interaction with a human partner.

objects. One camera is turned toward the workspace where the
Katana arm can reach objects. In this experiment, we used two
cameras to simplify and to avoid the problem of alternating at-
tention. As a consequence, the robot (head, arm, and camera)
can interact with the human partner and can manipulate the ob-
jects. In this case, the robot can interact with the social envi-
ronment as well as the physical environment. In the developed
architecture, the robot learns to handle positive objects and to
avoid negative objects as a direct consequence of emotional in-
teractions with the social partner. This study shows that the emo-
tional interaction allows changing the robot emotional state in
order to regulate a robot’s behavior (communication of an emo-
tional state). We will attempt to highlight a developmental tra-
jectory where the robot learns skills such as the facial expres-
sions recognition, the face detection and the control of arm (vi-
suomotor learning). The autonomous learning of these abilities
allows the emergence of the social referencing.
For each skill, the visual processing is the same. The visual

attention on potentially interesting regions (or object/face) is

Fig. 3. Robot visual system uses a sequential exploration of the image. A gra-
dient extraction is performed on the input image ( pixels). A convolu-
tion with a difference of Gaussian (DOG) provides the focus points. At last, the
local views are extracted around each focus point. The visual features are: a) the
local log-polar transform increasing the robustness of the extracted local views
to small rotations and scale variations (its radius is 20 pixels). b) Gabor filters
are applied to obtain a more robust signature (the Gabor filters are ); the
features extracted for each convolution with a Gabor filter are the mean and the
standard deviation.

controlled by a reflex mechanism that allows the robot to focus
its gaze. The focus points are the result of a local competition
performed on the convolution between a DOG (difference of
Gaussians) filter and the norm of the gradient of the input image
(we use the same architecture for place and object recognition
[31], [50]). This process allows the system to focus more on the
corners and ends of the lines in the image. The main advantages
of this process over the scale invariant feature transform (SIFT
) [49] method are its computational speed and a smaller number
of extracted focus points. For each focus point in the image,
a local view centered on the focus point is extracted: either a
log-polar transform or Gabor filters are applied (see Fig. 3) to
obtain an input image or a vector more robust to the rotations
and distance variations.
The robotic head learns to recognize emotional facial expres-

sions autonomously [13]. The facial expressions learning can be
learned through an imitation between the robot and the human
partner. First, the robot internal emotional state triggers one
specific expression and the human mimics the robot face.2 The
robot can learn to associate its internal emotional state with the
human’s facial expression. The robot associates what it is doing
with what it is seeing. After two minutes of real time learning,
the robot is able to recognize the human facial expressions as
well as to mimic them.
After the learning of these capabilities, the eye-arm system

can learn visuomotor associations to reach several positions in
the workspace [4], [23] and appendix. A dynamic system is
used to smooth the trajectory [28]. This dynamic system uses
2In natural condition, [55] showed that the human resonates to the robot facial

expression. Here, the instruction was to mimic the robot head facial expressions
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Fig. 4. Sensory–motor architecture based on neural networks.

a reinforcing signal in order to reach or avoid a position in the
workspace. The signal can be either related to the reflex pathway
(object conductivity associated to positive or negative signals)
or learned through the association to an emotional signal; for
example, a joy facial expression will be associated to a positive
signal and an angry facial expression to a negative signal.
The tested scenario is the following: The robot is in neutral

emotional state, human displays a joy facial expression in the
presence of an object; consequently the robot moves to a joy
state and associates a positive value to the object. On the con-
trary if the human displays a negative facial expression (anger),
the value associated to this object becomes negative. The robot
arm can handle or avoid the objects according to their associated
emotional value. In other words, the emotional value associated
to the object becomes the reinforcing signal that the arm uses so
as to move. In this scenario, we attempt to emphasize the emo-
tional dimension. The emotion is a way to communicate with
the robot. The recognition of the emotional state regulates the
robot internal state and adapts the robot’s behavior to the envi-
ronment.

IV. PERAC ARCHITECTURE: AS A BUILDING BLOCK
In this section, we summarize the properties of the generic

sensory–motor architecture (PerAc architecture) used as a
building block in the following section (see Fig. 4). PerAc
learns sensory–motor conditionings [30] in order to form
a perception as a dynamical sensory–motor attractor. The
low-level pathway consists in reflex behaviors. The condi-
tioning pathway allows anticipating reflex behaviors through
the learning. This learning performs associations between the
recognition of sensory information (high-level) and the reflex
behavior (low-level).
For each focus point in the image, a local view centered on

the focus point is extracted (see Fig. 3). The extracted local view
around each focus point is learned and recognized by a group of
neurons (visual features) using a k-means variant that allows
online learning and real-time functions [42] called SAW (self
adaptive winner takes all)

(1)

(2)

is the activity of neuron in the group . is the Heav-
iside function3. Here, is a vigilance parameter (the threshold
of recognition).When the prototype recognition is below , then
a new neuron is recruited (incremental learning).

is the average of the output, and is the standard de-
viation. This model allows the recruitment to adapt to the dy-
namics of the input and to reduce the importance of the choice of
the vigilance . Hence, the vigilance can be set to a low value
to maintain only a minimum recruitment rate. The learning rule
allows both one-shot learning and long-term averaging. The
modification of the weights is computed as follows:

(3)

with , only when a new neuron
is recruited; otherwise, . Here, is the Kro-
necker symbol4, and is the adaptation rate for performing
long-term averaging of the stored prototypes. When a new
neuron is recruited, the weights are modified to match the
input (the term ). The other part of the learning rule,

, averages the already learned prototypes
(if the neuron was previously recruited). The more the inputs
are close to the weights, the less the weights are modified.
Conversely, the less the inputs are close to the weights, the
more they are averaged. The quality of the results depends on
the value. If is chosen to be too small, then it will have only
a small impact. Conversely, if is too large, then the previously
learned prototypes can be unlearned. Because of this learning
rule, the neurons in the group learn to average the prototypes
of the objects. One neuron can be recruited to store a new
pattern when the none of the neurons is sufficiently activated.
The initial number of neurons has to be large enough to avoid
recruitment failure (lack of neurons to be recruited).
In our network, the group associates the activity of the

visual features with the proprioception of the robot (a
simple conditioning mechanism using the least mean square
(LMS) rule [70]).
During the learning phase

(4)

After the learning phase

(5)

corresponds to the sensory-motor association and is the
synaptic weights between and . predicts , based on the
input X. Hence, is the target output. is a vector with real
components (continuous values ). is also a vector but
a Winner Takes All procedure is used to transform the analog
values into binary values according to the WTA law.
3Heaviside function

4Kronecker function
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corresponds to a short term memory (accumulation of all
focus points). is used to sum and to filter the activities on
a short period ( ). The highest activity triggers the th
motor action (WTAmechanism). After learning, the associations
between the view recognition and are strong enough to
bypass the low level reflex activity coming from the . Each
focus point is associated with a motor action ( ) and is accu-
mulation over all the focus points

(6)

We will show that the robot can develop cognitive abilities
thanks to this architecture. A cascade of this architecture allows
the learning of increasingly complex tasks such as the social ref-
erencing. This sensory-motor architecture will allow building
some complex behaviors such as the facial expressions recog-
nition (see Section V), the association of an emotional value
to an object (see Section VII) or the control of the robotic arm
(Section X).

V. ONLINE LEARNING OF FACIAL EXPRESSION RECOGNITION
Here, the robot must learn to recognize (and to understand)

the caregiver’s facial expressions. We investigate how a robot
can develop the recognition of facial expressions such as the
baby could perform it. In our case, we limit our work to the
recognition of basic facial expressions. The tests are limited to
four prototypical facial expressions: happiness, sadness, hunger,
and surprise [36], [26], [25], [61], plus a neutral face (see Fig. 5
for the experimental setup). In other studies, we have shown
that using an imitation procedure with first prototypical facial
expression can be generalized to more analog states (such as
more or less happy and more or less smiling) and next that sec-
ondary emotional state can be recognized [11].
For sake of simplicity, we focus on the online learning of pro-

totypical facial expression without having a teaching signal that
associates a facial expression with a given abstract label (e.g.,
“sadness,” “happiness”). In a first series of robotic experiments,
we showed that a simple sensory-motor architecture based on a
classical conditioning paradigm could learn online to recognize
facial expressions if and only if we assume that the robot first
produces some facial expressions according to his/her internal
emotional state and that the parents next imitate the facial ex-
pression of their robot, which helps the robot to associate these
expressions with his/her internal state [13]. In the present study,
the robot will be considered as a baby and the human partner
will be considered as a parent (the father or mother). At first,
the robot knows almost nothing about the environment. Through
the interaction with a human, the robot will learn to recognize
different facial expressions.
Each of the four facial expressions has been controlled

by FACS experts [25]. The validity of this choice could be
discussed (especially for the surprise and/or for the choice of
the expression names) [41]. However, for our purpose, we need
only a small set of facial expressions that are easily recognized
and that induce a resonance from the human partner (allowing
learning while the human partner is mimicking the robot head).
The sensory-motor architecture (see Fig. 6 and Section IV)
learns the association between the internal state of the robot
and the visual features. Here, corresponds to visual features
learned and recognized when the visual system explore a face

Fig. 5. Examples of robot facial expressions: a) sadness, b) surprise, c) hap-
piness, and d) example of a typical human–robot interaction game (here, the
human imitates the robot).

Fig. 6. Global architecture to recognize facial expressions, to imitate and to
recognize face from nonface stimuli. Visual processing allows the extraction of
sequential local views. The VF group (local view recognition) learns the local
views (each group of neurons. A tensorial product is performed between ISP
(emotional state: internal state prediction) and a neuromodulation signal, to se-
lect the neuron that must learn. The face/non face discrimination is learned by
a neural network.

(face features). corresponds to internal state of the robot.
corresponds to the facial expression associated (internal state
prediction) to one focus point and corresponds to the facial
expression recognized after the sequential exploration of the
image (integration of the answers).
Moreover, the following experimental protocol was adopted:

In the first phase of the interaction, the robot produces a random
facial expression (sadness, happy, anger, or surprised) plus the
neutral face for 2 s; then, the robot returns to a neutral face for
2 s to avoid human misinterpretation of the robot facial expres-
sion (the same procedure is used in psychological experiments).
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Fig. 7. Success rate for each facial expression. These results are obtained
during the natural interaction with the robot head. A total of 10 persons
interacted with the robot head. During the learning phase, these humans imitate
the robot, and then the robot imitates them. To perform the statistical analyses,
each image was annotated with the response of the robot head. The annotated
images were analyzed, and the correct correspondence was checked.

The human participant is asked to mimic the robot head. After
this first phase, which lasts between 2 and 3 min according to
the participant’s “patience,” the generator of the random emo-
tional states is stopped. If the neural network (N.N.) has learned
correctly, then the robot is able to mimic the facial expression
of the human partner.
Fig. 7 shows that the interaction with the robot head for a

period of 2 minutes can be sufficient for the robot to learn the
facial expressions, and, then to imitate the human partner. This
incremental learning gains in robustness when the number of
human partners increases (expression of sadness can be quite
different among people with the lack of action of some action
units). These results show the robot capability to recognize the
facial expressions of participants who interacted with the robot
during the learning phase. Note that this result is sufficient to
accomplish the social referencing task because the robot inter-
acts only with known participants (learned during the learning
phase).
Moreover, Fig. 8 shows the measure of generalization capa-

bilities which is approximately 38%when 10 subjects interacted
with the robotic head during the learning phase, and the success
rate is approximately 50% when the robotic head learned with
20 subjects. In our experiment, 20 persons imitated the robot,
and then, we asked to a new person to perform facial expres-
sions (the success rate is 65% for joy, 73% anger, 47% for sur-
prised, 4% for sadness, and 56% for neutral face).

VI. FACE FROM NONFACE DISCRIMINATION CAN EMERGE
THROUGH THE EMOTIONAL INTERACTION

Recognizing a face from a nonface can be accomplished au-
tonomously if we accept that learning to recognize a face can
occur after learning to recognize a facial expression, and not the
opposite, as is classically considered. To perform autonomous
learning, we introduced the capability of predicting the rhythm
of the interaction [4] to avoid learning when there is no human

Fig. 8. Measure of generalization capabilities averaged over our 5 categories
(4 facial expressions plus the neutral face). This result shows the success rate (y
axes) of the facial expression recognition as a function of the number of faces
(x axes) that the system learned during the learning phase. The success rate
was measured on a database built from images of 10 other participants (1600
images that were never learned). The generalization improves after interaction
with increasing numbers of people.

participant in front of the robot or when the human is not paying
attention to the robot (for example, when the human partner is
leaving or talking with someone else).
When a participant displays a facial expression, he/she per-

forms whole face or body motions. If the participant imitates
the robot, then his/her movement peaks have a frequency that
depends on the frequency of changes in the robot facial expres-
sions (in our case, this frequency is constant because the robot
facial expression changes after 4 s). The interaction rhythm can
be predicted by using a prediction of the timing between two
visual peaks (a stable frequency of interaction of the human
partner). A measure of the prediction error can easily be built
from the difference in activity between the predicted signal and
the nonspecific signal itself. In our study, the nonspecific signal
is the movement produced by the human. The nonspecific signal
is related to the presence or absence of the human partner. If
the error is important, then there is a novelty (the participant
is not in the rhythm). Otherwise, the prediction error is small,
which involves a good interaction between the participant and
the robot. Many studies in psychology underline the importance
of synchrony during the interaction between a mother and a
baby. For example, babies are extremely sensitive to the inter-
action rhythm with their mother [53], [52], [24]. An interruption
of the social interaction involves negative feelings (e.g., agita-
tion, tears). However, a rhythmic interaction between a baby
and his/her mother involves positive feelings and smiles. These
studies show the importance of the interaction rhythm. In our
case, the rhythm is used as a neuromodulation signal or a label
(see [4] for the application of the same principle to the learning
of an arbitrary set of sensory-motor rules and the details of the
N.N.):
• a rhythmic interaction is equivalent to a positive neuro-
modulation: the robot head and the participant produce a
coherent action at each instant;

• conversely, an interruption of the interaction is interpreted
as a negative neuromodulation.
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Fig. 9. Face/Nonface recognition and generalization. This result shows that
the success rate of face recognition is a function of the number of faces that
the system learned on during the learning phase. The results are obtained with
21 people (3360 images). After interacting with only four people, the system
generalizes to 21 people.

We consider this second network for the face/non face
discrimination that functions in parallel with facial expression
recognition. This network learns to predict the rhythm of
the interaction, allowing detection if an interacting agent (a
human) faces the robot head. The interaction rhythm provides
the reinforcement signal to learn to recognize an interacting
partner, which is a human, and, more specifically, to learn to
recognize his/her face at a short interaction distance (the robot
sees the human face and not the other parts of his/her body).
The results linked to this online learning of the face are highly

positive. When the face detection is learned and tested using the
same participant, the system success rate with that participant
tends toward 100%.However, when the face detection is learned
with a single participant and is tested on four other participants,
the system success rate ranges between 29% (for people with
beards) and 90% for more “similar” participants. It is important
to consider that the learning was performed during a period of
only 2 minutes (in real-time: frame rate 10 Hz) with a single
participant. This scenario shows the generalization capabilities
of our visual system when focusing the robot’s attention on par-
ticular visual features. Now, when face detection is learned on
4 participants and the tests are performed on 21 different par-
ticipants, the system success rate tends toward 95% for face de-
tection (see Fig. 9). The performances improve after the inter-
actions with an increasing number of people.
At this development stage, the robot head is able to recognize

and understand the emotional facial expressions and to discrim-
inate the face from a nonface. In the following section, we will
show how the robot can assign an emotional signal to an arbi-
trary object.

VII. ASSOCIATING AN EMOTIONAL VALUE TO AN OBJECT

This section shows how the facial expressions recognition
and the face detection are integrated in order to associate the
emotional value to an object using always the same PerAc
building block. When the human partner interacts with the

robot, the robot uses the human’s expressiveness to regulate its
behavior.
In our scenario, the robot must consider the output of its facial

recognition system only when the human was interacting with
the robot. Because the robot head performs facial expressions
with a known rhythm, it is easy for the N.N. to attempt to predict
the visual signal according to its own rhythm.When predictions
match the robot action rhythm, this means that one human is
interacting with the robot. This solution avoids propagating the
emotional recognition when the human doesn’t interact with the
robot.
As soon as the recognition of human facial expressions has

been learned, the human partner can interact with the robotic
head to associate an emotional value to an object (positive or
negative). The N.N. processes (see Figs. 10 and 16) in the same
way signals from the robot’s internal state and information
correlated with this internal state. An internal state can trigger
a robot facial expression and a human facial expression can
trigger also the robot facial expression [refer to (5)]. Note
that in real life condition the reflex associations should rarely
be activated since they are only related to low level signals
(internal levels, tactile signals). During the learning of the
facial expressions recognition, we bypass natural interactions
by a fast and random activation of the different states to obtain
enough feedback from the human partners. In case of conflict,
between the internal state (IS) and the facial expression recog-
nition (FE), the reflex links connecting IS to the control of FE
(through ISP) are higher than the learned links coming from
the recognition of visual features (VF) to ISP. The internal
state remains dominant. This means that if the robot touches
an object inducing some pain (because of a “tactile” hardwired
feedback), the pain signal will win on any previous positive
association regarding this object (through social referencing for
instance). Recognized visual stimuli (VF) will either be con-
ditioned to internal state prediction (ISP) or to the object state
prediction (OSP) (the ISP being “priority” on OSP because of
the reflex link from ISP to OSP). In recent works, we have gen-
eralized this association capability adding a feedback loop from
OSP to ISP to build second order conditioning and to allow
the robot learning complex chains of conditioning [1] but this
is out of the scope of the present paper. In our experiment, the
internal state is absent (the internal state neurons have all null
values), the recognized facial expression induces an internal
state which is associated with the object (a simple conditioning
chain: Fig. 16). Classical conditioning is used to perform the
association between the emotional value transmitted by the
human and some local views of the image. An attentional
process is also introduced to avoid that the robot spends too
much time looking its own arm (see [35] and [18] for more
information). The robot focuses on colored patches and textures
(Figd. 11 and 12). We use a very simple spatial competition
between different maps (colors, textures). When focusing on an
object, the robot extracts some focus points and associates the
recognition of the local view surrounding each focus point with
the emotional value recognized by the robot. Starting again
from our generic architecture (see section IV and the Fig. 4),
corresponds to visual features (object features), corresponds
to the recognized facial expression. corresponds to the object
emotional value for one focus point and corresponds to the
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Fig. 10. This sensory–motor architecture shows how the facial expressions
recognition and the face detection are integrated in order to associate the emo-
tional value to an object.

Fig. 11. Visual attention. The system focuses on some relevant features of the
image. A saliency map is performed in order to focus an interesting area in
the image. Visual primitives are calculated independently (Gabor filters, color
detector), a fusion of these primitives is performed in order to find the area that
the robot must analyze.

Fig. 12. Visual processing with or without preattentional mechanism.

global object emotional value after the sequential exploration
of one image. According to our sensory-motor architecture,
the proprioceptive signal is considered as a training signal for
the layer. This training signal corresponds to the internal
state prediction (facial expression recognized by the robot).
Consequently, the sensory-motor architecture associates the
internal state prediction with the visual perception (object). To
associate an emotional value to an object, the training signal is
provided by the facial expression of the human.

Fig. 13. 10 objects use during the social referencing experiment.

Fig. 14. These curves show: a) the emotional value transmits to the object
thanks to the interaction with the human’s partner (before human transmits
a positive value after the human transmits a negative value); b) the speeds
of each arm’s motor (6 degrees of freedom); c) the distance to the object; and
d) the robotic arm trajectories from different starting points: the arm is able to
reach the object associated with the happy facial expression and avoid the object
when it is associated with the angry facial expression.

The tests were performed with 10 objects (five positive ob-
jects and five negative objects). We put on the workspace the
different objects one after another (see Fig. 13). Each object is
put few seconds in the robot workspace (see Fig. 12) and each
object is learned as the result of the emotional interaction with
the robotic head. During the learning phase, the objects position
is fixed (the object doesn’t move) and the human partner sends
an emotional signal to the robot: a positive signal when the ob-
ject can give pleasure and a negative signal when the object is
dangerous. The recognition of emotional value is 87% for the
negative objects and 98% for the positive objects. The success
rate difference between the positive and negative objects is only
related to the variability of the objects complexity. The success
rate shows the robustness of the model despite some variations
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Fig. 16. Global architecture for the social referencing model. Social referencing emerges from the sensory-motor interactions between facial expression recogni-
tion, objects emotional value and visuomotor learning for the arm control. A simple sensory-motor architecture is able to learn and recognize the facial expressions,
and then to discriminate between face/non face stimuli (face detection). Using a simple chain of conditioning, the robot learns the emotional value of an object as
a result of the interactions with the human (face discrimination). The robot focuses on an object using a visual attention processes (Gabor filters, color). After a
visuomotor learning, the robot arm reaches or avoids some objects in the workspace thanks to the self-generated reinforcement signal (emotional value coming
from the facial expression recognition). is built as the result of the facial expression recognition (with neuron corresponding to happy facial expression, the

neuron corresponding to angry facial expression).

Fig 15. Success rate when the robot attempts to catch objects in the environ-
ment. The 5 positive objects are put one after the others in the workspace. Each
object is put at 10 different positions in the workspace allowing obtaining quan-
titative results for the prehension of positive objects.

such as the distance and the object position in the image (the
objects are put at different locations).
Hence, the robot is now able to use the emotional facial ex-

pression of the human partner in order to assign an emotional
value to an object. As a result of the interaction with the partner,
the robot recognizes and “understands” the human’s expression
in the aim of disambiguating some new situations.

VIII. EMOTIONAL INTERACTION REGULATES THE ROBOT’S
BEHAVIOR

At this stage of the development, the robot has some capa-
bilities such as the facial expressions recognition, to associate
an emotional value to an object and to control his multi-DoF
robotic arm (see section X). In this section, we show how the
robot can integrate all these capacities to regulate its behavior.
In our experimental setup, the emotional interaction with the
human partner can bias the object approach. The objects and

the human facial expressions can provide a reinforcing signal
allowing the robot’s adaptation. Here, is an emotional re-
inforcement signal according to the robot emotional state. In
others words, the robotic arm can reach or avoid an object ac-
cording to the parameter

if the emotional value is positive
if the emotional value is negative

In this experiment, one object is put in the robot workspace.
If the object is associated to pleasure and/or a smile from the
human then the robot reaches the object. On the contrary, if the
object is dangerous and/or is associated to a negative expression
from human partner, then, the robot avoids the object. Fig. 14
shows the important dynamics induced by the social referencing
architecture. Fig. 14(a) shows the object’s emotional value asso-
ciated with the facial expressions of the human partner. Before
, the partner displays a happy facial expression in presence

of the object, the human associates a positive emotional value
to this object. We can see [see Fig. 14(b) and 14(c)] the more
the distance between the gripper and the object decreases the
more the speed of the arm’s motors decreases in order to tend to
0 when the object is reached. After , the human partner dis-
plays an angry face (transmitting a negative value), the object
value is modified (negative emotional value). We can see that
the emotional value is now negative although, due to noise, the
positive emotional value is still high. This shows the learning
robustness to the noise. Now, the arm avoids the object as if the
object appears to be “dangerous” to the robot.
To provide more quantitative results on the robotic arm ca-

pability to catch the objects having a positive emotional value.
We performed the following experiment: the objects are put at
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different positions to show that the robot can catch and recog-
nize the objects in the whole workspace. Fig. 15 shows that the
robot is able to reach the positive object (92% success rate) and
to catch it (with successful prehension: 82% success rate). The
robot fails only when the object can’t be reached (environment
area not surrounded by attractors). In the case the object is neg-
ative, the robot avoids the different objects all time (100% suc-
cess rate). These results highlight the robot’s capability to adapt
its behavior according to the emotional signal (emotional value
associates to object).
At this level, the robot can reach an object if the self-gener-

ated reinforcing signal is positive (the emotional value is pos-
itive) and avoid an object if is negative (the emotional value is
negative). The human emotional expression is able to commu-
nicate an emotional value to an object (for instance a dangerous
object or an interested object) and moreover can modulate the
robot behavior.

IX. CONCLUSION

In our study, the social referencing is seen as a cascade of
sensory-motor architecture (see Fig. 16). We showed that the
robot can learn different behaviors (or tasks) through the inter-
action with the environment (see Fig. 17): facial expressions
recognition (B1), face/non face discrimination (B2), the asso-
ciation of an emotional value to an object (B4) or the control
of the robotic arm (B3). Each ability can be learned automously
and online therefore the social referencing may emerge once all
these cognitive abilities will be learned. However, some abili-
ties such as the association of an emotion to an object are in-
efficient while the facial expressions recognition has been not
learned. Consequently, some skills must be learned first so that
others can be learned correctly. In our experiment, two different
cameras are used: one looking in the direction of the human and
another one looking in the direction of the object. Therefore, it
was possible to learn the visuomotor control of the arm in par-
allel with the learning of the facial expression recognition [see
Fig. 17(a)]. In practice, the facial expression recognition and
the face/non face recognition were performed first. Next, the
arm control was learned and finally the social referencing was
learned. Starting to the baby development, the learning should
be continuous and alternate [see Fig. 17(b)]. If the two cameras
are replaced by a single camera or if the cameras have to look
in the same global direction (as for human gaze) then there is a
need to add a mechanism to alternate the attention between two
directions. A simple oscillatory mechanism could be sufficient
to control the visual attention. However, for the learning of the
arm control, it would be better to perform this task until some
progress has been made in this learning. Hence it is clear that
some complex self-evaluation need to be added [67], [57], [6].
In [40], we propose a possible solution but it has not been tested
for our problem.
To our knowledge, our architecture is the first one that learns

a coupling between emotion (facial expression recognition) and
sensory-motor skills. We developed a real self-supervised de-
velopmental sequence contrary to others authors [14], [68]. Yet,
we don’t solve the question of joint attention which is an impor-
tant issue. Joint attention may also be reached using a learning
protocol similar to Nagai [56] (developmental model for the
joint attention).

Fig. 17. The different behaviors learned by the robot. a) with 2 cameras (our
experimental setup), the robot learns the different behaviors (or tasks) through
the interaction with the environment. B1: the learning of facial expressions. B2:
learning of face/non face discrimination. B3: learning of visuomotor coordina-
tion. B4: Emotional interaction regulates the robot’s behavior. The gray shows
that the learning can always be improved. Learning of these cognitive skills.
b) with 1 camera, the development could be closer to the baby development
with the need to alternate between the social and physical interactions.

We think our sensory-motor approach can provide new inter-
esting insights about how humans can develop social capabili-
ties from sensorimotor dynamics. For example, studies [9] show
that humans use the theory of mind (to assign mental states to
the self and to others [63]) for complex social interactions. For
example, the false-belief task is became the test for crediting a
child with a theory of mind [9]. One consequence of this def-
inition is an emphasis upon representational mental states and
knowledge rather than upon emotions, intentions, perceptions.
In contrast to current developmental theory which considers the
social interactions as a complex cognitive process [9], our works
suggest 1) the primacy of emotion in learning, 2) the effective-
ness of using a simple conditioning for the learning of facial
expressions through an imitation game with the human partner
3) the efficiency of a simple system of pairing internal emo-
tional state with object-directed behavior. New neuropsycho-
logical studies related to the mirror system in emotions [37], the
neural basis of intersubjectivity (e.g., [29]) as well as our study
highlight the important role played by emotion in the emer-
gence of social referencing. Social cognition, including social
referencing, may have stronger emotional foundation and less
need for complex cognition than previously thought (e.g., [7]).
Our works show that the robot can develop social interactions
without a theory of mind, and, we argue that the theory of mind
can emerge from social interactions. Therefore, the theory of
mind should be considered as a developmental processes [19].
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Fig. 18. Model of the arm controller (see [23]). The sensorimotor map can learn to associate visual stimulus and proprioceptive information of the arm. A compe-
tition between visuomotor neurons enable to associate current proprioception with the most activated visual input neuron. Thus, neurons on this layer can activate
one or several attractors (constructed from visuomotor neurons) in the motor space. If the current position of the arm is different of the generated attractor, a nonnull
motor command is read out by Fukuyori’s adapted dynamical equations and given to the robotic arm. In the social referencing experiment, this model is used to
catch or to avoid objects according to the emotional interaction.

Fig. 19. Simulation of 3 DoF arm proprioception using (Refer to (8)). :
The trajectory converges to the nearest attractors. Simulation parameters are
following: number of iterations ; beta Gaussian parameter ;
noise level ; Number of attractors ; shading parameter ;

. : When the ratio of A to noise level decreases, noise has a stronger
effect on the speed command and allows an exploration of the motor space
with jumps from an attractor to another. Simulation parameters are following:
number of iterations about ; beta Gaussian parameter ; noise
level ; ; shading parameter .

To improve the functioning of our architecture, there may be
a need to modulate the internal emotional state as a function of
intensity of emotional expressions and to modulate the behavior
to the object in accordance, e.g. an intense angry expression
might involve withdrawing, and an intense happy expression
might involve picking up more quickly. Ongoing work suggests
it might be possible by using a population coding at the different
stages of the architecture.
The facial expressions are an excellent way to bootstrap com-

plex sensory-motor learning. The relationship between the robot
and the partner is dramatically changed thanks to an emotional
communication. It allows the robot to learning and manipu-
lating an object. The dynamical interactions between the robot
and the human participant allows to simplify learning, for ex-
ample, the robot can learn autonomously and online the facial
expressions if the human partner mimics the robot (resonate to
the robot facial expression). Consequently, we show that the
dynamics of interaction and simple rules (PerAc architecture)

Fig. 20. Trajectory of the robot arm end effector in visual space. Experiments
are made of several trials. For each trial the arm is initialized at a different posi-
tion. The black circles correspond to the learned attractors and the black cross is
the visual target to be reached. The stars are the starting positions for each trial.
a) Reaching a learned attractor, 2 attractors activated. b) Reaching a not previ-
ously learned position, 4 attractors activated. We also record the distance be-
tween the arm end effector and the target in the visual space (number of pixels).
c) Reaching a learned position, 2 trials. d) Reaching a not previously learned
position, 6 trials. The light gray line shows the threshold under which the target
is reached.

are sufficient to have an autonomous robot. This work suggests
the robot/partner system is an autopoietic social system [51]
in which the emotional signal and empathy are important ele-
ments of the network to maintain the interaction and to allow
the learning of more and more complex skills for instance the
social referencing.
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APPENDIX
VISUO-MOTOR LEARNING AND CONTROL OF A MULTIDOF

ROBOTIC ARM

A. Introduction

In this section, we show how the robot can learn to control its
arm through a visuo-motor learning (babbling phase).
Robots have the ability to learn a task as a result of a demon-

stration provided by a human teacher [10]. This demonstration
can be done through passive manipulation. Dynamic Motion
Primitives [33] is a framework for learning to perform demon-
strated tasks. In [16], the learning system uses a statistical model
based on Gaussian Mixture that is adapted to fit the data from
training demonstrations using passive manipulation. These sys-
tems have proved to be efficient for performing different tasks.
Even if the learning by demonstration is very interesting, this
technique is difficult to use in our experiment, because we want
to develop an autonomous control of a multi-DoF robotic arm
without human physical interaction during the learning.
In this paper, the autonomous control of a multi-DoF robotic

arm requires the learning of a visuo-motor map [4]. During the
“babbling phase,” the robot arm produces random movements,
and, the visuo-motor controller can learn the correspondence be-
tween the attractors in the joint space and the visual position of
the arm end-effector. After this learning, the robot arm can reach
several positions in the workspace. One visual position corre-
sponds to one or several motor configurations (e.g. attractors).
These attractors pull the arm in an attraction basin (the target
position). Recently, [28] has proposed a solution (Yuragi/fluc-
tuation method) for arm control in the motor space. This model
is based on the use of a limited number of attractors allowing the
arm to converge reliably toward one of these motor configura-
tions. The robot modulates the strength of the nearest attractors
in the joint space allowing creating a virtual attractor in the joint
space. Yuragi equation allows with a fitness signal to control the
end-effector displacement so as to minimize the fitness function.
The exploration allows avoiding possible local minima by cre-
ating new states when necessary and by playing with the visual
associations.
Taking inspiration from this model, our working hypothesis

is that proprioceptive configurations associated with the visual
positions of the arm end effector can be used as attractors to
achieve the visuomotor control. The dynamical equations of the
Yuragi controller allow smoothening the trajectory. The interest
of this controller is the capability to control the exploration/ex-
ploitation dilemma according to a reinforcement signal. If the
fitness signal increases, the strength of the attractors is increased
and the noise is decreased (exploitation) and vice versa if the fit-
ness signal decreases and the random exploration increases (see
[23] for more details). In our case, the “happy face” activation is
associated to a positive fitness signal for the “Yuragi” controller
while the “anger face” is related to a negative fitness signal.

B. YuragiControler

Following Langevin equation [refer to (8)] used to describe
Brownian movements, [28] proposed that using random config-
urations expressed in the joint space of the arm ( is the current
proprioception) combined with a noise parameter is enough to

move a robotic arm toward any position by controlling the speed

(8)

(9)

(10)

(11)

With the number of selected attractors, ( )
a vector reprensenting the center of the i-th attractor and the
function a normalized Gaussian. The behavior of this system
is such that the arm approaches to the nearest attractor.
Where and are the state (arm proprioception) and the

dynamics of the attractor selection model, is time con-
stant and represents noise. is the reinforcing signal which
indicates the fitness of the state x to the environment and con-
trols the behavior of the attractor selection model. That is to say,

becomes dominant when the activity is large, and the
state transition approaches deterministic behavior (converge to-
wards the goal). On the other hand, the noise becomes domi-
nant when the activity is small and the state transition becomes
more probabilistic.Modulating of the command or the noise
level enables to switch from converging toward one of the se-
lected motor configurations [see Fig. 19(a)] to exploring ran-
domly the working space by “jumping” from an attraction basin
to another [see Fig. 19(b)] and vice versa.

C. Results

After verifying the convergence of the arm to a learned posi-
tion, we tested the convergence to a visual position spotted be-
tween four learned attractors. If the arm/target distance is lower
than 3 pixels then the movement is stopped, the target is con-
sidered as reached. Fig. 20 shows the results when the robot
has to reach a not learned position. The “virtual” attractors are
built as a linear combination of the real attractors. The results
show the robot’s capability to reach target in the robotic arm
workspace. Fig. 20(a) and Fig. 20(b) show the trajectories of
the robot arm towards a target. The arm is able to reach the
target whatever the starting positions. The robotic arm succeeds
in reaching a visual stimulus at arbitrary places. These results
show that the cooperation of the sensory-motor map and the
Yuragi method [refer to (8)] offers an interesting basis for the
control of a robotic arm with a self-learning of the associations
between visual and motor spaces. This architecture (seeFig. 18)
has some interesting properties:
• the learning of a few attractors is sufficient to reach any
position; the robotic arm reaches the target with high pre-
cision, the accuracy can be improved by recruiting a new
attractor close to the target;

• the architecture can merge attractors in order to make a
“virtual attractor.” For example, Fig. 20(b) shows 4 attrac-
tors activated to reach a not previously learned position.

• the trajectories of the robotic arm are curvilinear which in-
volve smooth movements of the robotic arm [see Fig. 20(c)
and Fig. 20(d)].
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At this point, the robot can reach a neutral object in its
workspace as the result of the cooperation of sensorimotor map
and the Yuragi method.
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