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Abstract— In this paper, a model linking together the
development of sensori-motor and imitation capabilities is
proposed. The model has been tested on a mobile robot
doted of a pan/tilt vision system and a 5 degrees of freedom
robotic arm. The proposed Neural Network architecture
allows to learn and use proper associations between vision
and arm movements, even if the problem is ill posed (map-
ping problems between the visual space and the robot arm
space). The central part of the model is a visuo-motor map
allowing to store motor behaviors in a space invariant from
the arm and body configuration (posture). This very sim-
ple multi-modal or a-modal representation can control the
whole system dynamics of our robot. The use of dynamical
neural field equations at the different stages of our model al-
lows to explain how apparent complex motor dynamics can
be generated and controlled from very simple internal dy-
namics simplifying at the same time the learning problems.
Highlighting the generic aspect of our architecture, we show
that our robot can autonomously imitate and learn simple
gestures after the on-line learning of the visual and propri-
oceptive control of its hand extremity (without any change
in the NN architecture). Finally, we defend the idea of a
co-development of imitative and sensori-motor capabilities,
allowing the acquisition and the structuration of increasingly
complex behavioral capabilities.

I. Introduction

In Artificial Intelligence and cognitive psychology, learn-
ing is often seen as a set of individualized and successive
phases allowing to build more and more complex categories
in a hierarchical way. According to this perspective, acqui-
sition of higher cognitive functions implies the stabiliza-
tion of some lower functions, as otherwise the meaning of
the higher levels would change when modifications at the
low level occur (learning instability). Specialists in learn-
ing theory have then proposed the idea of shaping tech-
niques [Thrun and Mitchell, 1995], [Kaelbling et al., 1996]
in which learning is split into different phases of growing
complexity. Unfortunately, the splitting procedure needs
to be supervised by an engineer who need to define the
different steps or phases of the learning procedure. Tak-
ing into account the physical development of the infant
can strongly change and simplify this meta learning prob-
lem [Pfeifer and Scheier, 1999], [Lungarella and Berthouze,
2002] (how to control and adapt the learning mechanism).
The solution consists in finding a minimal architecture and
the related adaptive mechanisms that allows such a system
to exhibit different phases of development, i.e the building

of a developing system [Metta et al., 2000]. For instance,
navigation problems do not need to be addressed before
the baby is able to move, while grasping first needs the
development of the hand muscles. The progressive phys-
ical maturation constrains and simplifies the field of the
possible sensory-motor associations to be learned, and the
complexity of the related space to explore. Besides, being
inspired by human development promotes the idea that
the same control architecture should be able of versatility,
that is able to adapt itself to a wide variety of tasks and
solve many issues often tackled separately in the field of
autonomous robotics and artificial intelligence. It also had
been emphasized that the developmental process should be
tackled from a situated and dynamic point of view, by link-
ing the simultaneous development of sensory, motor, and
cognitive abilities [Berthouze et al., 1998], [Thelen et al.,
2000], where both noisy (elementary perceptions and mo-
tor control) and goal oriented (innate tracking of preferred
stimuli) processes play an important role in the acquisition
of stable behaviors.

This paper examines the interest of a developmental ap-
proach applied to both the design of autonomous robots
and the understanding of brain capabilities. We will
propose a Neural Network (N.N.) architecture and some
guidelines that can be used as a generic way to conceive
autonomous control architectures and to understand the
brain in its ability to learn the control of highly redundant
and complex sensori-motor systems. On the other side,
we will show that our robotics experiments advocate the
theory of a co-development of the sensori-motor and imita-
tion capabilities and therefore differs from the approaches
that suppose a clear difference between human imitation
capabilities and animal mimicking capabilities. Indeed, nu-
merous psychologists [Guillaume, 1925], [Wallon, 1942],
[Tomasello, 1990], [Heyes, 2001] and roboticist [Kuniyoshi,
1994a], [Schaal et al., 2000], tend to separate “true im-
itation” [Thorpe, 1963] and its related high-level mecha-
nisms which are considered to be specific to human adults,
from low-level imitations or “mimetism” [Wallon, 1934].
In robotics, this approach leads to build a model of the
demonstrator’s geometry in the robot controller and per-
ception problems are supposed to be independent of higher
order cognitive capabilities. Then, a strong simplification
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in the imitation architecture consists in using symbolic
knowledge to characterize the demonstrator’s behavior or
his/her movements. The demonstrator/teacher wears for
instance an exoskeleton [Ijspeert et al., 2001] which allows
the robot to directly “read” the values of the different joints
(this procedure is called an imitation). For more realistic
interactions, dedicated sensors are tied up to the different
parts of the body to imitate [Billard and Mataric, 2000]
but then the development of imitation capabilities cannot
be explained since the considered imitation and their asso-
ciated perception capabilities are hardwired in the system
and available as symbolic data (no learning to recognize a
demonstrator, no explanation of how perception and action
evolve together in order to allow more and more complex
imitation capabilities). Hence, even if precise reproduc-
tions of a motor behavior is already possible, we will argue
they do not represent correct solutions for the understand-
ing of the development of imitative capabilities (precision
of the reproduction is certainly not the only way to judge
the quality of an imitation architecture).

In this paper, We will show that low level imitations
can be the result of a side effect of a simple neural archi-
tecture devoted to the learning of sensori-motor coordina-
tions. Hence, low level sensori-motor architectures could
be the bootstrap of more and more complex imitative ca-
pabilities (emergent behaviors). As a consequence imita-
tion must not be studied and modeled separately from the
sensori-motor development. We will show how to design an
unique generic control architecture relying on simple and
minimalistic principles, which can adapt itself to a wide
variety of tasks (versatility), inspired by the development
of babies. Therefore, our approach is not concerned with
the optimal nor accurate solving of a particular and well
defined robotic task, but rather with finding minimalis-
tic principles allowing the emergence of many coarse but
different sensory-motor behaviors at the same time, such
as tracking, visuo-motor coordination, target reaching and
low-level imitation. Our approach is characterized by a
continuous on-line, epigenetic, and auto-supervised learn-
ing process, triggered by a random sensory-motor explo-
ration of the surrounding environment and a coding in a
visuo-motor map.

In the following section, we will examine some psycholog-
ical and developmental data related to our sensori-motor
approach of imitation. Next, the problem of the control
of a robotic arm with a single pan/tilt CCD camera will
be addressed. The architecture allows the learning of a
visuo-motor coordination and its use in simple imitation
games. Three aspects of this modeling will be emphasized
to illustrate the following properties:

First, the use of simple perception-action loops [Gaussier
and Zrehen, 1995] based on the principle of an auto-
supervised learning that can be used to perform reliable
visuo-motor transformations. Such a mechanism will be
used to turn around the ill-posed1 problem of the visuo-

1The problem is “ill-posed” since a single image is not enough to
determine the depth of a target in the 3 dimensional space, and at

motor coordination between a 3 degrees of freedom (DOF)
robotic arm and a simple pan-tilt monocular camera.

Second, the core of what looks like different perception-
action loops can be the result of a unique internal dynamic
computed using Amari equations of neural fields [Amari,
1977], [Schöner et al., 1995]. The resulting activity can be
viewed as an ”amodal” coding (not fully visual nor motor
coding) that greatly simplifies the problems of motor con-
trol and builds the basis of multiple different behaviors such
as reaching, tracking, imitation of simple gestures or more
complex trajectories. Moreover, we show that a given be-
havior only depends on the sense of the information carried
by the connections between the different perception-action
loops. Hence, the choice of a neural network modeling
avoids to dissociate the control issue from the more cog-
nitive issues (learning, imitation, recognition, planning...).

Finally, we will show that our developing system does not
need to build any internal model of the “other”, to perform
real-time and low-level imitation of human movements de-
spite the related correspondence problem [Nehaniv and
Dautenhahn, 1998] between man and robot.

II. Psychological and developmental

motivations

At birth, vision and motor control of the neonate are
relatively coarse. The neonates perceive outlines of figures,
with a particular sensibility to movements in the peripheral
vision [Hainline, 1998], [Slater, 1998]. They are able to fol-
low a moving target with saccadic eyes movements, but the
motor control of the neck and the other muscles will come
progressively later, along the cephalo-codal 2 and proximo-
distal 3 axis [Braun, 2000].
Our embodied robots could be in a way compared to new-
borns: they have a pan-tilt camera, a mechanical arm and
a gripper, they have sensors, a CCD camera, etc. In other
words they can move, they can perceive their environment,
but they still need to develop the proper control architec-
ture to act in a suitable way. Designing such a control
architecture remains complex, due to the amount of pos-
sible sensory-motor associations related to the many de-
grees of freedom. Learning to coordinate the movements
of the arm [Marjanović et al., 1996], [Schaal et al., 2000]
to reach and grasp a visible object [Niemeyer and Slotine,
1988], being able to imitate very simple gestures or move-
ments [Cheng and Kuniyoshi, 2000], or perform sequence
of actions from observation [Kuniyoshi, 1994b], [Kuniyoshi,
1994a] are all complex issues, often referring to separate so-
lutions in the field of robotics. Conversely, the young devel-
oping infant is able to solve all these tasks around the age
of twelve months [Vinter, 1985], [Nadel and Butterworth,
1999], and quickly uses these skills as a new repertory for
more complex tasks. To bootstrap the development pro-
cess, we based our solution on two important observations

the same time, several arm configurations/solutions are possible to
reach a given target location.

2the movements of the head will be controlled before the movements
of the trunk and feet

3the movements of the shoulders will be controlled before the move-
ments of the wrist and fingers
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of the newborns behaviors, described in the two following
subsection.

A. Bootstrapping the developmental process

The first observation states the relative maturity of the
visual system of the newborn in comparison with the mo-
tor system [Slater, 1995]. Thus, the visual system ap-
pears to be sufficiently developed to induce interest for
some preferred stimuli (such as motion detection), and pro-
vide some goal-directed behaviors while the non accurate
motor control provides random movements. This combi-
nation of random motor control and goal oriented behav-
iors induces an efficient sensory-motor exploratory behav-
ior. Such behaviors are characterized by repeated move-
ments and the matching of the corresponding perceptions.
Slowly, a coarse to fine categorization of the sensory-motor
space is learned, which can consequently serve as a new
building block for a more complex sensory-motor reper-
tory. Moreover, numerous studies highlight the evidence
of such a sensory-motor coupling underlying the develop-
ment of many capabilities at the same time: from birth,
visuo-motor exploration induces maturation of tracking,
prereaching and reaching [Bower et al., 1970], [VonHoften,
1982], [VanderMeer et al., 1995], and low-level imitation of
movements [Nadel and Potier, 2002]. Such processes con-
stitute an interesting bottom-up guideline for the design of
autonomous robots. It suggests that stable sensory-motor
associations can be learned by self-triggered exploration of
the environment. The importance of such a developmen-
tal course could be useful for complex robots. It would
allow to learn and categorize correctly the sensory motor
space, according to their own embodiment, dynamics and
physics. Thus, the bootstrap of the development process
of our architecture is a perception-action architecture that
links:
• elementary perceptions such as movement detection, pro-
viding selective behaviors (interest in the moving part of
the visual field),
• noisy motor control on the robot actuators inducing ran-
dom movements.
From this simple setup, we will test an on-line learning
algorithm that allows the architecture to learn associations
about movements of its arm, between the visual and motor
spaces.

B. Development and imitation

The second observation that inspired our approach is
the important role that imitation plays in human develop-
ment. Imitation is a mechanism that witnesses emerging
representational capabilities [Piaget, 1945], and at the same
time it seems to be an important trigger of higher social
behaviors [Nadel, 2000]. A striking example is given by
the neo-natal imitation [Zazzo, 1957], [Maratos, 1973], as
observed on young babies imitating [Meltzoff and Moore,
1977] tongue protrusion or eye blinking, as young as 10
minutes old [Kugiumutzakis, 1999]. Of course, the inter-
pretation of such a puzzling behavior, that links, at birth,
“seen-but-not-felt” face movements of others with “felt-

but-not-seen” face movements of self, is still a debate in the
developmental community. For authors neonatal imitation
is produced by the conjunction of rather inate or pre-wired
mechanisms such as a “supra-modal module” [Meltzoff and
Moore, 1997] linking vision and proprioception (afferent
copy of the motor action) and a “social module” leading
the neonate to explore and discriminate the social environ-
ment [Meltzoff and Moore, 1999]. Conversely, a study from
Jacobson [Jacobson, 1979] tends to show that neonatal im-
itation response could be an elicted low-level response de-
termined by a particular spatio-temporal configuration of a
non-human stimuli 4. Moreover, the observations of more
complex imitative capabilities come with the progressive
development of the baby (see [Nadel and Potier, 2002] for
a review of the role of imitation in human development,
from birth on to 22 month old). For example, imitation
of arm movements is observed from the age of 2 months,
as soon as arm coordination is starting to be acquired by
the baby. This example leads us to ask the following ques-
tions: at a given level of sensory-motor development, does
imitation require much more features than a simple arm
coordination? If a simple perception-action coupling be-
tween visual and motor information can explain tracking
or pointing behaviors, can this coupling also explain imi-
tative behaviors? We will show that a low level imitative
behavior can be obtained as a side effect of the perception
ambiguity [Gaussier et al., 1998]. “Perception ambiguity”
must be understood in this context as a difficulty to dis-
criminate objects (is this my arm or another’s one?), or to
decide between different interpretations (is this a useful ob-
ject, or an obstacle?) without any additional information.
Perception ambiguity was first introduced by Gestaltists,
assuming that local features in a perceived scene were al-
ways ambiguous (only the global contextual information
and the dynamic of the perception-action loop allow to sup-
press ambiguity). According to this principle, an imitative
behavior of an autonomous robot can be bootstrapped as
follows (Fig 1): Let’s suppose a simple robot using visual
information to control the movements of its arm. Let’s now
suppose that this robot processes only motion detection to
perceive its own arm. Such a system can’t differentiate it’s
extremity from another moving target, such as a moving
hand. As a result, moving in front of the robot induces
changes in the perceptions that the robot considers as an
unforeseen self movement. It will then try to reduce the er-
ror by an action in the opposite direction of the perceived
motion, inducing the pursue of the demonstrator’s gestures
(perception of a ego motion in the opposite direction of the
real external motion induces a reaction in the good direc-
tion).

Whereas this hypothesis can be seen as very specula-
tive, numerous psychological works show comparable hu-
man behaviors when visual perception is ambiguous. In
1963, Nielsen proposed an experiment in which subjects are
placed in front of a semi-reflecting mirror [Nielsen, 1963].
In a first condition the mirror is transparent, and the sub-

4This study was never reproduced
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Fig. 1. Low-level imitation principle applied to a robotic arm. In a
learning phase, a controller robot learn the correspondence between
its arm proprioception (the joint position) and its position in its vi-
sual field. To do this, the controller detects movement. Once the
associations are learned, if the robot focuses its attention in a human
teacher’s moving hand, it will reproduce the teacher’s simple move-
ment just because it will perceive a difference between its propriocep-
tive and visual information. It will try to reduce the proprioceptive
error of its arm position according to what it believes to be the vi-
sual information linked to its arm (the detection of movement in the
visual field)! An external observer will then deduce the learner robot
is imitating the teacher.

ject sees his own hand placed on a table under the mirror.
In a second condition the mirror reflects, and the subject
sees another hand (the demonstrator’s hand) that he will
mismatch for his own hand. Because a black glove has been
put on both hands, the subject has the feeling to see his
own hand and does not imagine there is another hand in
the experiment. During each trial, the subject has to draw
a straight line with a pen in the direction of his own body
axis. When the perceived hand is his own hand, the per-
formance is perfect. When the mirror reflects, the subjects
“imitate” the other hand movements and do not perceive
any difference if both hands are almost synchronous. If the
perceived hand moves in a quite different direction, the sub-
jects tend to correct the error by a drawing in the opposite
direction but they never suspect the presence of another
arm (they believe that the “wrong” trajectory is due to
their own mistake!). This experiment was reproduced in
a more modern form by [Fourneret and Jeannerod, 1998],
[Jeannerod, 1999]. It demonstrates that an automatic vi-
sual control of the action can be trapped when the per-
ception is ambiguous. Obviously, a robotic transposition
of this experiment requires that our robot learns first the
visuo motor association allowing arm movements in the
visual space. After describing the neural network control
architecture, we will show that a developing sensory-motor
system is able to acquire a stable visuo-motor coordina-
tion that could be used for pointing or reaching behaviors.
Moreover we will also show that our robot is able to ex-
hibit low-level imitations without adding any additional
features (no prior information about what is a hand, an
arm, a human, etc.). Finally, we will stress how the imi-
tative capability also constitutes a new trigger for human
robot-interactions, carrying on the development process.

Fig. 2. The robot. A Katana robotic arm and a home-made pan tilt
camera (right) are mounted on a mobile Koala robot (left).

III. Material and methods

A. Robotic system

The robot system is a Koala mobile platform (see fig. 2)
equipped with one pan-tilt ”head” and a 5 degrees of free-
dom (DOF) Katana arm. The pan-tilt head can rotates 180
degrees horizontally and vertically, and the motors support
one single CCD color camera (no stereo vision) which can
thus observe the entire work space. In the present experi-
ment, only 3 joints of the arm are concerned: the arm can
pivot around its base (θ1), and the other two joints allow
the arm to rotate in a vertical plane (θ2,θ3).

Consequently, the perceptive space of the robot is two-
dimensional (2D) while the working space of the arm is
three dimensional (3D) space. The motor space of the arm
is also 3D because of the number of joint available on the
robot arm. With such a dispositive, the control of the arm
from the sole visual information is an ill posed problem,
since the position of a target cannot be completely defined
from the sole 2D visual information. Moreover, the robot
arm has 2 degrees of freedom in the vertical space, so even
in a 2D space they are several way to reach a target in
the visual space. Thus, our architecture will have to solve
the core issue of being able to position its end effector in
the work space according to its 2D vision and 3D joint
information, during its developmental course.

B. Elementary perceptions

Motion detection is first processed by a 2D camera-

centered referential. The motion detection algorithm is a
real time computation of the intensity difference in each
pixel between summed image packets (more details on the
algorithm can be found in [Gaussier et al., 1998]). The re-
sult of this computation is projected on a 2D body-centered

map of neurons representing the whole visual working space
(Fig 6). The body centered map is a reconstruction of
all the possible views that the pan tilt mechanism offers.
Therefore, our robot has a 2D flat visual perception of its
environment, without assumption or reconstruction of the
3D real environment. Indeed, an elementary process such
as motion detection is sufficient to extract the position of
the extremity of the arm for most human and robot ges-
tures. The end point of a moving arm is generally the area
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with the highest motion intensity, due to the summation of
the angular speed of each joint. Thus, even if the motion

CCD camera Mvt Detection WTA 

WTA

x projection

y projection

Fig. 3. Example of end point tracking (here a hand) using movement
detection. The movement detection (on the center) is computed from
the image flow (here, the experimenter was waving its forearm). The
activity of the 2D map is projected on two 1D maps of neurons. Then,
each projection map is connected to a WTA computing the position
of the maximum of movement in the scene (Computation performed
at 20 images /s).

is perceived on the whole arm, the maximum of the inten-
sity will be located almost always on the hand. Thanks
to this property, our robot will track its end effector when
performing random arm movements. A Winner Take All

(WTA) mechanism operating on two 1D projections of the
movement detection map will allow the detection of the ver-
tical and horizontal position of the moving end point(fig 3).
We assume that this simple process is sufficient for a first
approach (bootstrap situation) since it can be performed
in real time and it preserves the dynamic of the perceived
stimuli 5.

C. Introduction to neural fields and dynamical systems

If the computation of the maximal intensity of a move-
ment usually provides the position of the end point of a
given gesture, it is nevertheless still an unstable informa-
tion. Even if we consider the simple case of a single arm
moving in the visual scene (we do not want to limitate our
system to such situations) the detection of the maximal
motion values can be very noisy. The detected extremity
can switch from the hand to the elbow for a short time
(especially if the arm movement of the demonstrator is a
circle or a height), or simply disappear for a short time if
the movement is occulted. Therefore, the output of the mo-
tion detection and intensity competition can not be used as
a valid information for a direct motor command. Instead,
such perceptions must be filtered by an internal dynamic
to allow a stable decision taking. The internal dynamic
will constitute the core of the perception-action link of our
architecture and the kernel of our robot’s behaviors. Dy-
namical equations take advantage of motion perception to
produce a robust information for the motor control (tem-
poral coherence of the motor commands). This information
is processed by a “motor” group of neurons simulating a

5We have developed more complex and robust networks learning
the shape of an object [Moga and Gaussier, 1999], [Lepretre et al.,
2000], [Moga et al., 2001], [Baccon et al., 2002], but their computation
time is not yet fast enough to be merged in our real time architecture.

continuous field of neurons, called Neural Field [Schöner
and Dose, 1992]. In this model, we suppose that each mo-
tor or proprioceptive group of neuron uses a population
vector coding expressed on a topological map. For sake
of simplicity, the topological organization of these input
and output maps is directly given (but the learning with
a Kohonen map should be possible). This simplifies the
problem of the association between the activity of a mo-
tor neuron and the order that must be transmitted to the
robot. In our model, neurons of a primary motor group
controlling a single joint are ordered according to the angle
they represent (from a minimal angular position φmin to a
maximal angular position φmax). The neuronal activity of
this motor group is controlled using neural field equations
(eq 1, [Amari, 1977]):

τ · f(θ,t)
dt

= −f (θ, t) + I (θ, t) + h

+
∫

z∈Vθ

w(z) · g (f(θ − z, t)) dz
(1)

Without input, the homogeneous pattern of the neural
field, f (θ, t) = h, is stable. The inputs of the system,
I (θ, t), represent the stimuli which excite the different re-
gions of the neural field and τ is the relaxation rate of
the system. w(z) is the interaction kernel in the neural
field activation. These lateral interactions (“excitatory”
and “inhibitory”) are modeled by a Difference of Gaus-
sian (DOG) function. Vθ is the lateral interaction interval.
g (f (θ, t)) is the activity of the neuron coding for angle θ

according to its potential f (θ, t). The activity of the neu-
ral field can be used either for position or speed control.
Position control could be simply achieved by checking the
maximal activity on the map but in case of several possi-
ble motions with almost the same activity the action choice
can be very unstable (from one iteration to the next the
winner can switch between very different angular positions,
due to noisy input data). The advantage of the speed con-
trol relies in its intrinsic stability. A spatial derivative of
the NF is performed ( df

dθ
). The value of the derivative at

the position associated to the joint proprioception is used
to set the joint speed rotation. Hence, the joint will rotate
in the direction of the nearest local maximum of the neural
field activity and not in the direction of the global maxi-
mum. If each local maximum is associated to a particular
target or goal then the behavior will be correct and much
more stable than a position control (this is the case in all
our applications). Lateral interaction will allow the most
active goals to override/inhibit the smaller activity bubble
and will induce smooth joint movements from one goal to
the next one. This robust and dynamical representation
allows to get the following properties6 for free:
• The bifurcation properties of the equations allow a reli-
able decision making if multiple stimuli are presented.
• The time constant induces a remanent activity of the
neural field, proportional to the intensity and to the ex-
posure time to the stimulus. This memory property is a
robust filter of non stable or noisy perceptive stimuli.

6See [Moga and Gaussier, 1999] for experimental results on the use
of NF as control architecture for autonomous robot.
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Fig. 4. Elements of the basic control system. A) A tracking behavior
for our robot’s head can easily be obtained by a simple homeostat. In
this case visual and motor informations are at the same format (vi-
sion is in 2D pixel space, and motor commands of the head are in a
2D pan/tilt space), and can easily be matched. B) The application of
the homeostatic principle for the control of the robot arm requires a
complex transformation of 3D motor informations in 2D visual infor-
mation. This transformation will be progressively performed during a
learning sequence. Our final architecture is built on both homeostats:
the head is able to track visual targets, while the arm is able to reach
the target, using visual feedback.

• The same NF can be used efficiently to control several
joints if they turn in the same plane (several different ap-
parent dynamics control by a single internal NF).

IV. A neural network architecture for

Visuo-Motor development

Our first N.N. architecture is designed as a simple
perception-action control loop. The loop itself is de-
signed to respect the homeostatic principle [Ashby, 1960]
(Fig. 4.A). In other words, the system tends to maintain
the equilibrium between its visual and proprioceptive infor-
mation. If a difference is perceived, then the system tries to
act in order to reach an equilibrium state. Obviously, if the
visual and motor space are the same, the implementation
of the control loop (see fig. 4A) allowing a tracking behav-
ior is direct. The 2-D visual perception matches directly
the 2-D pan-tilt motor commands. In our experiments, the
tracking behavior is directly obtained with such a neural
network loop. The “error” value is processed by two 1-D
neural field and readout mechanisms computing the head
horizontal and vertical speed vectors (the solving of more
complex oculo-motor tasks with developmental and learn-
ing considerations can be found in [Berthouze et al., 1996],
[G.Metta et al., 1999]).

Intuitively, an efficient visuo-motor coordination of a

complex device, for example a mechanical arm, could be
achieved by a similar NN architecture (Fig. 4.B) imple-
mented as a feedback loop. The loop processes visual infor-
mation to correct the movements of the arm, but in such
a case, visual and motor spaces are often different and the
architecture requires the learning of associations between
both spaces.
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Fig. 5. The architecture is build from 2 modules in parallel. Each
module is an independent neural network exchanging asynchronous
informations with the other module. The figure shows the 2 main
networks: The first module computes the 2D visual perceptions and
2D internal dynamic (NF). The second module merges and learns the
proprioception of the arm and visual information in a sensory-motor
map composed of clusters of neurons (this module is also responsible
for the motor command of the arm). After learning, the arm propri-
oception triggers the correct activity of the sensory-motor map and
can be used to compute the right movement to reach a possible tar-
get. Each module is executed concurrently, exchanging asynchronous
informations (see bidirectional dashed arrows). This setup also allows
the experimenter to reverse any information flows to obtain different
behaviors without altering the modules of the architecture.

Thus, the control architecture is based on the multipli-
cation of such neural network loops. Each loop is an home-
ostat controlling a different device. In the present architec-
ture, we use two loops, one for the head motor command
and the second for the arm motor command (Fig. 5). Both
loops are executed concurrently on separate computers.
They process separate proprioception (from the head or
the arm) but share the same visual perceptions, and, more
importantly, the same neural field outputs. 3 computers
and the PVM library (Parallel Virtual Machine) are used
to simulate the complete neural network. The use of the dy-
namical neural field allows to deal with the asynchronous
exchanges of information (and the difference of sampling
rate or speed) between the 2 parallel sub-networks.
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A. Learning the motor control in the visual space

Self-Organized Maps (SOM) such as Kohonen [Koho-
nen, 1982] networks are often mentioned as an interest-
ing solution for the learning of end effector positioning of
robotic (or simulated) arms using vision. Intuitively, the
self-organizing and topology features of the network should
allow a reliable learning with a reduced amount of move-
ments during training. A given neuron activated by one
visual input can code for a given vector position of the
different joints of the arm. The neighboring neurons will
learn neighbor vector position due to the topology of the
network. Rojas [Rojas, 1996] proposed, for instance, a di-
dactic solution to the problem of learning to position the
end effector of a simulated 2 DOF robotic arm on a sensitive
flat area. Closer to our problem, [Ritter et al., 1989], [Mar-
tinetz et al., 1990] propose the use of a 3D Kohonen net
(also called a Kohonen lattice) to allow a simulated robotic
arm equipped with two external cameras to position its end
effector in a 3D environment. The first drawback of this
solution is the necessity of using stereo vision to detect the
position of the end-point in the 3-D environment. More-
over, a 3D Kohonen net will work under the assumption
that there is a bijection between the angle of the joints and
the position of the end effector (i.e: only if a one-to-one
mapping is possible). But with more complex arms (such
as the one we use), the same position of the extremity cor-
responds to multiple vector positions of the joints. From
this situation arises the problem of a many-to-one map-
ping, as well as the related problem of selecting one of the
possible configurations to exhibit smooth movements. If
a many-to-one learning is possible (by using, for example
many kohonen nets at the same time), then a simple min-
imization criteria on the joint’s position will allow smooth
movements [Ritter et al., 1992]. In this case, the neural
network algorithm is functioning in the manner of a look-
up table. The Kohonen lattice delivers the joint’s angle
positions needed to reach the visual target. The movement
is then a step by step approximation of the final position.

Also inspired from the self-organizing properties of the
Kohonen net, our neural network algorithm is nevertheless
quite different from the Kohonen Latices. The reasons are
the following:

First, since the perception of our robot is flat (only one
camera), a 3D kohonen lattice is no more suitable. And
a 2D kohonen map cannot encode the many-to-one asso-
ciations. Our solution is inspired by the micro-columns of
the brain [Kandel et al., 1996] which consists of a 2D ar-
rangement of neural functional units, each units learning
the many-to-one associations (see fig. 6).

Second, instead of controlling the movements in the mo-
tor space (matching or comparing motor position of the
joints), our solution is to control the movements in the
visual space. Therefore, the positioning (or further and
more complex tasks) of the end point will be dependent of
the 2-D visual space instead of the joint space. The main
advantage of this choice is to limit the complexity of the
computation needed for positioning (or processing further
more complex tasks) to the 2-D visual space (even if the

arm is 15 DOF). Consequently, we propose a 2-D map of
micro-columns, also called clusters that learns associations
between vision and proprioception (Fig. 6). The topol-
ogy of the map is the same as the visual map, and each
cluster associates a single connection from one neuron of
the visual map with multiple connections from the arm’s
proprioception. Thus, this coding allows a joint configura-
tion of the arm to be represented in the visual space. The
main advantage of this approach is that movements can
be computed in the visual space and benefit from the in-
trinsic properties of the neural field used for motor control
(eq. 1). The instantaneous speed of the different joints is
easily obtained as well as smooth arm trajectories (without
a complex speed control that usually involves an a priori
cinematic model of the arm). More precisely, a cluster of
neurons i, j (see the small drawing in Fig. 6) is composed
of :
• One input neuron Xi,j is linked to the visual map. This
neuron responds to the V information and triggers learning.
• One submap of neurons, a small population of Y k

i,j neu-
rons (k ∈ [1, n]) which learn the associations between 3-D
proprioceptive vectors and one 2-D visual position (this
population is a small topological map with the same self-
organizing properties as the SOM maps).
• One output Zi,j neuron, merging the activities from the
neuron Xi,j and the maximum of the submapi,j activity.
A submap of neurons is computed exactly as a simple Ko-
honen map except that its learning is only possible when
its associated visual input Xi,j is activated (self organiza-
tion of all the proprioception associated to a given visual
position). Y k

i,j is the kth neuron of the submap associated

to the i, jth cluster. The activity of Y k
i,j neurons is pro-

portional to the distance between the input proprioception
P = (θ1, θ2, θ3) and the weights of the neurons on the map.
(eq 2).

Y k
i,j =

1

1 +
∑3

l=1 |θl − W k
i,j,l|

(2)

On each submap, a winner is computed according to
eq. 3:

winneri,j = maxk∈n(Y k
i,j) (3)

The learning of a submap is dependent of the activa-
tion of the corresponding Xi,j neuron, triggered by a vi-
sual input (eq 4). Thus, each submap learns the different
proprioceptive configurations independently.

Xi,j =

{

1 if Vi,j · Uij > θ

0 otherwise
(4)

If no visual information V is present, the proprioception P

triggers the response of the associated cluster in the map.
On the sensori-motor map the global potential Zi,j of the
neuron coding for the position (i, j) is computed as follows
(eq 5) :

Z ′

i,j = max(Xi,j , winneri,j) (5)

A simple competition process is then performed on the out-
put Z neurons of the map (eq 6).

Zi,j =

{

1 if Z ′

i,j = maxu,v∈n(Z ′

u,v)
0 otherwise

(6)
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Fig. 6. The neural network controller for arm movements (simplified architecture). This controller learns visuo-motor association about the
end point position of the arm. Learning is made by the sensory-motor map of clusters. The map has the same dimensions (2-D) as the visual
map. Thus the activity of one neuron of the visual map will trigger (in the manner of an Unconditional Stimulus, US) the learning of the
corresponding cluster of the sensory-motor map (one-to-one links,). The right picture details one cluster of neurons of the sensori-motor map.
Each cluster has one link with one neuron of the visual map. This link carries out visual inputs detected by the X neuron. Activation of X
triggers Z and the learning of its associated submap. The learning consists in a self-organization of the Y k

ij
neurons associating proprioceptive

signals(θ1, θ2, θ3 of the arm, Conditional Stimuli) to one visual unconditional information.

The winner neuron Zi,j will represent the “visual’ response
associated to the proprioceptive input presented. Thus,
many proprioceptive configurations are able to activate the
same “visual feeling”, while close visual responses can be
induced by very different proprioception (thanks to the in-
dependence between each cluster).

B. On-line learning on the VM map

During the learning phase, the robot is put in a static en-
vironment, (learning with moving distractors would require
much more presentations to detect the stable part of the
sensory-motor associations). A crucial part of the learning
process is linked to the choice of the learning parameters.
Like in SOM algorithm, learning is uniquely controlled by
the ”shape” of the lateral inhibition between Y neurons
of a submap (ε, Nn, Pn, involved in eq 7). The learning
of the synaptic weights of a neuron k in the cluster i, j is
computed as follow:

W k
i,j = W k

ij + ε · Y k
i,j · δ(d(winneri,j , k), Pn, Nn) · Zi,j (7)

where ε is the learning rate. The d function computes
a simple distance between the kth neuron and the winner
neuron of the submap. The δ function computes the values
of the lateral excitatory/inhibitory connections modulating
the learning of the winner neuron’s neighborhood. δ is
a DOG function whose shape is defined according to the
size of the positive and negative neighborhood (respectively
defined by Pn and Nn).

The modification of the lateral inhibition influences the
coarse to fine process which is mainly represented by two

a b c

d fe

Fig. 7. A sensory-motor vector of 146 clusters learning vertical move-
ments (only the θ2 and θ3 joints of the arm where freed). Each cluster
is composed of a self-organizing submap of 6 Y neurons. a): Repre-
sentation of the arm, and the theoretical working space. Each point
is an accessible positions of the extremity of the arm, to be learned.
On b)c)d)e)f) examples, each point represents a position learned by
an Y neuron. These points are plotted according to the values of the
Y neuron’s weights learning the θ2 and θ3 values, using a simulation
of the robotic arm. b) and c): the coarse stage. d), e), f): Progressive
dissociation of Y neurons during the tuning stage.

different stages:
a coarse stage: at the beginning of the learning pro-
cess, each cluster learns one visuo-motor association, self-
supervised by vision (fig 7.b, 7.c). ε is maximal, Pn is
high and there is no lateral inhibition (the shape of the
lateral interaction is a positive Gaussian). At this stage,
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the system does not cope with multiple arm positions for
one visual position. The robot can perform either random
or continuous arm movements, since the topology is forced
by the presence of a visual signal Vi,j . The learning param-
eters are: ε = 0.9, Pn = 7, Nn = 7. Figure 7.c required
300 learning iterations.
a tuning stage: The system learns the equivalences
between the multiple proprioceptive information of the
arm and a single visual position of its extremity (fig 7.d,
7.e, 7.f). This phase consists of the specialization of the
neurons on each submap. The shape of the lateral inhibi-
tion and its amplitude are decreasing with the time in order
to allow a more precise learning of the multiple arm posi-
tions (progressive stabilization). The robot has to perform
numerous random arm movements to provide a sufficient
amount of different arm positions for the learning of each
cluster.

The learning parameters are: ε = 0.4 down to 0.05, Pn =
7 down to 1, Nn = 7 down to 3. The results presented
figures 7.g were obtained after 8000 learning iterations of
random movements.

Theoretically, the fine learning phase can work on its
own, but it requires a very long convergence time. ”Fine”
also refers to the learning constants which in this case are
small, to allow a slow, progressive but accurate modifica-
tion of the weights. Starting with the fine stage would only
takes a long time before all the clusters would be separated.

Practically, and especially in the case of learning robots,
a coarse stage induces a quick and large categorization of
the space: each cluster is easily separated from others, and
the robot is already able to perform coarse but consistent
movements. Consequently, the coarse to fine learning is
not a necessary condition for the learning algorithm even
if it greatly simplifies the learning problem (reducing the
learning period). This coarse to fine procedure could be
considered similar to the maturation of the baby sensori-
motor system (even if we do not simulate the details of the
different loops involved in human motor control).

C. Invariant coding of motor behaviors

To reach a perceived target, the error between the de-
sired position (the visual position of the target) and the
current position of the device has to be minimized. This
error has to be then converted in an appropriate movement
vector to move each joint toward the target. The problem
is to decide in which coordinates the minimization has to
be performed. The originality of our solution is to compute
a dynamical attractor (see materials and methods section)
expressed in the “visual” space. The attractor can then
be simply centered on the target stimulus. If the mini-
mization was performed in the motor space, it should be
necessary to propose a final proprioceptive configuration in
order to compute each Neural Field (each dynamics) asso-
ciated to to each degree of freedom. The problem is that
the desired configuration of some degrees of freedom might
depend of some other degrees of freedom (i.e. the link be-
tween the shoulder and the trunk...). Hence, if a motor
behavior such as doing a circle is learned form a particular

proprioceptive configuration, it will be difficult to compute
it from another body configuration (a complex coordinate
transformation should be learned and applied to solve the
correspondence problems). For instance, learning a move-
ment with one arm and reproducing it with the other arm
should be possible (the reproduction with another type of
device like a leg should also be possible...). To solve this
apparently difficult problem, we have decided to learn the
motor trajectories in a space invariant from the joints po-
sitions. One evident solution is the body peripheral space
that can be seen as an extended visual space such as a 2D
cylindrical map (for more complex tasks, a 2.5 dimensional
space where depth would be added should be sufficient to
deal with complex trajectory and 3D grasping problems).

Hence, the two spatial derivates of the two NF activities
are interpreted as the horizontal and vertical speed com-
mands for every joints in order to reach the target (read-out

mechanism [Schöner et al., 1995]). According to its propri-
oceptive position, each joint will move at a speed corre-
sponding to the spatial derivates of the NF activity mea-
sured on the neuron corresponding to its current proprio-
ception value (we suppose first that each neuron on a 1D
neural field codes for a particular proprioceptive value and
next that neighbor neurons code for neighbor propriocep-
tion - 1D topological map). Each joint will then contribute
to the global movement of the arm toward the visual target.
This coding of movements induces the following properties:

• The simultaneous activation of different joints creates
new globally coherent dynamics. These dynamics are an
emergent property of the two 1D neural fields used to de-
cide the joint’s speed.
• The speed profile is smooth with acceleration and decel-
eration phases of the joints at the beginning and end of the
movement (important for a stable control of the arm).
• The desired arm configuration (reaching a particular po-
sition) is a stable position (the stabilization of the motors
on the target - df = 0).

V. Experimental results

After the learning phase, the architecture was tested for
pointing and low-level imitation tasks. The pointing task
aims at testing the internal dynamic (the read-out mecha-
nism), and how the coherency of the learned associations
successfully drive the extremity of the arm to a desired vi-
sual area in the working space. The imitative task aims at
testing the robustness of the dynamical equations and the
real time capabilities of the overall architecture. The imi-
tative experiment also validates theoretical work assuming
that a generic controller is able to perform the imitation of
human gestures [Gaussier et al., 1998], [Andry et al., 2001].

A. Pointing

Figures 8 and 9 show the results of one pointing test
experiment. To simplify the plotting of the results, the
pointing was made using only two DOF of the arm (θ2,
and θ3 in the vertical plane). Nevertheless, the pointing
test preserves the complexity of the issue since these two
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DOF are redundant in their contribution to the vertical
movements of the end of the arm.
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Fig. 8. Internal activities of the neural field and read-out mechanism
during a pointing task. From t = 0 to t = 47 the neuron 55 is
stimulated. From t = 48 to t = 65, the neuron 105 is stimulated.
Up: snapshots of the neural field’s activity. A single stable attractor
can be seen at t = 47 and t = 65. Between t = 47 and t = 65 the
attractor travels from the first stimulated point (neuron 55) to the
second one (neuron 105). Bottom: corresponding activity of the NF
spatial derivative. From t = 47 to t = 65, the resulting read-out
mechanism moves the arm toward the new attractor (dashed lines
represent the visual position of the extremity of arm, and dact/dφ = 0
represents a null speed of the associated joint).

The pointing test was performed as follow: Vision from
the CCD camera is disabled (no visual information), and
the activity of the neural field is directly controlled by the
experimenter, simulating a perfect perception. At the be-
ginning of the experiment (from t = 0 to t = 47), there
is no error between the activated area (centered on neuron
55) of the neural field and the position of the arm, induc-
ing no movements. At t = 48, the experimenter stops the
activation of the neuron 55, and starts to stimulate the
neuron 105. The resulting traveling wave (from t = 48 )
on the NF’s activity (fig 8,up) induces modifications of the
shape of the associated spatial derivative (fig 8, bottom),
and starts to move (from t = 49 ) the arm’s joints toward
the new equilibrium, progressively centered on the neuron
105. Figure 9 shows a plot of the recorded positions of the
arm corresponding to the modifications of the NF’s activity
between t = 48 and t = 65 according to both modalities.
In the first experiment, the θ2 joint was blocked, and only
the θ3 joint was able to point to the direction of the target
(figure 9.1). In the second experiment, both joints θ2 and
θ3 where freed and able to reach the target (figure 9.2).
These records show that with both modalities, successful
pointing is achieved by the system. We can notice that the

pointing is achieved with an error inferior to 3 degrees (with
a resolution of 1.5 degrees of the neural network coding).
Second, the sensory-motor map has learned a reliable visuo-
motor space (no incoherent or discontinuous movements),
and third different apparent dynamics can be achieved and
controlled by the same internal dynamics when some DOF
are frozen or freed. Hence, this system adaptation does
not need any internal re-mapping nor weight adaptation
between the different situations (see Fig 9 1 and 2).

1 2

t=48
t=48

t=76

t=68

Visual area stimulated 

CCD
position

Fig. 9. Pointing results, resulting of the NF activity plotted in fig-
ure 8. Left: one DOF modality. Right two DOF modality. In both
examples, the same internal dynamic succeeds to drive the arm to
the area of the visual space stimulated.

These examples of pointing show that our architecture
exploits efficiently the 2D visual information for positioning
the robotic arm in the 3-D surrounding space. The 2-D to
3-D position equivalence of the extremity of the arm is per-
formed due to the previous learning of the sensory-motor
map, which topology favors minimal cost movements by
minimizing the distance of each joint between the current
proprioceptive configuration and the desired visual target
position of the extremity. The visually forced topology
of the sensory-motor map ensures that the arm extremity
follows the shortest path to reach the target, while the dy-
namical neural fields ensure the proper speed profile of the
arm extremity whatever the number of joints involved is
(all the available joints contribute to the whole movement).
Finally, to test the correct learning of the interactions be-
tween different modules of the architecture, the motor con-
trol of the arm and the CCD camera have been inhibited.
In these conditions, the experimenter takes the robot’s ex-
tremity and moves it (passive movement of the robot arm).
We observe that even without visual perception, the robot
head follows the movements of the robot hand. This exper-
iment shows that the proprioceptive information from the
different joints of the robot arm is sufficient to correctly
activate the sensory-motor map and the pan-tilt camera
(reciprocal connections between the active vision system
and the control of the arm defining the homeostatic con-
trol).

B. Gesture Imitation

The previous learning process allows the constitution of
a primary behavioral repertory. Thus, an elementary im-
itative behavior can now be triggered by exploiting the
ambiguity of the perception. By shifting manually the
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head horizontally (without modification of the propriocep-
tive signal), we ensure that a perceived moving object will
be associated to the robot own arm. The generated error
will induce movements of the robotic arm reproducing the
moving path of the human hand: an imitative behavior
emerges. Using this setup, we show that our robot can im-
itate several different movements (Fig. 10). During the ex-
periment, the experimenter was naturally moving his arm
in front of the robot’s camera making simple vertical or hor-
izontal movements, squares, or circles. The camera rapidly
tracked the hand (the most moving part of the scene) and
the arm, reproduced in real time the hand’s perceived tra-
jectory. The use of neural fields ensures a reliable filtering
of movements and a stable, continuous tracking of the tar-
get by the head and the arm of the robot. Hence, it is no
more necessary to perform a brutal shift of the camera in
order to avoid the robot to perceive its arm. If the teacher
arm moves first, he generates a first stable attractor that
the robot will consider as the position to reach even if the
robot perceives next its own arm (building of a second at-
tractor that will not be chosen if the robot arm falls in the
attraction basin generated by the movement of the teacher
arm).

Fig. 10. Real time imitation of a simple vertical gesture. To obtain
a low-level imitative behavior, we simply shift the head’s orientation
according to the body and the arm orientation (shift = 90 degrees).
Thus, a perceived movement is interpreted as an error, inducing cor-
rective movements of the arm: an imitating behavior emerges

C. Learning complex trajectories via imitation

Once our robot is able to perform an imitative behavior,
it can reproduce a wide variety of movements demonstrated
by a human. These movements can be combined in a more
complex trajectory. For example, a succession of simple
movements can be involved in a complex action, as shown
in figure 11. Such an action involves movements, objects,
and maybe goals or intentions. As a first step toward the
learning of complex actions, our goal is to show here that
the complete trajectories of the demonstrator arm can be
learned in a simple way due to the N.N. architecture pre-

sented in the previous section.

Fig. 11. Exemple of an action. The demonstrator grasps a cube
on the table, then moves his arm up, left, and he releases the cube
down. The succession of simple gestures plays an important role in
this action

To learn sequences of gestures, two main problems must
be solved:
• recognition and extraction of the shape of the demon-
strator arm trajectory (the path followed by his arm),
• extraction and learning of the appropriate information
for a correct motor reproduction.
Our solution to these problems is directly related to the
importance of the perception-action coupling in our archi-
tecture. In previous works, we have already shown that
the immediate imitation of a moving human by a mo-
bile robot allows the robot to learn its own sequence of
movements [Gaussier et al., 1998]. The immediate imita-
tion mechanism allowed the robot to convert and filter the
perceptions by its own internal dynamic, and the related
wheels movements were learned as a temporal succession
of orientations. Intuitively, the learning of sequences of
gestures with a more complex robotic arm can be realized
in the same way: the immediate imitative behavior allows
our robot to learn about its own motor dynamics, about
the movements it is performing. In this case, the motor ac-
tivity of our robot is a filtered response of its perceptions,
and the related signal is therefore more continuous and less
noisy than the visual information.

But the present robot is much more complex. Multiple
joints act at the same time and can have redundant effects
on the movement of the end effector. Moreover, we would
like our model to be the same, independent of the com-
plexity of the device, and we would like it to reproduce a
trajectory even in case of errors on a set of articulations.
Once again, we assume that only the position of the ex-
tremity matters.

We propose that the learning of significant changes in
the movement directions should be performed at the level
of the sensory-motor map (see Fig. 12). This solution
presents the following advantages. First, the output of the
sensory motor map is expressed in the 2D visual space,
and the related informations are independent of the di-
mension of the proprioceptive signal, i.e of the number of
joints. Hence, the complexity of the “sequence learning”
network is directly fixed by the number of dimensions in
the visual space (2D or 3D for instance) instead of being
dependent on the complexity of the motor space. Second,
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Fig. 12. In our current system, we must take into account the mul-
tiplication of the joints contributing to the final move of the arm.
Instead of learning the variations of each joint (non robust solution),
we propose to learn the variation of the attractors produced by the
sensory-motor map. The dimensions of this signal remain indepen-
dent (expressed in the 2-D visual space) to the number of joints and
ensure robust reproductions (fault tolerant solution).

the computation is always performed from the propriocep-
tive information but it benefits from the decision making
stability of the NF. Another interest of this approach, is a
very efficient and fault tolerant learning mechanism. A tra-
jectory learned with a set of joints, can then be reproduced
by a different set (even a different device), because our sys-
tem only learns the dynamics of the end point (with the
assumption that our system has learned a coherent visuo-
motor transformation on the sensory-motor map). But the
main advantage is that there is no need to introduce an ab-
stract representation of the action to explain the capability
to use a skill learned with a particular device on another
one (no need to transfer knowledge - the direct coding in
our sensori-motor map allows an invariant representation
of the action according to the motor device). This strat-
egy could be generalized to other perceptive information if
we suppose learning is always performed in a kind of vi-
sual space (even for tactile information or spatial aspects
of sounds).

Practically, to learn the trajectory efficiently, our system
tries to detect the significant variations in the trajectory of
the end point of its arm (major changes in the trajectory
(pertinent points). The 2D information obtained from the
sensory-motor map is simply integrated and then derived
dinput

dt
= 0 to obtain a single information allowing to trigger

the learning of a particular via point. The trajectory is then
represented by a succession of activities on the sensory-
motor map as shown figure 13.

A group of neurons is used to predict when which neuron
on the visuo-motor map will be activated according to the
previous activations on the map (see [Gaussier et al., 1997],
[Gaussier et al., 1998] for a complete description of the
network). Because of the feedback connexion to the visuo-
motor map, the sole prediction is sufficient to trigger a se-
quence of activations on the 2D neural field. Fig. 14 shows
some snapshots of the temporal activity on this map during
a sequence reproduction). The activity bubbles represent
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Fig. 13. Output of the sensory-motor map, corresponding to the
reproduction of an inverted ’U’ trajectory learned from the visual
perception of the experimenter hand motion.

Fig. 14. Representation of the neural field activities associated to the
reproduction in the visual space of learned sequence of hand move-
ments. The “sequence learning” system triggers a succession of dy-
namical attractors. Here the attractors correspond to the trajectory
demonstrated in figure 13. They show the trajectory has been cor-
rectly learned

the attractors (via-points) of the trajectory expressed in
the visual space. Hence, those activations can be used to
control any device. The specificities of the trajectory re-
production according to the morphological and dynamical
properties of the used device will only depend of the read-
out mechanism performed on the result of the visuo-motor
transformation (readout previously learned or hardwired
and independent of the trajectory/behavior to be learned).

VI. Discussion and conclusion

In 1990, Edelman et al [Reeke et al., 1990] proposed Dar-
winIII, a simulated robot with a mobile eye and a 4 DOF
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arm able to reinforce the reaching of particular targets.
A sensor placed on the extremity of the simulated arm
helped the computing of the reinforcement of the move-
ments. Bullock et al [Bullock et al., 1993] presented the
DIRECT model, a self-organizing network for eye-hand co-
ordination learning correlations between visual, spatial and
motor information. This robust solution allows the success-
ful reaching of spatial targets by a simulated multi-joints
arm. Our neural control architecture is inspired from these
works, and tries to apply them in the context of a real
robot in interactions with humans and other robots. Nev-
ertheless, the main difference is the introduction of a rep-
resentation of the motor behaviors that is independent of
the motor device. The sequence of events is encoded as
a sequence of attractors in a kind of “visual” space, wich
coherency results of the learning of the sensorimotor map.
This encoding greatly simplifies the control problem since
the attractor can be defined in a 1D space or at least in a
2D space instead of a nD space (of a n DOF arm).

The computation of the NF equations on the perceptive
activity allows a generic encoding of the internal dynam-
ics, independent of the motor devices, and without taking
into account the number of DOF of the device, the possible
redundancies (this part being managed by the visuo-motor
learning), and therefore the possible mechanical changes
that can be made during a robot’s ”life”. Hence, the as-
sociation of an adaptive sensory-motor map with two 1-D
neural fields can be seen as a simple global dynamical rep-
resentation of the working space controlling efficiently an
arbitrary number of degrees of freedom according to the
2D information coming from the visual system.

Far from building a control architecture dedicated to imi-
tation tasks, we showed how a generic system with learning
capabilities and dynamical properties, can easily exhibit
low-level imitations. These imitations of arm movements
are performed without any internal model of the human
arm, and can easily be transposed to imitation of robot arm
movements, independent of the morphology of the arm. We
are close to an effect level imitation [Nehaniv and Dauten-
hahn, 1998], where real-time executions, and dynamics of
the movement are enough to provide low-level but efficient
imitation. Our imitation mechanism is efficient for inter-
action, because imitation of movements can be recognized,
and it is efficient for learning, because information about
the most useful and informative part of the movement, the
end point, is used.

These interactions will constitute, in future works, a
new way for the system to learn more complex sensory-
motor associations, about the physical, dynamical and so-
cial properties of the environment. But, if our architecture
is already able to exhibit imitative behaviors of different
levels of complexity, we believe that it can also be a good
model for more heterogeneous and apparently complex imi-
tative behaviors. We assume that the coding and represen-
tation of motor action in the visual space, that allows the
independence of the device executing an action, can also
represent the core principle of a perception-action model
unifying immediate and deferred imitation. Indeed, tra-

ditional studies in psychology often separated immediate
imitation of the baby (a ”mimic” exhibited during the first
month of life) from apparently more complex deferred im-
itation7. In this paper, we showed that our architecture
is able to learn a succession of movements whatever the
robotic device is. Because the internal representation of
the trajectory is not anchored in the visual environment,
and because our control architecture does not need any in-
formation about the demonstrator, our robot is almost in-
dependent of the motor modalities used by the demonstra-
tion. If we now suppose that our system possesses an inhi-
bition mechanism allowing to freeze/free the movements of
its arm, our robot will be able to reproduce the trajectory
at any time after the observation. It could therefore learn
a trajectory using only the movement of its eye or head
in the visual space, and then reproduce it with its arm,
performing what could be called a ”deferred imitation”
of the trajectory. We believe that the issue of the con-
trol of inhibitions is crucial in the actual debate about the
so-called mirror neurons. According to [Rizzolatti, 2002],
mirror neurons are neurons whose activity respond when
observing or reproducing hand, arm, or mouth actions. Ac-
cording to the authors, mirror neurons can be explained
by two resonance mechanisms. The high level resonance
mechanism could explain the firing of the same neurons
during the observation or the reproduction of the same spe-
cialized action performed on particular graspable objects.
The low level mechanism could be responsible of the firing
of neurons during the observation or production of mean-
ingless arm movements. If the high level resonance mech-
anism is out of the scope of our experiments (the recogni-
tion/manipulation of objects must be addressed first), the
activity of the NF map of our system could be close to a
low level mechanism. Neurons of the NF map are active
when the robot observe an arm movement or when it repro-
duces it. If it is obvious that our architecture (and, in fact
any control architecture linking visual and motor informa-
tions [Schaal, 1999], [Billard, 2001], [Marom et al., 2002])
can contain neurons/variable firing in both condition, it
arises the more important question of the underlying mech-
anism inhibiting the trigger of actions, differentiating the
observation situation from the reproduction situation, and
the imitator from the imitated.

In conclusion, our architecture could represent the first
step of a single sensori-motor model unifying immediate
and deferred imitative behaviors often viewed as separated
and as constituted of mechanisms of different levels of com-
plexity.
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